首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Research was conducted to determine whether fluctuations in the amount of feed delivered and timing of feeding affect ruminal pH and growth of feedlot cattle. In Exp. 1, the effects of constant (C) vs. fluctuating (F) daily feed delivery on ruminal pH were assessed in a crossover experiment (two 28-d periods) involving six mature, ruminally cannulated steers. The diet consisted of 86.8% barley grain, 4.9% supplement, and 8.3% barley silage (DM basis) and was offered ad libitum for 2 wk to estimate DMI by individual steers. Steers in group C were offered a constant amount of feed daily equal to their predetermined DMI, whereas steers in group F were offered 10% more or less than their predetermined DMI on a rotating 3-d schedule. Ruminal pH of each steer was measured continuously via an indwelling electrode placed in the rumen during the last 6 d of each period. Mean pH tended to be lower (0.10 units) for F than C (5.63 vs. 5.73; P = 0.15), and ruminal pH of steers in group F tended to remain below 5.8 (P = 0.03) or 5.5 (P = 0.14) for greater proportions of the day than steers in group C. Inconsistent delivery of feed lowered ruminal pH, suggesting increased risk of subclinical acidosis. In Exp. 2, a 2 x 2 factorial was used to study the effects of pattern (C vs. F) and feeding time (morning [0900] vs. evening [2100]) on the feeding behavior and performance of 234 (310 +/- 23 kg) Charolais x Hereford beef steers during backgrounding and finishing phases over 209 d. One pen per treatment was equipped with a radio frequency identification (GrowSafe Systems Ltd., Airdrie, Canada) system that monitored bunk attendance by each steer throughout the trial. Pattern of feed delivery did not affect (P = 0.16) DMI (7.36 kg/d), ADG (1.23 kg/d), G:F (0.17), or time spent at the bunk (141 min/d), nor were pattern of feed delivery x time of feeding interactions observed (P = 0.18). Late feeding increased (P < 0.05) daily DMI (7.48 vs. 7.26 kg), ADG (1.28 vs. 1.00 kg/d), and G:F (0.21 vs. 0.15). These studies indicate that the risk of subclinical acidosis was increased with fluctuating delivery of feed, but the greater risk of acidosis did not impair growth performance by feedlot cattle. Consequently, daily intake fluctuations of 10% DMI or less that do not alter overall intake by feedlot cattle are unlikely to have any negative consequences on growth performance.  相似文献   

2.
Two experiments were conducted to study the effects of six processing techniques for barley grain in a 3 x 2 factorial arrangement of grain conditions and roller settings on ruminal degradation of the grain (Exp. 1) and on growth performance by 138 feedlot steers (n = 23 per treatment; Exp. 2). Dry barley (11% moisture, D barley), barley tempered to 20% moisture (M barley), and barley tempered with 60 mL/t of surfactant-based tempering agent (GrainPrep, Agrichem, Inc., Anoka, MN; MS barley), were each rolled at two roller settings selected from preliminary tests. The settings selected for the study were RD, the roller position that had yielded optimally processed D barley, and RMS, the setting that had yielded optimally processed MS barley. Setting RMS was tighter than RD. Barley rolled at the RMS setting was more extensively processed (i.e., had a lower [P < 0.001] processing index, PI), had lighter (P < 0.001) volume weight, thinner (P < 0.001) kernels, and fewer (P < 0.001) whole kernels compared with setting RD. Tempering did not affect (P > 0.05) PI, percentage of whole kernels, or kernel thickness at either roller setting. The processing characteristics of tempered barley were unaffected (P > 0.05) by surfactant. The extent of in situ DM disappearance (ISDMD) was higher (P < 0.01) in grain rolled at setting RMS compared with RD. At both roller settings, tempering reduced (P < 0.05) ISDMD between 4 and 24 h of ruminal incubation. Steers fed RMS-rolled barley had lower (P < 0.001) DMI, slightly lower (P = 0.084) ADG, but increased (P < 0.05) gain:feed (G:F) compared with steers fed RD-rolled barley. Tempering did not affect (P > 0.05) ADG, DMI, or G:F during backgrounding, but improved (P < 0.01) these variables during finishing. Surfactant improved (P < 0.05) G:F but not DMI or ADG. The improvement in G:F was most pronounced when setting RMS was used. The optimal PI values calculated from performance data were numerically greater for the backgrounding diet than for the finishing diet. Steers fed M or MS barley had heavier (P < 0.01) hot carcasses and thicker (P < 0.05) fat cover but lower (P < 0.05) dressing percentages than steers fed D. When the feed barley was rolled at setting RMS, steers fed MS barley produced heavier (P < 0.05) carcasses than those fed M. Tempering with or without surfactant increased performance by feedlot steers compared with not tempering. Diet composition and degree of barley processing mediated this effect.  相似文献   

3.
