首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal stabilization stage of polyacrylonitrile (PAN) fibers is characterized by a steady and continuous reduction in fiber diameter and linear density values together with color changes from reddish brown to shiny black with increasing stabilization time. Thermally stabilized PAN fibers acquire infusible and nonburning characteristics prior to the carbonization stage. Structural characterization of thermally stabilized polyacrylonitrile fibers was carried out using an indepth analysis of equatorial X-ray diffraction traces. Curve fitting of X-ray diffraction traces provided accurate peak parameters which were subsequently used for the evaluation of apparent crystallinity, apparent crystallite size and X-ray stabilization index. The results showed the loss of crystallinity due to the amorphization processes together with a steady and continuous decrease in lateral crystallite size with increasing stabilization time. With the progress of thermal stabilization, a new amorphous phase with a crosslinked and aromatized structure is formed which is expected to withstand high carbonization temperatures. Mechanical properties of the thermally stabilized PAN precursor fibers were found to be adversely affected with the progress of stabilization time. Due to the influence of thermal degradation mechanisms heavily involving chain scission along the fiber axis direction, tensile strength and tensile modulus values were found to decrease by significant proportions with the prolonged stabilization times.  相似文献   

2.
Thermal regulating fiber has been a research hotspot worldwide recently. In this paper, the energy storage microcapsules composed of silicon dioxide (SiO2) as shell and paraffin as core were synthesized in the spinning solution of polyvinyl alcohol (PVA). This solution was used to prepare thermal regulating PVA fibers by wet spinning directly. Orthogonal experiment was conducted to optimize the synthetic conditions of the microcapsules. Chemical structure and morphology of the fibers were characterized by Fourier transform infrared-attenuated total reflectance (FTIR-ATR) and scanning electron microscope (SEM) respectively. The thermal properties of the fibers were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Results present that energy storage microcapsules are successfully synthesized in PVA spinning solution with a mean particle size of 1.39 µm. The fibers containing such microcapsules show a high latent heat storage density of 45.39 J g?1, which also achieve a relatively better thermal stability.  相似文献   

3.
In this study, the surface of polyester fiber was modified by means of thermal treatment with a silver carbamate complex. We used scanning electron microscopy (SEM), an X-ray diffraction technique (XRD), and X-ray photoelectron spectroscopy (XPS) to allow a detailed characterization of the silver-coated polyethylene terephthalate (PET) fibers. The results revealed remarkable changes in the surface morphology and microstructure of the silver film after thermal reduction. On SEM, the silver nanoparticles (AgNPs) were seen to be uniformly and densely deposited on the fiber surface. The XRD pattern of the silver-coated fiber indicated that the film has a crystalline structure. A continuous layer of AgNPs, between 30 and 100 nm in size, was assembled on the PET fibers. The PET/Ag composite was found to impart high conductivity to the fibers, with an electrical resistivity as low as 0.12 kΩ·cm.  相似文献   

4.
In this study, the surface functionalization of polyacrylonitrile (PAN) fibers was achieved by depositing ZnO nanoparticles using thermal solvent coating. surface morphology, crystalline structure, surface chemistry, thermal stability and washing stability of the ZnO coated PAN fibers were investigated by scanning electron microscope (SEM), X-ray diffractometer (XRD), Fourier transform Infra red spectroscopy (FT-IR), Thermo-gravimetric analyses (TGA) and washing stability test, respectively. In addition, the weight changes after coating and washing were studied at different coating and washing conditions. The SEM images revealed that the ZnO was well coated on the surface of the PAN fibers and the coating was obviously affected by the experimental temperature. The FT-IR spectra indicated the chemical features of the deposited ZnO nanostructures. The XRD patterns showed that there was a typical crystalline structure of ZnO nanogains formed on the PAN fibers after coating. The TGA results revealed that the thermal stability of the PAN fibers was improved by the ZnO coating. The experimental results of washing stability revealed the effect of temperature on the washing stability. Weight measurements indicated that the amount of ZnO deposited on PAN fibers increased with the increasing of coating temperature from 60 to 70 °C. Weight measurements also revealed that the weight of the ZnO coating on fibers decreased with the increase in washing temperature and washing time.  相似文献   

