共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In a mature beech stand located in north-eastern Germany, xylem sap flux measurements were continuously performed during the 2002–2004 growing seasons. Ten representative trunks were studied using heated thermal dissipation probes. The measurements aimed at identifying principles governing radial profiles of xylem flux in beech trunks. The measurements were taken up to a trunk depth of 132 mm. The sap flow density in the pericambial xylem was found to vary among trees of different diameters, but was not considerably smaller in suppressed trees. A model for the radial distribution of sap flux density was formulated relating trunk radius and sap flow density. The model takes into account different trunk diameter. About 90% of the sap flux was found to occur in the outer two fifths of the trunk. Using this model, an adequate estimate of transpiration can be achieved at tree and stand level, even when the sap flux measurements are restricted to the outer trunk sectors. 相似文献
3.
Tomonori Kume Yuka Onozawa Hikaru Komatsu Kenji Tsuruta Yoshinori Shinohara Toshihiro Umebayashi Kyoichi Otsuki 《Forest Ecology and Management》2010
The applicability of sap flux (Fd) measurements to bamboo forests has not been studied. This study was undertaken to establish an optimal and effective design for stand-scale transpiration (E) estimates in a Moso bamboo forest. To this aim, we validated Fd measurements in Moso bamboos in a cut bamboo experiment. In addition, we analyzed how sample sizes affect the reliability of E estimates calculated from Fd and conducting culm area (AS_b). In the cut bamboo experiments, we found that Fd measurement using a 10 mm probe was a valid means of determining the water-use behavior of a Moso bamboo, although a specific correction was needed. Furthermore, we calculated E from stand AS_b (AS_stand) and mean stand Fd (JS). Employing Monte Carlo analysis, we examined potential errors associated with sample size in E, AS_stand, and JS using an original dataset with AS_b and Fd measured for 40 and 16 individuals, respectively. Consequently, we determined the optimal sample size for both AS_stand and JS estimates as 11. The optimal sample sizes for JS were almost the same under different vapor pressure deficit and soil moisture conditions. The optimal sample size for JS at the study site was less than that of a coniferous plantation in the same region probably owing to small individual-to-individual variations in sap flux in the Moso bamboo forest. Our study concludes that sap flux measurements are an applicable technique for assessing water use in Moso bamboo forests. 相似文献
4.
Diurnal and seasonal variability in radial distribution of sap flux density: Implications for estimating stand transpiration 总被引:3,自引:0,他引:3
Daily and seasonal patterns in radial distribution of sap flux density were monitored in six trees differing in social position in a mixed coniferous stand dominated by silver fir (Abies alba Miller) and Norway spruce (Picea abies (L.) Karst) in the Alps of northeastern Italy. Radial distribution of sap flux was measured with arrays of 1-cm-long Granier probes. The radial profiles were either Gaussian or decreased monotonically toward the tree center, and seemed to be related to social position and crown distribution of the trees. The ratio between sap flux estimated with the most external sensor and the mean flux, weighted with the corresponding annulus areas, was used as a correction factor (CF) to express diurnal and seasonal radial variation in sap flow. During sunny days, the diurnal radial profile of sap flux changed with time and accumulated photosynthetic active radiation (PAR), with an increasing contribution of sap flux in the inner sapwood during the day. Seasonally, the contribution of sap flux in the inner xylem increased with daily cumulative PAR and the variation of CF was proportional to the tree diameter, ranging from 29% for suppressed trees up to 300% for dominant trees. Two models were developed, relating CF with PAR and tree diameter at breast height (DBH), to correct daily and seasonal estimates of whole-tree and stand sap flow obtained by assuming uniform sap flux density over the sapwood. If the variability in the radial profile of sap flux density was not accounted for, total stand transpiration would be overestimated by 32% during sunny days and 40% for the entire season. 相似文献
5.