Over 2 yr, 45 Angus-sired steer offspring of Angus and Angus crossbred females were used to determine the effects of early weaning on feedlot performance, carcass characteristics, and economic return to the cow-calf enterprise. Steers were assigned by birth date to one of two weaning treatments: 1) weaned at an average age of 100 d (early weaned) or 2) weaned at an average age of 200 d (normally weaned). Within 36 d of weaning, steers were given ad libitum access to a high-concentrate diet (90% dry, wholeshelled corn). Steers were harvested when 12th-rib fat thickness averaged 1.27 cm within treatment as estimated by ultrasound. Carcass measurements were taken 48 h postmortem and rib steak tenderness was determined at 14 d postmortem by Warner-Bratzler shear force. Early-weaned steers had greater ADG from time of early weaning to normal weaning than suckling normally weaned steers (1.27 vs. 0.86 kg/d, respectively; P < 0.001). However, early-weaned steers tended to have lower ADG for the entire finishing period than did normally weaned steers (1.33 vs. 1.39 kg/d, respectively; P = 0.08). Compared with normally weaned steers, early-weaned steers had lower daily DMI (7.40 vs. 5.95 kg/d, respectively; P < 0.001) and lower total DMI for the finishing period (1,618 vs 1,537 kg, respectively; P < 0.05). Early-weaned steers had greater gain:feed for the finishing period than normally weaned steers (0.223 vs 0.189, respectively; P < 0.001). Carcass weights were lighter for early-weaned steers than for normally weaned steers (277.9 vs. 311.2 kg, respectively; P < 0.001). There was no difference in yield grade (3.1 vs. 3.2; P < 0.10) between treatments. All carcasses graded Low-Choice or greater, and there was no difference in the percentage of carcasses grading Mid-Choice or greater (94.5 vs 83.9% for early- and normally-weaned, respectively; P > 0.10). Warner-Bratzler shear force values were similar between treatments. Early-weaned steers had a lower cost of gain than normally weaned steers ($ 0.82 vs. 0.91/kg, respectively; P < 0.001). However, due to lighter carcass weights, early-weaned steers generated less return to the cow-calf enterprise than normally weaned steers ($ 380.89 vs 480.08/steer; P < 0.001). The early weaning of steers at 100 d of age decreased total DMI, improved gain:feed, and lowered the cost of gain; however, return to the cow-calf enterprise was decreased due to lighter carcass weights.  相似文献   

4.