5.
A series of water absorbent porous modified polyacrylonitrile (PAN) fibers were prepared using the blends of PAN and various molecular weight of polyethylene glycol (PEG) by wet-spinning process and water bath post-treatment. The chemical structure and morphologies of the modified PAN fibers were studied. The water transportation, water retention, moisture absorption and mechanical properties of the fibers were discussed. Results show that there is no residual PEG in modified PAN fibers after drawing process in hot water bath and post-treatment. With the increase in PEG molecular weight, the fiber surface grooves become deeper, the inner pore size increases, while the mechanical properties decrease. The water absorbing and transferring capabilities of the modified PAN fibers can be improved in varying degrees due to the different pore structures left by series molecular weight of PEG removing.  相似文献   

6.
Structural transformations taking place during the thermal stabilization of polyacrylonitrile (PAN) fiber used for the production of carbon fiber were characterized using a combination of polarized infrared spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and density measurements. Direct relationship between the increasing oxygen content and the density values was confirmed with increasing stabilization time. Linear density values were found to be directly influenced by the stabilization time. Thermal stability of stabilized precursor fibers was evaluated in terms of weight loss and residual weight fraction. The results showed that a residual weight fraction of 65 % at 1000 °C can be obtained but longer stabilization time resulted in a loss of residual weight fraction due to excessive thermal degradation. SEM was used for the observation of surface morphological features of stabilized precursor fibers. Polarized infrared spectroscopy showed the loss of molecular orientation of methylene (CH2), nitrile (Ct=N), and carbonyl (C=O) groups in direct response to the effects of cyclization, dehydrogenation, and amorphization (i.e. decrystallization) processes taking place during the stabilization stage.  相似文献   

7.
The Fe-montmorillonite (Fe-MMT) combined catalysis effects of Fe ion with barrier effects of silicate clays, was firstly synthesized by hydrothermal method, and then was modified by cetyltrimethyl ammonium bromide (CTAB). The organic-modified Fe-montmorillonite (Fe-OMT) was dispersed in the N, N-dimethyl formamide (DMF) and then compounded with polyacrylonitrile (PAN) solution which was dissolved in DMF. The composite solutions were electrospun to form PAN/Fe-OMT nanocomposite fibers. The influences of the Fe-OMT on the structure, morphology, thermal, flammability and mechanical properties of PAN nanocomposite fibers were respectively characterized by X-ray diffraction (XRD), High-resolution transmission electron microscopy (HRTEM), Scanning electron microscopy (SEM), Thermogravimetric analyses (TGA), Micro Combustion Calorimeter (MCC) and Electronic Single Yarn Strength Tester. It was found from XRD curves that there was not observable diffraction peak of silicate clay, indicating that the silicate clay layers were well dispersed within the PAN nanofibers. The HRTEM image indicated that the multilayer stacks of nanoclays could be found within the nanofibers and were aligned almost along the axis of the nanofibers. The SEM images showed that the diameters of nanocomposite fibers were decreased with the loading of the Fe-OMT. The TGA analyses revealed that the onset temperature of thermal degradation and charred residue at 700°C of PAN nanocomposite fibers were notably increased compared with the pure PAN nanofibers, contributing to the improved thermal stability properties. It was also observed from MCC analyses that the decreased peak of heat release rate (PHRR) of the PAN nanocomposite fibers reduced the flammability properties. The loadings of Fe-OMT increased the tensile strength of PAN nanocomposite fibers, but the elongation at break of PAN nanocomposite fibers was lower than that of the PAN nanofibers.  相似文献   

8.
The surface topography, tensile properties, and thermal properties of ramie fibers were investigated as reinforcement for fully biodegradable and environmental-friendly ‘green’ composites. SEM micrographs of a longitudinal and cross-sectional view of a single ramie fiber showed a fibrillar structure and rough surface with irregular cross-section, which is considered to provide good interfacial adhesion with polymer resin in composites. An average tensile strength, Young’s modulus, and fracture strain of ramie fibers were measured to be 627 MPa, 31.8 GPa, and 2.7 %, respectively. The specific tensile properties of the ramie fiber calculated per unit density were found to be comparable to those of E-glass fibers. Ramie fibers exhibited good thermal stability after aging up to 160°C with no decrease in tensile strength or Young’s modulus. However, at temperatures higher than 160°C the tensile strength decreased significantly and its fracture behavior was also affected. The moisture content of the ramie fiber was 9.9%. These properties make ramie fibers suitable as reinforcement for ‘green’ composites. Also, the green composites can be fabricated at temperatures up to 160°C without reducing the fiber properties.  相似文献   