Radial variation in sap flux density across the sapwood was assessed by the heat field deformation method in several trees of Quercus pubescens Wild., a ring-porous species. Sapwood depths were delimited by identifying the point of zero flow in radial patterns of sap flow, yielding tree sapwood areas that were 1.5-2 times larger than assumed based on visual examinations of wood cores. The patterns of sap flow varied both among trees and diurnally. Rates of sap flow were higher close to the cambium, although there was a significant contribution from the inner sapwood, which was greater (up to 60% of total flow) during the early morning and late in the day. Accordingly, the normalized difference between outer and inner sapwood flow was stable during the middle of the day, but showed a general decline in the afternoon. The distribution of sap flux density across the sapwood allowed us to derive correction coefficients for single-point heat dissipation sap flow measurements. We used daytime-averaged coefficients that depended on the particular shape of the radial profile and ranged between 0.45 and 1.28. Stand transpiration calculated using the new method of estimating sapwood areas and the radial correction coefficients was similar to (Year 2003), or about 25% higher than (Year 2004), previous uncorrected values, and was 20-30% of reference evapotranspiration. We demonstrated how inaccuracies in determining sapwood depths and mean sap flux density across the sapwood of ring-porous species could affect tree and stand transpiration estimates. 相似文献
6.
Variability with xylem depth in sap flow in trunks and branches of mature olive trees 总被引:1,自引:0,他引:1
Knowledge of sap flow variability in tree trunks is important for up-scaling transpiration from the measuring point to the whole-tree and stand levels. Natural variability in sap flow, both radial and circumferential, was studied in the trunks and branches of mature olive trees (Olea europea L., cv Coratina) by the heat field deformation method using multi-point sensors. Sapwood depth ranged from 22 to 55 mm with greater variability in trunks than in branches. Two asymmetric types of sap flow radial patterns were observed: Type 1, rising to a maximum near the mid-point of the sapwood; and Type 2, falling continuously from a maximum just below cambium to zero at the inner boundary of the sapwood. The Type 1 pattern was recorded more often in branches and smaller trees. Both types of sap flow radial patterns were observed in trunks of the sample trees. Sap flow radial patterns were rather stable during the day, but varied with soil water changes. A decrease in sap flow in the outermost xylem was related to water depletion in the topsoil. We hypothesized that the variations in sap flow radial pattern in a tree trunk reflects a vertical distribution of water uptake that varies with water availability in different soil layers. 相似文献
7.
Distribution of lignin and lignin precursors in differentiating xylem of Japanese cypress and poplar
Lignin is an integral component of the cell wall of vascular plants. The mechanism of supply of lignin precursors from the cytosol into the cell wall of differentiating xylem has not yet been elucidated. The present study showed that a certain amount of coniferyl alcohol glucoside (coniferin) occurred in the differentiating xylem of Japanese cypress (Chamaecyparis obtusa), as previously reported in gymnosperms. Coniferin content peaked in the early stages of secondary wall formation and decreased during lignification. In contrast to gymnosperms, coniferin content was limited in the differentiating xylem of poplar (Populus sieboldii × Populus grandidentata). Moreover, coniferyl alcohol was not detected in all specimens. In the differentiating xylem of poplar, a higher amount of sinapyl alcohol occurred than glucoside (syringin). However, the phloem contained syringin and not sinapyl alcohol. The sinapyl alcohol content in the xylem peaked in the cells with ceasing cell wall formation, and decreased gradually towards the boundary of the annual ring, where the lignin content kept increasing. Sinapyl alcohol in the differentiating xylem of poplar may be used for the lignification of the xylem. 相似文献
8.