Two experiments were conducted to evaluate the effects of feeding different levels of wet corn gluten feed (WCGF) and dietary roughage on performance, carcass characteristics, and feeding behavior of feedlot cattle fed diets based on steam-flaked corn (SFC). In Exp. 1, crossbred steers (n = 200; BW = 314 kg) were fed 4 dietary treatments (DM basis): a standard SFC-based diet containing 9% roughage (CON) and 3 SFC-based diets containing 40% WCGF, with either 9, 4.5, or 0% roughage. A linear (P = 0.04) increase in final BW and DMI (P < 0.01) was observed in diets containing WCGF as dietary roughage increased. Steers fed WCGF and higher levels of roughage had greater (P = 0.01) ADG than steers fed lower levels of roughage. Steers fed the CON diet had lower (P = 0.04) daily DMI and greater (P = 0.03) G:F than those fed WCGF. Most carcass characteristics of steers fed CON did not differ (P > 0.10) from those of steers fed WCGF. Based on feed disappearance and visual scan data, consumption rate did not differ (P > 0.10) among treatments; however, feeding intensity (animals present at the bunk after feeding) was greater for steers fed CON (P < 0.01) than for steers fed WCGF. In Exp. 2, yearling crossbred steers (n = 1,983; BW = 339 kg) were fed 4 dietary treatments (DM basis): a standard SFC-based control diet that contained 9% roughage (CON) and 3 SFC-based diets containing either 20% WCGF and 9% roughage or 40% WCGF with 9 or 4.5% roughage. Steers fed the CON diet tended to have lower final BW (P = 0.14), ADG (P = 0.01), and DMI (P < 0.01) than steers fed diets containing WCGF. Steers fed the 20% WCGF diet had greater (P = 0.08) G:F than steers fed the 40% WCGF diets. With 40% WCGF, increasing roughage from 4.5 to 9% decreased (P < 0.01) G:F and increased (P = 0.06) DMI. Gain efficiency was improved (P < 0.01) for steers fed CON vs. those fed diets containing WCGF, whereas HCW (P = 0.02) and dressing percentage (P < 0.01) were greater for steers fed WCGF. Percentage of cattle grading USDA Choice was greater (P = 0.02) for cattle fed WCGF. Results suggest that replacing SFC with up to 40% WCGF increased ADG and decreased G:F when 4.5 to 9.0% roughage was supplied. More CON steers were present at the feed bunk during the first hour after feeding than WCGF steers, suggesting that including WCGF at 40% of the diet affected feeding behavior.  相似文献   

5.
The objective of this study was to determine if dietary cation-anion balance (DCAB) affects the concentration of S that can be tolerated by growing and finishing cattle without adversely affecting performance. Angus cross and Bradford steers (n=114; average initial BW=252.8 kg) were blocked by BW and breed, and randomly assigned within a block to treatment. The design was a 3 × 2 factorial arrangement of treatments with S (from NH(4)SO(4)) supplemented at 0, 0.15, or 0.30% of DM, and NaHCO(3) added at 0 or 1.0% of DM. Each treatment consisted of 3 pens containing 5 steers and 1 pen containing 4 steers. Steers were used in an 84-d growing study followed by a finishing study. A corn silage-based diet was fed during the growing study and a corn-based diet was fed during the finishing study. Steers were not randomized between experiments. The analyzed concentrations of S in the growing diets were 0.12, 0.30, and 0.46%, whereas the analyzed concentrations of S in the finishing diets were 0.13, 0.31, and 0.46% for treatments supplemented with 0, 0.15, and 0.30% S, respectively. Increasing DCAB by approximately 15 mEq/100 g of DM, by the addition of NaHCO(3,) did not affect (P > 0.36) performance during the growing or finishing studies. During the growing study DMI was not affected (P=0.29) by dietary S. Steers fed diets containing 0.30% S had greater ADG (P=0.02) and G:F (P=0.01) than those receiving 0.46% S, but similar (P > 0.36) performance to steers fed 0.12% S. During the finishing study, steers fed diets containing 0.46% S had less ADG than steers fed 0.13 (P=0.004) or 0.31% S (P=0.07), whereas ADG did not differ (P=0.18) among steers fed 0.13 and 0.31% S. Steers fed diets containing 0.31 (P=0.01) or 0.46% S (P=0.001) had less DMI than controls, but G:F was not affected (P=0.52) by S during the finishing study. Carcass characteristics did not differ (P > 0.18) among steers fed diets containing 0.13 and 0.31% S. Steers receiving diets containing 0.46% S had decreased HCW (P=0.001), quality (P=0.02), and yield grades (P=0.04) than steers receiving 0.13% S. Plasma Cu concentrations on d 101 of the finishing phase and liver Cu concentrations at slaughter were greater (P ≤ 0.05) in control steers compared with those fed diets containing 0.31 or 0.46% S. This study indicates that steers fed growing diets can tolerate up to 0.46% S with minimum effects on performance. Finishing steers tolerated diets containing 0.31% S without adverse affects on ADG or G:F. However, 0.46% S greatly decreased ADG and DMI, and increasing DCAB did not prevent these depressions.  相似文献   

6.
