首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 636 毫秒
1.
Roles of sulfhydryl groups on thermal aggregation of beta-lactoglobulin A (betaLG A) at pH 7.5 were investigated. It is known that betaLG A modified at Cys(121) with N-ethylmaleimide (NEM-betaLG A) does not form an aggregate by heating and that dithiothreitol (DTT) reduces cystine residues and induces the intermolecular sulfhydryl/disulfide interchange reaction and/or oxidation. NEM-betaLG A was heated in the presence of DTT. The molecules were linked together with an intermolecular disulfide bridge, and the polymer formed increased with increase in DTT concentration. The largest portion of polymer was formed when DTT was added at around the same molar concentration as that of NEM-betaLG A. Then, polymer formation decreased with further increase in DTT concentration. The results suggest that sulfhydryl/disulfide residues other than Cys(121), generated from cysteine residues, can induce intermolecular sulfhydryl/disulfide interchange reactions to polymer and that thiol compounds, for example, added DTT, are capable of starting such reactions.  相似文献   

2.
Changes in the sensory attributes, lipid composition, and amounts of volatile and phenolic compounds of native and processed (germinated and dried) crushed oat were followed during a 12‐month storage period. The influence of the chemical attributes on the sensory profiles of oats was analyzed by statistical multivariate techniques (PLS regression). During the storage period, significant changes in the sensory profiles of the native and processed oat groats were observed. The stability of oat groats was significantly increased through germination and subsequent drying because the chemical changes causing rancidity and bitterness developed more slowly in the processed oat when compared with the native oat. In native oat, the most intensive changes due to deteriorat ion had already occurred after one month of storage, whereas in processed oat, these changes were perceived considerably later. Stored oat that had deteriorated was evaluated as being musty and earthy in odor and bitter and rancid in flavor. The accumulation of free fatty acids and volatile compounds related to lipid oxidation were closely correlated with the development of the undesired sensory attributes described above. The total amount of phenolic compounds, as well as the volatile aromatic and branched chain compounds derived mainly from protein degradation, showed a significant relationship with favorable sensory attributes such as roasted odor and flavor. Lipid oxidation occurred during the storage and was observed both in the polar and in the nonpolar lipid classes of native oat, whereas in the processed oat, these changes were nonsignificant. Photo‐oxidation of acylated fatty acids may significantly contribute to the development of volatile lipid oxidation products during storage.  相似文献   

3.
The antimicrobial activity of different edible vegetable oils was studied. In vitro results revealed that the oils from olive fruits had a strong bactericidal action against a broad spectrum of microorganisms, this effect being higher in general against Gram-positive than Gram-negative bacteria. Thus, olive oils showed bactericidal activity not only against harmful bacteria of the intestinal microbiota (Clostridium perfringens and Escherichia coli) also against beneficial microorganisms such as Lactobacillus acidophilus and Bifidobacterium bifidum. Otherwise, most of the foodborne pathogens tested (Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica, Yersinia sp., and Shigella sonnei) did not survive after 1 h of contact with olive oils. The dialdehydic form of decarboxymethyl oleuropein and ligstroside aglycons, hydroxytyrosol and tyrosol, were the phenolic compounds that statistically correlated with bacterial survival. These findings were confirmed by testing each individual phenolic compound, isolated by HPLC, against L. monocytogenes. In particular, the dialdehydic form of decarboxymethyl ligstroside aglycon showed a potent antimicrobial activity. These results indicate that not all oils classified as "olive oil" had similar bactericidal effects and that this bioactivity depended on their content of certain phenolic compounds.  相似文献   