Beech seedlings (Fagus sylvatica L.) were grown in various combinations of three photosynthetic photon flux densities (PPFD, 0.7, 7.3 or 14.5 mol m(-2) day(-1)) for two years in a controlled environmental chamber. Dry mass of leaves, stem and roots, leaf area and number of leaves, and unit leaf rate were affected by both previous-year and current-year PPFD. Number of shoots and length of the main shoot were affected by previous-year PPFD but not by current-year PPFD. Number of leaves per shoot did not change with PPFD, whereas leaf dry mass/leaf area ratio was mainly affected by current-year PPFD. During the first 10 days that newly emerged seedlings were grown at a PPFD of 0.7 or 14.5 mol m(-2) day(-1), transpiration rate per unit leaf area declined. Thereafter, transpiration increased to a constant new rate. Transpiration rate per seedling was closely related to leaf area but the relationship changed with time. In two-year-old seedlings grown at various PPFD combinations of 0.7, 7.3 and 14.5 mol m(-2) day(-1) during Years 1 and 2, leaf area and transpiration rate per seedling were closely correlated at Weeks 7 and 11 after bud burst. Weak correlations were found between root dry mass and transpiration rate per seedling. During Year 2, transpiration rate per leaf area was higher at a particular PPFD in seedlings grown at a previous-year PPFD of 0.7 mol m(-2) day(-1) than in seedlings grown at a previous-year PPFD of 14.5 mol m(-2) day(-1). After transfer of two-year-old seedlings at the end of the experiment to a new PPFD (7.3 or 14.5 mol m(-2) day(-1)) for one day, transpiration rates per leaf area, measured at the new PPFD, were correlated with leaf area and root dry mass, irrespective of former PPFD treatment. 相似文献
9.
树木心边材的含量与年轮数的时空变异规律 总被引:1,自引:0,他引:1
对树木心边材的年轮数、含量(宽度、面积与体积)的时空变异规律及其影响因子的研究进展进行了总结分析,并就现有研究中存在的问题、未来研究的前景与方向进行了讨论与展望。目的是为心边材产量调控、木材优化利用与质量评价提供可靠依据,同时为树木生理、生态功能的深入研究提供必要的基础理论知识。 相似文献
10.
Viviana Horna Bernhard Schuldt Sarah Brix Christoph Leuschner 《Annals of Forest Science》2011,68(5):1027-1038
• Introduction
We studied stem sap flux density in seven common tree species in a perhumid tropical rainforest at pre-montane elevation in Sulawesi with the aims (1) to analyse the among-species variation in flow patterns, (2) to search for an assumed convergence in the response to controlling environmental factors, and (3) to investigate the effect of tree size on xylem flux. 相似文献11.
Améglio T Decourteix M Alves G Valentin V Sakr S Julien JL Petel G Guilliot A Lacointe A 《Tree physiology》2004,24(7):785-793
We studied the effect of temperature on the carbohydrate status of parenchyma cells during winter in relation to the efflux and influx of sugars between parenchyma cells and xylem vessels in 1-year-old twigs of walnut (Juglans regia L.). The mechanism of sugar transfer between contact cells and vessels was also investigated. We obtained new insights into the possible osmotic role of sugars, particularly sucrose, in stem pressure formation and winter embolism repair. Accumulation of sucrose in the xylem sap during winter was mainly influenced by: (1) abundant conversion of starch to sucrose in the symplast at low temperatures; (2) sucrose efflux into the apoplast at low temperatures (1 degrees C); and (3) inefficient sugar uptake at low temperatures, although efficient sugar uptake occurred at 15 degrees C. We hypothesize that a diethyl pyrocarbonate (DEPC)-sensitive protein mediates facilitated diffusion of sucrose from parenchyma cells to xylem vessels (efflux) in walnut. We discuss the possible occurrence of active H+-sucrose symports and the coexistence of both influx and efflux processes in walnut in winter and the modulation of the relative importance of these flows by temperature. 相似文献
12.
Assessing variation in the radial profile of sap flux density in Pinus species and its effect on daily water use 总被引:1,自引:0,他引:1
We monitored sap flux density (v) diurnally in nine mature southeastern pine (Pinus spp.) trees with a thermal dissipation probe that spanned the sapwood radius. We found the expected pattern of high v near the cambium and decreasing v with depth toward the center of the tree; however, the pattern was not constant within a day or between trees. Radial profiles of trees were steeper earlier in the day and became less steep later in the day. As a result, time-dependent changes in the shape of the radial profile of v were sometimes correlated with daily changes in evaporative demand. As the radial profile became less steep, the inner xylem contributed relatively more to total tree sap flow than it did earlier in the day. We present a 3-parameter Gaussian function that can be used to describe the radial distribution of v in trees. Parameters in the function represent depth in the xylem from the cambium, maximum v, depth in the xylem where maximum v occurs, and the rate of radial change in v with radial depth (beta). Values of beta varied significantly between trees and with time, and were sometimes correlated with air vapor pressure deficit (D). We hypothesize that this occurred during periods of high transpiration when the water potential gradient became great enough to move water in the inner sapwood despite its probable high hydraulic resistance. We examined discrepancies among estimates of daily water use based on single-point, two-point and multi-point (i.e., every 20 mm in the sapwood) measurements. When radial distribution of v was not considered, a single-point measurement resulted in errors as large as 154% in the estimate of daily water use relative to the estimate obtained from a multi-point measurement. Measuring v at two close sample points (10 and 30 mm) did not improve the estimate; however, estimates derived from v measured at two distant sample points (10 and 70 mm) significantly improved the estimate of daily water use, although errors were as great as 32% in individual trees. The variability in v with depth in the xylem, over time, and between trees indicates that measurements of the radial distribution of v are necessary to accurately estimate water flow in trees with large sapwood areas. 相似文献
13.