Two feedlot trials were conducted to evaluate the 1996 NRC beef model under western Canadian conditions. In the first trial, 144 Charolais- (304.6 +/- 16.3 kg) and 144 Hereford- (295.1 +/- 20.8 kg) cross steers were used, whereas the second trial used 88 Angus- (289.7 +/- 15.0 kg), 88 Charolais- (299.8 +/- 17.9 kg), and 88 Hereford- (291.1 +/- 20.9 kg) cross steers. Diets were based on barley silage, rolled barley grain, canola meal, and cereal straw and were analyzed according to the 1996 NRC methodologies. Animal performance and environmental data were collected for 24 pens of steers per trial for the backgrounding and finishing periods. Levels 1 and 2 of the 1996 NRC model were used to generate predictions of DMI and ADG for each pen. Results showed that actual finishing DMI was accurately predicted for Trial 1 and for the combined trials but not for Trial 2. Predicted ADG was lower (P < 0.05) than actual ADG for all feeding periods except Level 1 of the Trial 1 finishing period. All ADG residuals were significant (P < 0.05), indicating inaccurate prediction of ADG in all feeding periods. The 1996 NRC model consistently predicted that protein was not limiting gain. Further investigations and model refinement regarding animal energy requirements under cold weather conditions and effects of limit feeding are required to increase the accuracy of the 1996 NRC model in predicting animal performance.  相似文献   

7.
The objective of this study was to examine the genetic parameters and genetic correlations of feed efficiency traits in steers (n = 490) fed grower or finisher diets in 2 feeding periods. A bivariate model was used to estimate phenotypic and genetic parameters using steers that received the grower and finisher diets in successive feeding periods, whereas a repeated animal model was used to estimate the permanent environmental effects. Genetic correlations between the grower-fed and finisher-fed regimens were 0.50 ± 0.48 and 0.78 ± 0.43 for residual feed intake (RFI) and G:F, respectively. The moderate genetic correlation between the 2 feeding regimens may indicate the presence of a genotype × environment interaction for RFI. Permanent environmental effects (expressed in percentage of phenotypic variance) were detected in the grower-fed steers for ADG (38%), DMI (30%), RFI (18%), and G:F (40%) and also in the finisher-fed steers for ADG (28%), DMI (35%), metabolic mid-weight (23%), and RFI (10%). Heritability estimates were 0.08 ± 0.10 and 0.14 ± 0.15 for the grower-fed steers and 0.42 ± 0.16 and 0.40 ± 17 for the finisher-fed steers for RFI and G:F, respectively. The dependency of the RFI on the feeding regimen may have serious implications when selecting animals in the beef industry. Because of the higher cost of grains, feed efficiency in the feedlot might be overemphasized, whereas efficiency in the cow herd and the backgrounding segments may have less emphasis. These results may also favor the retention (for subsequent breeding) of cows whose steers were efficient in the feedlot sector. Therefore, comprehensive feeding trials may be necessary to provide more insight into the mechanisms surrounding genotype × environment interaction in steers.  相似文献   

8.