9.
Chemical treatment of natural fibers is a well-defined means of mechanical property improvement in natural fiberreinforced composites. An understanding of mechanical and thermal properties in these media is essential for evaluating heat transfer, thermal degradation, and overall performance of these composites over their product lifetime. However, very little information is available illustrating the effect of such treatment on the thermal properties of kenaf composites. Also, no study to date has reported the thermal conductivity of individual kenaf fibers. This study reports the effects of fiber treatment (in 6 % NaOH) on thermal transport in unidirectionally oriented kenaf-epoxy composites and individual kenaf fibers. The effective thermal conductivities and thermal diffusivities of chemically treated fiber composites show a general increase over untreated fiber composites (0.210 to 0.232 W/m/K at 28 °C, 0.206 to 0.234 W/m/K at 200 °C). This improvement may be attributed to improved interfacial contact between the fibers and epoxy matrix shown in microstructural images after chemical treatment. The thermal conductivity of individual fibers was evaluated at room temperature using two techniques. Results from both techniques showed slight increases after chemical treatment (0.58±0.53 to 1.0±0.13 W/m/K and 1.2±0.54 to 1.6±0.28 W/m/K) but lacked statistical significance. Any improvement in surface crystallinity after chemical treatment does not appear to affect overall fiber thermal conductivity. A better understanding of thermal transport in kenaf fibers and composites enables better estimation of the performance of these composites in different applications. Moreover, the thermal conductivities of individual fibers are useful in understanding the fiber’s contribution to conduction in different fiber reinforcement configurations.  相似文献   

10.
Boron doped PVA/Zr-Al acetate nanofibers were prepared by electrospinning using PVA as a precursor. The effect of calcination temperature on morphology and crystal structure was investigated at 250, 500, and 800 °C. The study also establishes the effect of boron doping on the morphology of PVA/Zr-Al acetate nanofibers at various calcination temperatures. The measurements showed that the conductivity, pH, viscosity and the surface tension of the hybrid polymer solutions have increased with boron doping. In addition, the fibers were characterized by FTIR, DSC, XPS, XRD and SEM techniques. The addition of boron did not only increase the thermal stability of the fibers, but also increased the average fiber diameters, which gave stronger fibers. The DSC results indicated that the melting temperature (Tm) of the fibers was increased from 256 to 270 °C with the addition of boron. XRD peak patterns showed that after further heat treatment at 800 °C, zirconia exists in two phases of tetragonal and monoclinic modifications. Moreover, alumina does not transform into the γ-Al2O3 and θ-Al2O3 phase at 800 °C. The SEM appearance of the fibers showed that the addition of boron resulted in the formation of crosslinked bright surfaced fibers.  相似文献   

11.
Jute fibers have immense potential to be used as natural fillers in polymeric matrices to prepare biocomposites. In the present study jute fibers were surface treated using two methods: i) alkali (NaOH) and ii) alkali followed by silane (NaOH+Silane) separately. Effects of surface treatments on jute fibers surface were characterized using fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) analyses. Further, the effects of surface treatments on jute fibers properties such as crystallinity index, thermal stability, and tensile properties were analyzed by X-ray diffraction method (XRD), thermo gravimetric analysis (TGA), and single fiber tensile test respectively. The effects of surface treatment of jute fibers on interphase adhesion between of poly(lactic acid) (PLA) and jute fibers were analyzed by performing single fiber pull-out test and was examined in terms of interfacial shear strength (IFSS) and critical fiber length.  相似文献   

12.
Irradiation crosslinking of PA6 fibers with and without the presence of triallyl cyanurate (TAC) was investigated. The dose for incipient gel formation was 500 kGy for pristine PA6 fibers and it decreased to 12 kGy when 5 % TAC was incorporated. Changes in structure and properties of irradiated PA6 fibers were analyzed by X-ray diffraction, infrared spectroscopy and thermal gravimetric analysis. Irradiation crosslinking improved the anti-dripping properties of PA6 fibers effectively. Irradiated samples showed an increase of the breaking strength and then a decrease at further doses due to radiolysis effect, the elongation at break decreased during the irradiation process. Irradiation crosslinking had not changed the crystal form and crystallinity decreased first and then increased to some extent. DSC measurement reported that the melting temperature decreased with increasing the dose. The thermal stability decreased after irradiation whereas the amount of nonvolatile residue at 600 °C increased as the irradiation dosage increased. The infrared spectra of irradiated samples were identical with the unirradiated, no new bands were observed.XPS analysis showed that the number of C-C band increased after irradiation which proves that branching and crosslinking has occurred.  相似文献   