A variety of thermal approaches are used to estimate sap flux density in stems of woody plants. Models have proved valuable tools for interpreting the behavior of heat pulse, heat balance and heat field deformation techniques, but have seldom been used to describe heat transfer dynamics for the heat dissipation method. Therefore, to better understand the behavior of heat dissipation probes, a model was developed that takes into account the thermal properties of wood, the physical dimensions and thermal characteristics of the probes, and the conductive and convective heat transfer that occurs due to water flow in the sapwood. Probes were simulated as aluminum tubes 20 mm in length and 2 mm in diameter, whereas sapwood, heartwood and bark each had a density and water fraction that determined their thermal properties. Base simulations assumed a constant sap flux density with sapwood depth and no wounding or physical disruption of xylem beyond the 2 mm diameter hole drilled for probe installation. Simulations across a range of sap flux densities showed that the dimensionless quantity k [defined as (ΔT(m) -ΔT)/ΔT, where ΔT(m) is the temperature differential (ΔT) between the heated and unheated probe under zero-flow conditions] was dependent on the thermal conductivity of the sapwood. The relationship between sap flux density and k was also sensitive to radial gradients in sap flux density and to xylem disruption near the probe. Monte Carlo analysis in which 1000 simulations were conducted while simultaneously varying thermal conductivity and wound diameter revealed that sap flux density and k showed considerable departure from the original calibration equation used with this technique. The departure was greatest for variation in sap flux density typical of ring-porous species. Depending on the specific combination of thermal conductivity and wound diameter, use of the original calibration equation resulted in an 81% under- to 48% overestimation of sap flux density at modest flux rates. Future studies should verify these simulations and assess their utility in estimating sap flux density for this widely used technique. 相似文献
14.
To investigate the effects of soil water content on growth and transpiration of Japanese cedar (Cryptomeria japonica D. Don) and Hinoki cypress (Chamaecyparis obtusa (Siebold et Zucc.) Endl.), potted seedlings were grown in well-watered soil (wet treatment) or in drying soil (dry treatment) for 12 weeks. Seedlings in the wet treatment were watered once every 2 or 3 days, whereas seedlings in the dry treatment were watered when soil water content (Theta; m3 m(-3)) reached 0.30, equivalent to a soil matric potential of -0.06 MPa. From Weeks 7 to 12 after the onset of the treatments, seedling transpiration was measured by weighing the potted seedlings. After the last watering, changes in transpiration rate during soil drying were monitored intensely. The dry treatment restricted aboveground growth but increased biomass allocation to the roots in both species, resulting in no significant treatment difference in whole-plant biomass production. The species showed similar responses in relative growth rate (RGR), net assimilation rate (NAR) and shoot mass ratio (SMR) to the dry treatment. Although NAR did not change significantly in either C. japonica or C. obtusa as the soil dried, the two species responded differently to the dry treatment in terms of mean transpiration rate (E) and water-use efficiency (WUE), which are parameters that relate to NAR. In the dry treatment, both E and WUE of C. japonica were stable, whereas in C. obtusa, E decreased and WUE increased (E and WUE counterbalanced to maintain a constant NAR). Transpiration rates were lower in C. obtusa seedlings than in C. japonica seedlings, even in well-watered conditions. During soil drying, the transpiration rate decreased after Theta reached about 0.38 (-0.003 MPa) in C. obtusa and 0.32 (-0.028 MPa) in C. japonica. We conclude that C. obtusa has more water-saving characteristics than C. japonica, particularly when water supply is limited. 相似文献
15.