Sixty Angus-cross steers were used to compare the effects of recycled poultry bedding (RPB) stacking method and the inclusion of monensin in growing diets on performance. Steers were individually fed balanced, growing diets for a period of 84 d. The diets were control (CON), CON + monensin (CON+M), deep-stacked RPB (DS), DS+M, shallow-stacked RPB (SS), and SS+M. The CON diets contained corn, soybean meal, corn silage, and cottonseed hulls. In the RPB diets, 35% of the silage, cottonseed hulls, and soybean meal was replaced with RPB (as-fed basis). At the end of the growing period, 30 steers, representing all treatment groups, had liver biopsies for trace mineral analysis and ruminal fluid samples to assess pH, VFA, and ammonia concentrations. All steers had blood samples drawn at the end of the growing period for analysis of Se and urea N. Steers were transported 466.6 km to simulate shipping stress and started on a finishing diet for a 120-d period. Intake, ADG, and G:F were monitored throughout the trial. Steers fed CON diets had higher ADG, DMI, and G:F than SS, and higher ADG and G:F than DS (P < 0.05) during the growing period. Steers fed DS diets had higher DMI than SS (P < 0.05) during the growing period. Inclusion of monensin in the growing diets increased G:F and decreased DMI (P < 0.05). Steers from the RPB treatments started the finishing period at lighter BW than steers fed CON diets (P < 0.05). During the finishing period, steers fed SS diets had higher DMI than steers fed CON diets (P < 0.06), whereas steers fed DS diets were intermediate. At slaughter, steers fed CON diets had higher hot carcass weights and quality grades than steers fed SS diets (P < 0.07), whereas steers fed DS diets were intermediate. Results indicate that steers fed RPB consumed it better when processed by deep stacking before consumption, that carryover effects of RPB into the finishing phase were minimal, and inclusion of monensin did not affect consumption of RPB diets.  相似文献   

9.
Two experiments evaluated effects of ractopamine hydrochloride (RAC) on performance, intake patterns, and acid-base balance of feedlot cattle. In Exp. 1, 360 crossbred steers (Brangus, British, and British x Continental breeding; initial BW = 545 kg) were used in a study with a 3 x 3 factorial design to study the effects of dose [0, 100, or 200 mg/(steer x d) of RAC] and duration (28, 35, or 42 d) of feeding of RAC in a randomized complete block design (9 treatments, 8 pens/treatment). No dose x duration interactions were detected (P > 0.10). As RAC dose increased, final BW (FBW; P = 0.01), ADG (P < 0.01), and G:F (P < 0.01) increased linearly. As duration of feeding increased, ADG increased quadratically (P = 0.04), with tendencies for quadratic effects for FBW (P = 0.06), DMI (P = 0.07), and G:F (P = 0.09). Hot carcass weight increased linearly (P = 0.02) as dose of RAC increased. Thus, increasing the dose of RAC from 0 to 200 mg/(steer x d) and the duration of feeding from 28 to 42 d improved feedlot performance, although quadratic responses for duration of feeding indicated little improvement as the duration was extended from 35 to 42 d. In Exp. 2, 12 crossbred beef steers (BW = 593 kg) were used in a completely random design to evaluate the effects of RAC [0 or 200 mg/(steer x d) for 30 d; 6 steers/treatment] on rate of intake, daily variation in intake patterns, and acid-base balance. To assess intake patterns, absolute values of daily deviations in feed delivered to each steer relative to the total quantity of feed delivered were analyzed as repeated measures. There were no differences (P > 0.10) in feedlot performance, urine pH, blood gas measurements, or variation in intake patterns between RAC and control cattle, but steers fed RAC had increased (P = 0.04) LM area, decreased (P = 0.03) yield grade, and increased (P < 0.10) time to consume 50 and 75% of daily intake relative to control steers. Our results suggest that feeding RAC for 35 d at 200 mg/(steer x d) provided optimal performance, and no effects on acid-base balance or variation in intake patterns of finishing steers were noted with RAC fed at 200 mg/(steer x d) over a 30-d period.  相似文献   

10.