13.
Different silk substrates in form of spun silk tops, nonwoven web, yarn, and fabric were coated with electrically conducting doped polypyrrole (PPy) by in situ oxidative polymerization from an aqueous solution of pyrrole (Py) at room temperature using FeCl3 as catalyst. PPy-coated silk materials were characterized by optical (OM) and scanning electron (SEM) microscopy, FT-IR spectroscopy, and thermal analysis (DSC, TG). OM and SEM showed that PPy completely coated the surface of individual silk fibers and that the polymerization process occurred only at the fiber surface and not in the bulk. Dendrite-like aggregates of PPy adhered to the fiber surface, with the exception of the sample first polymerized in the form of tops and then spun into yarn using conventional industrial machines. FT-IR (ATR mode) showed a mixed spectral pattern with bands typical of silk and PPy overlapping over the entire wavenumbers range. DSC and TG showed that PPy-coated silk fibers attained a significantly higher thermal stability owing to the protective effect of the PPy layer against thermal degradation. The mechanical properties of silk fibers remained unchanged upon polymerization of Py. The different PPy-coated silk materials displayed excellent electrical properties. After exposition to atmospheric oxygen for two years a residual conductivity of 10–20 % was recorded. The conductivity decreased sharply under the conditions of domestic washing with water, while it remained essentially unchanged upon dry cleaning. Abrasion tests caused a limited increase of resistance. PPy-coated silk tops were successfully spun into yarn either pure or in blend with untreated silk fibers. The resulting yarns maintained good electrical properties.  相似文献   

14.
A new application of conventional electroless nickel plating to improve the interfacial properties of PBO fibers was reported. The relationship between surface morphology and interfacial properties of nickel-plated PBO fiber was explored. The continuous nickel coating consisted of nickel and phosphorus elements determined by Energy dispersive spectrometer (EDS) and transmission electron microscope (TEM), exhibiting high adhesive durability. The influence of bath temperature and plating time on the crystal structure, microstructure and mechanical properties of nickel-plated PBO fibers was systematically investigated. X-ray diffractometer (XRD) results revealed that the crystal structure among nickel-plated PBO fibers did not show differences. Scanning electron microscope (SEM) and Atomic force microscope (AFM) images showed that the process parameters had a great influence on surface morphology and roughness of nickel-plated PBO fibers, which could directly affect the interfacial properties of nickel-plated PBO fibers. Single fiber pull-out testing results indicated that the interfacial shear strength (IFSS) of PBO fibers after electroless nickel plating had a significant improvement, which reached maximum at 85 °C for 20 min. Single fiber tensile strength of nickel-plated PBO fibers was slightly lower than that of untreated one. Thermo gravimetric analysis (TGA) indicated that nickel-plated PBO fiber had excellent thermal stability.  相似文献   

15.
Apocynum venetum (AV) fibers were extracted by the combination of low (28 kHz) and high frequency (53 kHz) ultrasonic treatment after aqueous alkali maceration. The surface impurities and cementing components between fibers in the range of 10–50 μm were removed by low frequency ultrasound. The surface impurities in the range of 2–8 μm, as well as the residuals in the surface depression and inner cavum of fibers were further eliminated by high frequency ultrasonic irradiation. The treatment did not change crystal structure of cellulose I of AV fibers and could lead to a higher degree of crystallinity. Meanwhile, the examination of mechanical properties showed that the AV fibers could be used for textile industry. It is demonstrated that the combination of low and high frequency ultrasound after alkali treatment is simpler, more controllable and more environment-friendly and is a promising degumming method for textile industry.  相似文献   

16.
An investigation on the role of cupric (Cu2+) ion incorporation during the thermal stabilization of polyamide 6 fibers was carried out using a combination of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and X-ray diffraction (XRD) measurements. Cupric chloride pretreated and thermally stabilized polyamide 6 (PA6) fibers was characterized by a reduction in fiber diameter and linear density values together with color changes from light brown to black with increasing stabilization time. PA6 fibers were properly stabilized after 8 h of stabilization time prior to carbonization. The results obtained from DSC and TGA measurements indicated that there was an improvement in the thermal stability when cupric (Cu2+) ions were incorporated into the polymer structure. TGA thermograms showed the relative improvement in thermal stability as indicated by increasing char yield with progressing time. Char yield reached a maximum value of 33.6 % at 1000 °C for the cupric chloride pretreated PA6 fibers stabilized for 12 h at 180 °C. Experimental results obtained from DSC and X-ray diffraction methods suggested the loss of crystallinity as a result of perturbation of hydrogen bonds with progressing time. The formation of cupric ion-amide coordination bonds improved the thermal stabilization by encouraging the development of ladder-like structures. The investigation resulted in a new method of evaluation of X-ray stabilization index specifically intended for the thermally stabilized PA6 fiber.  相似文献   