4.
The behavior of antioxidants in emulsions is influenced by several factors such as pH and emulsifier type. This study aimed to evaluate the interaction between selected food emulsifiers, phenolic compounds, iron, and pH and their effect on the oxidative stability of n-3 polyunsaturated lipids in a 10% oil-in-water emulsion. The emulsifiers tested were Tween 80 and Citrem, and the phenolic compounds were naringenin, rutin, caffeic acid, and coumaric acid. Lipid oxidation was evaluated at all levels, that is, formation of radicals (ESR), hydroperoxides (PV), and secondary volatile oxidation products. When iron was present, the pH was crucial for the formation of lipid oxidation products. At pH 3 some phenolic compounds, especially caffeic acid, reduced Fe(3+) to Fe(2+), and Fe(2+) increased lipid oxidation at this pH compared to pH 6. Among the evaluated phenols, caffeic acid had the most significant effects, as caffeic acid was found to be prooxidative irrespective of pH, emulsifier type, and presence of iron, although the degrees of lipid oxidation were different at the different experimental conditions. The other evaluated phenols were prooxidative at pH 3 in Citrem-stabilized emulsions and had no significant effect at pH 6 in Citrem- or Tween-stabilized emulsions on the basis of the formation of volatiles. The results indicated that phenol-iron complexes/nanoparticles were formed at pH 6.  相似文献   

5.
Phenolic compounds in extra virgin olive oil (EVOO) have been associated with beneficial effects for health. Indeed, these compounds exert strong antiproliferative effects on many pathological processes, which has stimulated chemical characterization of the large quantities of wastes generated during olive oil production. In this investigation, the potential of byproducts generated during storage of EVOO as a natural source of antioxidant compounds has been evaluated using solid-liquid and liquid-liquid extraction processes followed by rapid resolution liquid chromatography (RRLC) coupled to electrospray time-of-flight and ion trap mass spectrometry (TOF/IT-MS). These wastes contain polyphenols belonging to different classes such as phenolic acids and alcohols, secoiridoids, lignans, and flavones. The relationship between phenolic and derived compounds has been tentatively established on the basis of proposed degradation pathways. Finally, qualitative and quantitative characterizations of solid and aqueous wastes suggest that these byproducts can be considered an important natural source of phenolic compounds, mainly hydroxytyrosol, tyrosol, decarboxymethyl oleuropein aglycone, and luteolin, which, after suitable purification, could be used as food antioxidants or as ingredients in nutraceutical products due to their interesting technological and pharmaceutical properties.  相似文献   

6.
曹熙  杨大伟 《核农学报》2021,35(12):2787-2798
为鉴定黄花菜多酚类化合物的结构并研究漂烫与贮藏对其稳定性的影响,本研究采用响应面和正交试验设计,四极杆飞行时间液质串联系统,以及三重四极杆液质串联系统,研究了超声波辅助提取黄花菜多酚,HPD-600大孔树脂吸附多酚,乙醇解吸附多酚的最佳条件,对多酚类化合物进行分离纯化和结构鉴定,并对新鲜、漂烫与室温贮藏的黄花菜多酚类化合物含量进行分析。结果表明,超声辅助提取黄花菜多酚类化合物的最佳条件为:乙醇浓度66%,时间22 min,温度43℃,料液比1∶12 g·mL-1, 此条件下多酚得率为2.12%;HPD-600大孔树脂吸附多酚的最佳条件为温度50℃,pH值6,吸附时间3 h,此条件下多酚吸附率为28.76%;无水乙醇解吸附的最佳条件为温度60℃,pH值6,解吸时间3 h,此条件下多酚解吸率为78.94%,纯化的多酚溶液浓度为0.61%;黄花菜多酚类化合物的含量由高到低依次为芦丁、绿原酸和槲皮素,高温漂烫和贮藏极易引起多酚类化合物的损失,导致加工后黄花菜的营养品质下降。本研究结果可为黄花菜多酚类化合物的分离鉴定及漂烫和室温贮藏对其稳定性影响的研究提供参考。  相似文献   