Because of the Ca dependency of the calpains, oral supplementation of vitamin D3 (VITD) can increase the Ca content of muscle to activate the calpains and improve tenderness. Feedlot steers (n = 142) were arranged in a 4 x 3 factorial arrangement consisting of four levels of VITD (0, 0.5, 1, and 5 million IU/[steer x d]) for eight consecutive days antemortem using three biological types (Bos indicus, Bos taurus-Continental, and Bos taurus-English). Feedlot performance factors of ADG, DMI, and G:F were measured, and carcass quality, yield, and color data were collected. Plasma Ca and P concentrations were measured during d 4 to 6 of supplementation and at exsanguination, and carcass pH and temperature were measured in the LM at 3 and 24 h postmortem. Vitamin D3 treatment at 5 million IU/(steer x d) decreased ADG (P < 0.05) over the supplementation and feed intake for the last 2 d of feeding compared with untreated control steers. Likewise, G:F was decreased (P = 0.03) in steers supplemented with 5 million IU/d compared with controls. Overall, there was a linear decrease (P < 0.01) in ADG and G:F as a result of VITD supplementation. Plasma concentrations of Ca and P were increased (P < 0.05) by VITD concentrations of 1 and 5 million IU/(steer x d). All VITD treatments increased (P < 0.05) LM temperature at 3 h postmortem and pH at 24 h postmortem. Vitamin D3 treatments did not affect (P = 0.07) any other carcass measurements, including USDA yield and quality grade; thus, any improvements in meat tenderness as a result of VITD supplementation can be made without adversely affecting economically important carcass factors. Biological type of cattle did not interact with VITD treatment for any carcass or feedlot performance trait. Although feeding 5 million IU/(steer x d) of VITD for eight consecutive days had negative effects on performance, supplementing VITD at 0.5 million IU/ (steer x d) did not significantly alter feedlot performance.  相似文献   

11.
One grazing and two feeding experiments were conducted to compare the feeding value of corn residue or corn grain from a genetically enhanced corn hybrid (corn rootworm-protected; event MON 863) with nontransgenic, commercially available, reference hybrids. In Exp. 1, two 13.7-ha fields, containing corn residues from either a genetically enhanced corn root-worm-protected hybrid (MON 863), or a near-isogenic, nontransgenic control hybrid (CON) were divided into four equal-sized paddocks. Sixty-four steer calves (262 +/- 15 kg) were stratified by BW and assigned randomly to paddock to achieve a stocking rate of 0.43 ha/steer for 60 d, with eight steers per paddock and 32 steers per hybrid. A protein supplement was fed at 0.45 kg/steer daily (DM basis) to ensure protein intake did not limit performance. Steer ADG did not differ (P = 0.30) between steers grazing the MON 863 (0.39 kg/d) and CON (0.34 kg/d) corn residues for 60 d. The four treatments for the feeding experiments (Exp. 2 and 3) included two separate reference hybrids, the near-isogenic control hybrid (CON), and the genetically enhanced hybrid (MON 863) resulting in two preplanned comparisons of CON vs. MON 863, and MON 863 vs. the average of the reference hybrids (REF). In Exp. 2, 200 crossbred yearling steers (365 +/- 19 kg) were fed in 20 pens, with five pens per corn hybrid. In Exp. 3, 196 crossbred yearling steers (457 +/- 33 kg) were fed in 28 pens, with seven pens per corn hybrid. In Exp. 2, DMI and G:F did not differ (P > 0.10) between MON 863 and CON; however, steers fed MON 863 had a greater (P = 0.04) ADG than steers fed CON. Gain efficiency was greater (P = 0.05) for MON 863 cattle than for REF cattle in Exp. 2, but other performance measurements (DMI and ADG) did not differ (P > 0.10) between MON 863 and REF. No differences (P > 0.10) were observed for performance (DMI, ADG, and G:F) between MON 863 and CON or MON 863 and REF in Exp. 3. In terms of carcass characteristics, no differences (P > 0.10) were observed between MON 863 and CON, as well as MON 863 and REF, for marbling score, LM area, or 12th rib fat thickness in both Exp. 2 and 3. Overall, performance was not negatively affected in the corn residue grazing or feedlot experiments, suggesting the corn rootworm-protected hybrid (event MON 863) is similar to conventional, nontransgenic corn grain and residues when utilized by beef cattle.  相似文献   

12.