Finto Antony Laurence R. Schimleck Lewis Jordan Richard F. Daniels Alex Clark III 《Annals of Forest Science》2012,69(5):641-650
Context
Modulus of elasticity (MOE) is an important mechanical property determining the end-use and value of loblolly pine (Pinus taeda L.) lumber.Aim
In this study, a model was developed to predict the within tree variation of MOE, from pith-to-bark and stump-to-tip, using data collected from a 21-year-old unthinned stand where trees were planted under seven initial stand density levels (746?C2,243 trees/hectare).Methods
The study was laid out in a randomized complete block design, with seven levels of initial planting density, replicated three times. Seven trees were destructively sampled from each plot, and bolts were cut from each tree at heights of 2.4, 7.3, and 12.2?m. Static bending samples (of dimension 2.5?×?2.5?×?40.6?cm) representing pith-to-bark variation were cut from each bolt and MOE measured. A three-parameter logistic function was used to model the pith-to-bark variation in stiffness with distance from pith as an explanatory variable.Results
Based on the final fitted model, it was found that the asymptotic parameter (maximum outerwood MOE?=?13.48?GPa) was not influenced by sampling height, initial planting density, and stem slenderness. However, the inflection and scale parameters were significantly influenced by these variables.Conclusions
In summary, we found that initial planting density had a significant influence on the amount of corewood produced with higher initial planting densities producing a lower proportion of corewood as indicated by a linear decrease in inflection point with an increase in planting density. 相似文献16.
《林业研究》2021,32(2)
Insufficient knowledge on Ugandan grown Eucalyptus grandis W.Hill ex Maiden wood properties,high demand,and processing challenges led to a study into its physical properties.We obtained the variation of basic density(BD),calorific value(CV) and volumetric shrinkage(VS) within tree height and tree-age of E.grandis,and its appropriate use based on these properties.Trees with good boles were harvested from Kabarole District in western Uganda to produce specimens as prescribed by British Standards and ASTM standard wood testing procedures.Secondary data reviews and statistical analysis using ANOVA,Tukey's test and multivariate analysis were done to obtain property estimates and their variation within trees and amongst tree ages.The mean BD of E.grandis is 413.6,380.5,471.0,and 501.1 kg m~(-3) at 3,6,9,and 12 years,respectively,showing significant increase with tree age(p=0.003).The pattern of BD with tree height showed a reduction with tree height although with higher values in the middle portion of the tree.The CV increases(p=0.014)with tree age and reduces with tree height with values of14,560.32,15,447.3,16,079.11,and 16,932.6 kJ kg~(-1) at 3,6,9,and 12 years,respectively.The percentage VS was 11.02,9.84,12.31,and 14.45 for 3-,6-,9-,and 12-year-old trees,respectively,and it did not vary significantly(p=0.088)with tree height.Basing on these property values,E.grandis wood could be used for scaffolding,light constructions and fuel wood production.Its seasoning needs to be longer with well monitored drying schedules to reduce seasoning defects caused by the high VS.Further studies on strength properties,seasoning schedules,panel products properties and tree-age chemical variations would improve the knowledge about its wood quality and would enhance its efficient utilization. 相似文献
17.
通过调查不同树种新造林树高生长量、保存率及其土壤细菌、真菌、放线菌数量等,研究其生长、适应性及对土壤微生物数量的影响。结果表明:光皮桦、桤木、楸树、栾树、湿地松5年生树高分别为7.4、6.5、6.3、4.8、4.2m,保存率分别为92%、65%、82%、78%、90%;不同树种造林后对土壤微生物数量的提高有明显差异,5个树种造林后林分土壤微生物数量提高的效果排序为桤木〉光皮桦〉栾木〉楸树〉湿地松;新造林均表现为造林当年土壤微生物数量明显下降,一般下降35%~40%,第2年底回升并超过造林前水平,第3-5年逐年增加。 相似文献
18.