7.
酚类物质和蛋白质之间存在多种相互作用力,因此难以被充分提取。该研究以核桃蛋白为研究对象,用不同量的尿素和氯化钠定向破坏核桃酚类物质和核桃蛋白之间的离子键、氢键和疏水作用力,以研究核桃酚类物质和核桃蛋白之间的非共价键结合机制。结果显示在pH值3.0时,77.7%的酚类物质与蛋白以共价键结合,而有34.6%的缩合单宁与核桃蛋白以共价键结合。在pH值8.0时,有65.4%酚类物质和59.4%的缩合单宁与核桃蛋白以非共价键结合。其中疏水作用力是主要的非共价键结合方式。对以不同非共价键与核桃蛋白相结合的酚类物质的抗氧化活性进行测定,结果显示以离子键与蛋白结合的酚类物质的抗氧化活性最强。其中,在pH值3.0条件下与WPI(walnut protein isolates)以离子键结合的酚类物质的DPPH自由基清除能力为5.7%,Fe2+螯合率为5.9%,在pH值8.0条件下与WPI以离子键结合的酚类物质的DPPH自由基清除能力为10.9%, Fe2+螯合率为11.5%。另外,该研究还探讨了在pH值3.0和8.0时,70%(v/v)乙醇和60%(v/v)甲醇提取核桃蛋白中酚类物质的能力,结果表明这两种提取剂不能显著提高酚类物质的提取率,且不能有效得到具有较强抗氧化能力的酚类物质。  相似文献   

8.
Interest in the consumption of fresh fruits and vegetables is, to a large extent, due to its content of bioactive nutrients and their importance as dietary antioxidants. Among all of the selected fruits and vegetables, strawberries and black grapes have relatively high antioxidant capacities associated with high contents of total phenolic compounds, ascorbic acid, and flavonols. More interesting, the results of this study indicated that in most fruits and vegetables storage did not affect negatively the antioxidant capacity. Better, in some cases, an increase of the antioxidant capacity was observed in the days following their purchase, accompanied by an increase in phenolic compounds. In general, fruits and vegetables visually spoil before any significant antioxidant capacity loss occurs except in banana and broccoli. When ascorbic acid or flavonoids (aglycons of flavonols and anthocyanins) were concerned, the conclusions were similar. Their content was generally stable during storage.  相似文献   

9.
Controls on the colonization and abundance of arbuscular mycorrhizal fungi (AMF) in ecosystems are little understood and may be related to host factors, the fungal community, and soil physio-chemical properties; and changes in these variables during soil development may affect succession between mycorrhizal groups. Here we investigated the effects of litter, litter leachates, and common soluble phenolic compounds on AMF colonization of roots. In previous studies, we observed a negative correlation between increases in black cottonwood (Populus trichocarpa) litter and AMF abundance and inoculum potential along a riparian chronosequence in northwest Montana. From this, we hypothesized that litter inputs negatively affect the native AMF community and may contribute to the shift between AMF and ectomycorrhizas. We tested the effects of cottonwood foliage and litter extract additions on the colonization of AMF of both cottonwood and Sudan grass (Sorghum sudanese) seedlings. Addition of 5% (v/v) dried cottonwood leaves completely inhibited AMF colonization of S. sudanese. AMF colonization of S. sudanese was significantly reduced by litter extract of P. trichocarpa foliage, and colonization was negatively correlated with litter extract concentrations. Additions of aqueous litter extract significantly reduced AMF colonization of cottonwood seedlings as well. The effect of the litter extract on AMF colonization of S. sudanese did not appear to be mediated by changes in soil pH or plant biomass. Available phosphorus was higher in soil receiving highest concentration of litter extract, but not at a level expected to be inhibitory to AMF colonization. Litter additions significantly increased total soil phenolics, but with a range similar to natural soils of the Nyack floodplain. We tested pure soluble phenolic compounds common to Populus for their effect on AMF colonization by native fungi from the Nyack floodplain. All tested compounds significantly reduced AMF colonization but did not affect colonization by non-AMF root-colonizing fungi. This suggests secondary compounds present in cottonwood litter can affect colonization ability of a native AMF community. The potential mechanisms of inhibition and the relevance of these findings to AMF succession within both a single host and soil are discussed.  相似文献   