Crossbred yearling steers (n=80; 406 ± 2.7 kg of BW) were used to evaluate the effects of S concentration in dried distillers grains with solubles (DDGS) on growth performance, carcass characteristics, and ruminal concentrations of CH(4) and H(2)S in finishing steers fed diets based on steam-flaked corn (SFC) or dry-rolled corn (DRC) and containing 30% DDGS (DM basis) with moderate S (0.42% S, MS) or high S (0.65% S, HS). Treatments consisted of SFC diets containing MS (SFC-MS), SFC diets containing HS (SFC-HS), DRC diets containing MS (DRC-MS), or DRC diets containing HS (DRC-HS). High S was achieved by adding H(2)SO(4) to DDGS. Ruminal gas samples were analyzed for concentrations of H(2)S and CH(4). Steers were fed once daily in quantities that resulted in traces of residual feed in the bunk the following day for 140 d. No interactions (P ≥ 0.15) between dietary S concentration and grain processing were observed with respect to growth performance or carcass characteristics. Steers fed HS diets had 8.9% less DMI (P < 0.001) and 12.9% less ADG (P=0.006) than steers fed diets with MS, but S concentration had no effect on G:F (P=0.25). Cattle fed HS yielded 4.3% lighter HCW (P = 0.006) and had 16.2% less KPH (P=0.009) than steers fed MS. Steers fed HS had decreased (P=0.04) yield grades compared with steers fed MS. No differences were observed among treatments with respect to dressing percentage, liver abscesses, 12th-rib fat thickness, LM area, or USDA quality grades (P ≥ 0.18). Steers fed SFC had less DMI (P < 0.001) than steers fed DRC. Grain processing had no effect (P > 0.05) on G:F or carcass characteristics. Cattle fed HS had greater (P < 0.001) ruminal concentrations of H(2)S than cattle fed MS. Hydrogen sulfide concentration was inversely related (P ≤ 0.01) to ADG (r=-0.58) and DMI (r=-0.67) in cattle fed SFC, and to DMI (r=-0.40) in cattle fed DRC. Feeding DDGS that are high in dietary S may decrease the DMI of beef steers and compromise the growth performance and carcass characteristics of feedlot cattle.  相似文献   

13.
As cattle mature, the dietary protein requirement, as a percentage of the diet, decreases. Thus, decreasing the dietary CP concentration during the latter part of the finishing period might decrease feed costs and N losses to the environment. Three hundred eighteen medium-framed crossbred steers (315 +/- 5 kg) fed 90% (DM basis) concentrate, steam-flaked, corn-based diets were used to evaluate the effect of phase-feeding of CP on performance and carcass characteristics, serum urea N concentrations, and manure characteristics. Steers were blocked by BW and assigned randomly to 36 feedlot pens (8 to 10 steers per pen). After a 21-d step-up period, the following dietary treatments (DM basis) were assigned randomly to pens within a weight block: 1) 11.5% CP diet fed throughout; 2) 13% CP diet fed throughout; 3) switched from an 11.5 to a 10% CP diet when approximately 56 d remained in the feeding period; 4) switched from a 13 to an 11.5% CP diet when 56 d remained; 5) switched from a 13 to a 10% CP diet when 56 d remained; and 6) switched from a 13 to an 11.5% CP diet when 28 d remained. Blocks of cattle were slaughtered when approximately 60% of the cattle within the weight block were visually estimated to grade USDA Choice (average days on feed = 182). Nitrogen volatilization losses were estimated by the change in the N:P ratio of the diet and pen surface manure. Cattle switched from 13 to 10% CP diets with 56 d remaining on feed or from 13 to 11.5% CP with only 28 d remaining on feed had lower (P < 0.05) ADG, DMI, and G:F than steers fed a 13% CP diet throughout. Steers on the phase-feeding regimens had lower (P = 0.05) ADG and DMI during the last 56 d on feed than steers fed 13.0% CP diet throughout. Carcass characteristics were not affected by dietary regimen. Performance by cattle fed a constant 11.5% CP diet did not differ from those fed a 13% CP diet. Serum urea N concentrations increased (P < 0.05) with increasing dietary CP concentrations. Phase-feeding decreased estimated N excretion by 1.5 to 3.8 kg/steer and nitrogen volatilization losses by 3 to 5 kg/steer. The results suggest that modest changes in dietary CP concentration in the latter portion of the feeding period may have relatively small effects on overall beef cattle performance, but that decreasing dietary CP to 10% of DM would adversely affect performance of cattle fed high-concentrate, steam-flaked, corn-based diets.  相似文献   

14.