Sap flux density was measured continuously during the 1999 and 2000 growing seasons by the heat dissipation method in natural Fagus crenata Blume (Japanese beech) forests growing between 550 and 1600 m on the northern slope of the Kagura Peak of the Naeba Mountains, Japan. Sap flux density decreased radially toward the inner xylem and the decrease was best expressed in relation to the number of annual rings from the cambium, or in relation to the relative depth between the cambium and the trunk center, rather than as a function of absolute depth. The relative influences of radiation, vapor pressure deficit and soil water on sap flux density during the growing season were similar for the outer and inner xylem, and at all sites. Measurements of soil water content and water potential at a depth of 0.25 m demonstrated that sap flux density responded similarly and sensitively to water potential changes in this soil layer, despite large differences in rooting depth at different elevations, localizing one important control point in the functioning of this forest ecosystem. Identification of the relative influences of radiation, vapor pressure deficit and drying of the upper soil layer on sap flux density provides a framework for in-depth analysis of the control of transpiration in Japanese beech forests. In addition, the finding that the same general controls are operating on sap flux density despite climate gradients and large differences in overall forest stand structure will enhance understanding of water use by forests along elevation gradients. 相似文献
19.
Wood density,phytomass variations within and among trees,and allometric equations in a tropical rainforest of Africa 总被引:1,自引:0,他引:1
M. Henry A. Besnard W.A. Asante J. Eshun S. Adu-Bredu R. Valentini M. Bernoux L. Saint-André 《Forest Ecology and Management》2010
The development of tree allometric equations is crucial to accurate forest carbon assessment. However, very few allometric equations exist for sub-Saharan Africa and as a result generalized allometric equations, often established for forests in other continents, are used by default. The objectives of this study were (1) to propose a sampling methodology and calculation procedures to assess biomass for tropical tree species of contrasted tree shapes in Africa, (2) to identify factors affecting within and between trees wood density, (3) to propose an allometric model that integrates these factors and (4) to evaluate the reliability of using generalized allometric equations in this type of forests. Models were developed to predict wood density and phytomass of the trees based on the harvesting of 42 trees from 16 species, representing three guild status in the wet evergreen forest of Boi Tano in Ghana. Results indicated that the wood density was highly influenced by the tree species, guild status, size of the tree and pith to bark distance. Dry mass of a tree was influenced by diameter at breast height, crown diameter and wood density. The wood density depends on the position of the wood within the tree and the guild status considered. The use of generalized allometric models in literature is limited by the specific climate zone, the consideration of tree height and species specific wood density. In considering those factors, using generalized allometric equations could result in an error of 3%. Further research should better consider the bigger trees and the influence of the topography and ecosystem history. 相似文献
20.
Paul G. Scowcroft 《New Forests》2013,44(3):409-426
Increasingly private landholders in Hawaii are considering native forest restoration for their lands, and some public agencies have already started such work. Initial efforts have focused on reestablishing Acacia koa to recover alien-grass-dominated sites. This study was done in Hakalau Forest National Wildlife Refuge, Island of Hawaii, to determine the efficacy of disk plowing to stimulate natural regeneration of koa from buried seeds. Sites with four different koa parent tree configurations were treated–single live overhead koa canopy, multiple live canopies, downed snags, and no parent koa tree. Tree growth and survival were assessed periodically over 21 years. Average initial stand densities ranged from 100 to 1,500 trees ha?1 of scarified land, although some open areas had as few as 20 trees ha?1. The distributions of seedlings with increasing distance from plot center were variable within and between parent tree configurations. Initial seedling density was significantly greater for the multiple-live-parent than for the no-parent configuration. Densities for the single-live and dead configurations differed from the no-parent configuration only when densities were based on the entire scarified area of each plot. Stand densities declined 10–67 % during the next 20 years. Survival was a negative, non-linear function of initial stand density. Initial stand density exerted strong control over stem diameter and crown size at age 21-years, but had little effect on the proportion of trees with single-stems. The relationships between stand basal area and density at 21 years conformed to the existing koa stocking guidelines. While moderate to high densities of natural regeneration can be expected from scarifying around live and dead koa trees, single trees or low density stands are likely in open areas. 相似文献