10.
The reaction between the essential amino acid l-tryptophan and flavoring or naturally occurring phenyl and phenolic aldehydes was studied, and the alkaloidal reaction products were characterized by NMR and HPLC-MS. Benzaldehyde, vanillin, syringaldehyde, salicylaldehyde, and anisaldehyde condensed with l-tryptophan in aqueous-acidic media affording the corresponding phenolic tetrahydro-beta-carboline-3-carboxylic acid as two diastereoisomers, 1S,3S-cis and 1R,3S-trans. With the exception of benzaldehyde, the rest of the aldehydes needed heating conditions (70 degrees C) to significantly form tetrahydro-beta-carbolines over time with the cyclization highly favored at low pH. This suggests a likely formation of these compounds under conditions that may occur in foods, food processing, or cooking. The new phenolic tetrahydro-beta-carboline alkaloids were assayed, for the first time, for their activity as free radical scavengers and antioxidants and showed good antioxidant properties with Trolox equivalent antioxidant capacity (TEAC) values much higher than those of ascorbic acid and the water soluble vitamin E analogue, Trolox, in the 2,2'-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) assay.  相似文献   

11.
The ferric complexing capacity of four phenolic compounds, occurring in olives and virgin olive oil, namely, oleuropein, hydroxytyrosol, 3,4-dihydroxyphenylethanol-elenolic acid (3,4-DHPEA-EA), and 3,4-dihydroxyphenylethanol-elenolic acid dialdehyde (3,4-DHPEA-EDA), and their stability in the presence of ferric ions were studied. At pH 3.5, all compounds formed a reversible 1:1 complex with ferric ions, but hydroxytyrosol could also form complexes containing >1 ferric ion per phenol molecule. At pH 5.5, the complexes between ferric ions and 3,4-DHPEA-EA or 3,4-DHPEA-EDA were relatively stable, indicating that the antioxidant activity of 3,4-DHPEA-EA or 3,4-DHPEA-EDA at pH 5.5 is partly due to their metal-chelating activity. At pH 7.4, a complex containing >1 ferric ion per phenol molecule was formed with hydroxytyrosol. Oleuropein, 3,4-DHPEA-EA, and 3,4-DHPEA-EDA also formed insoluble complexes at this pH. There was no evidence for chelation of Fe(II) by hydroxytyrosol or its derivatives. At all pH values tested, hydroxytyrosol was the most stable compound in the absence of Fe(III) but the most sensitive to the presence of Fe(III).  相似文献   

12.
The detailed phenolic composition (anthocyanins, flavonols, hydroxycinnamic acid derivatives, stilbenes, and flavan-3-ols) in the skin and flesh of the new BRS Clara and BRS Morena seedless table grapes has been studied using HPLC-DAD-ESI-MS/MS. The two grapes, especially BRS Morena, contained high amounts of phenolic compounds, mainly located in their skins and qualitatively not different from those found in Vitis vinifera grapes. In addition, BRS Morena (a teinturier variety) showed qualitatively different phenolic compositions in its skin and flesh, mainly affecting the anthocyanin and flavonol profiles. Consistent with high phenolic contents, high antioxidant capacity values were registered for both grape varieties, especially for BRS Morena. Proanthocyanidins and hydroxycinnamoyl-tartaric acids were the major phenolic compounds found in BRS Clara and were also important in BRS Morena, although anthocyanins were the main phenolic compounds in the latter case. These results suggest that the entire grapes, including the skin, may potentially possess properties that are beneficial to human health. In this context, the BRS Morena grape can be considered as a high resveratrol producer.  相似文献   

13.
The anti-inflammatory properties of phenolic pine (Pinus sylvestris L.) bark extract were studied. The pine bark extract was fractionated by liquid-liquid extractions and semipreparative high-performance liquid chromatography to reveal the most potent constituents. The phenolic compositions of three pine bark samples obtained, a crude extract, a chloroform fraction, and a semipreparative fraction, were analyzed using high-performance liquid chromatography with UV diode array detection and/or electrospray ionization mass spectrometry. In addition, eight compounds were isolated and identified by NMR and MS techniques. In total 28 phenolic compounds were identified. The effects of the three pine bark samples on the synthesis of two proinflammatory mediators, nitric oxide and prostaglandin E(2), were measured. It was shown that pine bark contains compounds that inhibit the production of these proinflammatory mediators.  相似文献   