17.
A series of monophenyl borate (MPB) modified high-ortho phenolic copolymer fibers (BOPFs) were prepared by melt-spinning of the high-ortho phenol-formaldehyde resins with different content of MPB, and cured in a formaldehyde solution. The solution curing fibers were heated up to 240 °C at elevated temperatures in N2. The effect of MPB on the structure and properties of the BOPFs was investigated by Fourier transform infrared spectrometer (FTIR), nuclear magnetic resonance spectroscopy (NMR), thermogravimetric analysis (TGA) and scanning electron microscope (SEM). The results show that a B-O linkage inserts into the high-ortho phenolic copolymer molecular chain with the addition of MPB, and increases the crosslinkage and thermal stability. The peak of O/P (ortho/para) value of fiber (1.94) and elongation (5.6 %) were obtained when BOPFs-4 was heat-cured at 240 °C for 2 h.  相似文献   

18.
Carbon fibers and precursor polyacrylonitrile (PAN) fibres that contain either silica or hydroxyapatite particles, imbedded during the spinning process, were studied in this paper. The modified PAN fibers were thermally stabilized using a multi-stage process in the temperature range between 150 to 280 °C in an oxidative environment. Subsequent carbonization leading to obtain carbon fibers was carried on at 1000 °C in an argon atmosphere. The changes of properties of composite precursor fibers taking place during stabilization and carbonization processes were investigated by the combination of Differential Scanning Calorimetry, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy equipped with energy dispersive X-ray spectrometer and ultrasonic methods. Mechanical properties, such as tensile strength, static Young’s modulus, elongation at fracture were analyzed at each stage of thermal stabilization process. Additionally some traditional measurements like fiber diameter and mass were studied. Ceramic powders added to the spinning solution were present also in composites fibers after stabilization and carbonization process. Such modification allows to avoid the post-treatment operations, for example by coating or covering with films, which were usually necessary in order to obtain bioactive character of implants. Modification of carbon fibers using calcium phosphate or silica can lead to the development of a new materials for the manufacturing of implants which can establish direct chemical bonds with bone tissue after implantation.  相似文献   

19.
The spinnability in pre-gelled gel spinning of polyacrylonitrile (PAN) precursor fibers was investigated. The spinning solutions were aged at 25 °C for different times prior to fiber spinning. The pre-gelled spinning solution aged for 2.5 h was much more strain hardening than the ungelled one, which can increase the spinnability of the solution. The maximum take-up velocity of the first winding roller V 1m, which reflects the spinnability of the spinning solutions, was found to be largest when the aging time was 1.5 h. The spinnability increased with the increase of the air gap length and the lengthdiameter ratio L/D of the spinnerette. Once the L/D increased beyond 15, the spinnability hardly changed. The fibers spun from the spinning solution aged for 1.5 h had the best mechanical properties and favorable structure, showing that good spinnability favors the performance increase of resultant PAN precursor fibers.  相似文献   

20.
The fire resistant poly(lactic acid) fibers with polysulfonyldiphenylene phenyl phosphonate flame retardant were prepared by melt spinning. The rheology property and spinnability of samples were measured by a capillary rheometer and recording the number of fiber breakage during a 30-min melt spinning. The thermal stability and combustion behaviors of fibers were investigated by Thermogravimetric Analysis, Limiting Oxygen Index and Vertical Burning tests, respectively. It was found that the flame retardation and anti-dripping performance of PLA were distinctly improved by OP. The pyrolysis behavior of fibers was tested by a Pyrolysis-Gas Chromatography-Mass Spectrometry, the structure and degree of graphitization of char residue were analyzed by Scanning Electronic Microscopy and Raman Spectroscopy. The results suggested that OP can promote the forming of char layer on the surface of PLA matrix during burning. The miscibility and spinnability of PLA was negatively affected by OP and the breaking strength of FR-PLA fibers dropped from 3.30 to 2.30 cN/dtex at the presence of 10 wt. % OP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号