14.
Broccoli (Brassica oleracea L. var. italica cv. Marathon) inflorescences are a good source of bioactive compounds, such as phenolics (flavonoids and hydroxycinnamoyl derivatives), glucosinolates, and vitamin C. In this work, these health-promoting compounds were submitted to digestion under in vitro gastrointestinal conditions (pH, temperature, enzyme, and chemical conditions). This technique differentiated among the compounds associated with macromolecules in soluble and insoluble form and those that are freely soluble. In addition, it evaluates the chemical stability of the broccoli compounds under simulated physiological conditions. The gastric digestion of broccoli caused high losses in glucosinolates (69% loss), whereas phenolics and vitamin C presented higher stability under these conditions. Thus, there were no losses in flavonoids, a 7% loss of vitamin C, and a variable rate of loss (6-25%) in hydroxycinnamic acid derivatives. The stability of all of the compounds was affected by the in vitro intestinal conditions. Under the in vitro conditions, flavonoids and hydroxycinnamoyl acid derivatives were of low availability, due to their significant losses under these conditions, at the end of the experiment (84 and 80% loss, respectively). Vitamin C was the metabolite that showed the greater decrease after intestinal digestion (91% loss). Regarding the remaining glucosinolates, these compounds presented higher stability under intestinal conditions, rendering an availability similar to that found for phenolics (75% loss). Therefore, broccoli components were affected by gastric and/or intestinal conditions depending on the type of compound. Thus, glucosinolates were mainly degraded by gastric conditions, whereas phenolic compounds and vitamin C were degraded by intestinal conditions.  相似文献   

15.
Volatiles from stored Kuerle fragrant pears (Pyrus serotina Reld) were studied using high-resolution gas chromatography and the solid-phase microextraction (SPME) method of gas chromatography/mass spectrometry (GC/MS). The dominant components were hexanal, ethyl hexanoate, ethyl butanoate, ethyl acetate, hexyl acetate, ethanol, alpha-farnesene, butyl acetate, and ethyl (E,Z)-2,4-decadienoate. By using GC-olfactometry, it demonstrated that the volatile compounds from SPME were responsible for the aroma of the Kuerle fragrant pear. The levels of sugars, organic acids, and phenolic acids in Kuerle fragrant pears were investigated using high-performance liquid chromatography (HPLC). Fructose was the dominant sugar, followed by glucose and sucrose. With increasing storage time, sucrose levels decreased; however, changes in fructose and glucose levels were not remarkable. There was a slight decrease in flesh firmness during storage. The general soluble solids concentration (SSC) declined slightly after 5 months storage. Some aroma-related volatile components increased during storage, while others decreased, especially the esters. The organic acids and phenolic acids also changed. The flavor of the Kuerle fragrant pears was affected by the change of volatile compounds and changes in chemical and physical properties.  相似文献   

16.
'Frantoio' olive fruits were stored at low temperature (4 +/- 2 degrees C) for 3 weeks to investigate the effect of postharvest fruit storage on virgin olive oil quality. Volatile compounds and phenolic compounds explained the changes in sensory quality that could not be explained with quality indices (FFA, PV, K232, and K270). Increases in concentrations of ( E)-2-hexenal and hexanal corresponded to positive sensory quality, whereas increases in ( E)-2-hexenol and (+)-acetoxypinoresinol were associated with negative sensory quality. Volatile and phenolic compounds were also indicative of the period of low-temperature fruit storage. Oleuropein and ligstroside derivatives in olive oil decreased with respect to storage time, and their significant ( p < 0.05) change corresponded to changes in bitterness and pungency. ( Z)-2-Penten-1-ol increased during low-temperature fruit storage, whereas 2-pentylfuran decreased. Changes in volatile compounds, phenolic compounds, quality indices, and sensory notes indicated that virgin olive oil quality was lost within the first week of low-temperature fruit storage and regained at 2 weeks. This research suggests that low-temperature olive fruit storage may be beneficial, with a possibility of increasing oil yield and moderating the sensory quality of virgin olive oils. This study demonstrates that deeper insights into virgin olive oil quality changes during low-temperature fruit storage may be gained by studying volatile and phenolic compounds in addition to quality indices and physical appearance of the fruit.  相似文献   

17.
The antioxidant activity of several phenolic acids and esters has been investigated both in organic solutions and in large unilamellar phosphatidylcholine vesicles. In solution these compounds behaved as good antioxidants, with the exception of protocatechuic acid, due to the presence of the catechol moiety. Because their antioxidant activity followed an inverse dependence on the magnitude of their O-H bond dissociation enthalpies (BDE), the key mechanism of the chain-breaking action was attributed to hydrogen atom transfer (HAT) from the phenolic OH to peroxyl radicals. In unilamellar vesicles the antioxidant activity was strongly dependent on the pH of the buffer solution. In acid media (pH 4) all of the examined phenolic acids or esters behaved as weak inhibitors of peroxidation, whereas, with increasing pH, their antioxidant activity increased substantially, becoming comparable to or even better than that of Trolox. At pH 8 they also gave rise to lag phases 2-3 times longer than that of Trolox. The increased activity being observed in proximity of the pK(a) value corresponding to the ionization of one of the catecholic hydroxyl groups, this effect has been attributed to the high antioxidant activity of the phenolate anion.  相似文献   

18.
The presence of oxygen in red wine leads to the transformation of ethanol into ethanal, which after capturing a proton will react with flavanols to start the process of forming ethyl bridges between flavanols and between flavanols and anthocyanins. Wine pH also conditions the equilibrium between the different anthocyanin structures and may thus affect anthocyanin reactivity. Consequently, the aim of this paper was to study how the pH can affect the changes induced by micro-oxygenation in two wines with different phenolic composition. The differences between micro-oxygenated wines and their controls were, in general, greater when the pH was more acidic. Specifically, the differences between micro-oxygenated wines and their corresponding controls in terms of color intensity, anthocyanin concentration, PVPP index, ethyl-linked pigments, B-type vitisins, polymeric pigments, and ethylidene-bridged flavanols were greater at lower pH. In contrast, the effects of micro-oxygenation when the pH was less acidic were much less evident and sometimes practically nonexistent. These results demonstrate for the first time that the pH of the wine has a great influence on oxygen-induced changes of color and phenolic compounds.  相似文献   

19.
The individual evolution of phenolic compounds has been studied during the natural fermentation of black olives for the first time. Cyanidin 3-rutinoside and cyanidin 3-glucoside were the main anthocyanins identified in fresh olives, and they were not detected after 1 month of storage either in brine or in olive. The fruit colors were different when aerobic or anaerobic conditions were used and as a consequence of the different anthocyanin polymerizations that took place. At time zero, the polyphenols observed in the olive juice were hydroxytyrosol-4-beta-glucoside, oleuropein, hydroxytyrosol, tyrosol, salidroside, and verbascoside and, after 12 months, the main phenol was hydroxytyrosol. The polyphenol content in the oil phase of olives was also analyzed. The dialdehydic form of elenolic acid linked to hydroxytyrosol and tyrosol, oleuropein aglycon, and ligstroside aglycon were the main compounds found at the beginning of fermentation but were not detected after 3 months. In contrast, hydroxytyrosol, hydroxytyrosol acetate, tyrosol, and tyrosol acetate were the main polyphenols detected in the oil phase of the final product. The acid hydrolysis of the initial glucosides (in olive juice) and the aglycons (in oil phase) was, therefore, the main reaction that took place during fermentation.  相似文献   

20.
Pomegranate is an important source of bioactive compounds, such as anthocyanins, other phenolic compounds, and ascorbic acid. In the present work an in vitro availability method has been used to assay the influence of the physiological conditions in the stomach and small intestine. This method enables the study of the release of anthocyanins, vitamin C, and total phenols from the pomegranate juice and their transformations during gastrointestinal digestion. Results have shown that pomegranate phenolic compounds are available during the digestion in a quite high amount (29%). Nevertheless, due to pH, anthocyanins are largely transformed into non-red forms and/or degraded (97%), and similar results are obtained for vitamin C (>95% degradation).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号