The value of sunflower seed (SS) in finishing diets was assessed in two feeding trials. In Exp. 1, 60 yearling steers (479 +/- 45 kg) were fed five diets (n = 12). A basal diet (DM basis) of 84.5% steam-rolled barley, 9% barley silage, and 6.5% supplement was fed as is (control), with all the silage replaced (DM basis) with rolled SS, or with grain:silage mix replaced with 9% whole SS, 14% whole SS, or 14% rolled SS. Liver, diaphragm, and brisket samples were obtained from each carcass. In Exp. 2, 120 yearling steers (354 +/- 25 kg) were fed corn- or barley-based diets containing no SS, high-linoleic acid SS, or high-oleic acid SS (a 2 x 3 factorial arrangement, n = 20). Whole SS was included at 10.8% in the corn-based and 14% in the barley-based diets (DM basis). In Exp. 1, feeding whole SS linearly increased DMI (P = 0.02), ADG (P = 0.01), and G:F (P = 0.01). Regression of ME against level of whole SS indicated that SS contained 4.4 to 5.9 Mcal ME/kg. Substituting whole for rolled SS did not significantly alter DMI, ADG, or G:F (8.55 vs. 8.30 kg/d; 1.36 vs. 1.31 kg; and 0.157 vs. 0.158, respectively). Replacing the silage with rolled SS had no effect on DMI (P = 0.91) but marginally enhanced ADG (P = 0.10) and improved G:F (P = 0.01). Dressing percent increased linearly (P = 0.08) with level of SS in the diet. Feeding SS decreased (P < 0.05) levels of 16:0 and 18:3 in both diaphragm and subcutaneous fats, and increased (P = 0.05) the prevalence of 18:1, 18:2, cis-9,trans-11-CLA and trans-10,cis-12-CLA in subcutaneous fat. In Exp. 2, barley diets supplemented with high-linoleic SS decreased DMI (P = 0.02) and ADG (P = 0.007) by steers throughout the trial, whereas no decrease was noted with corn (interaction P = 0.06 for DMI and P = 0.01 for ADG). With barley, high-linoleic SS decreased final live weight (554 vs. 592 kg; P = 0.01), carcass weight (329 vs. 346 kg; P = 0.06), and dressing percent (58.5 vs. 59.4%; P = 0.04). Steers fed high-linoleic SS plus barley had less (P < 0.05) backfat than those fed other SS diets. No adverse effects of SS on liver abscess incidence or meat quality were detected. Although they provide protein and fiber useful in formulating finishing diets for cattle, and did improve performance in Exp. 1, no benefit from substituting SS for grain and roughage was detected in Exp. 2. Because of unexplained inconsistencies between the two experiments, additional research is warranted to confirm the feeding value of SS in diets for feedlot cattle.  相似文献   

15.
Performance, DMI, diet composition, and slaughter data from 9,683 pens of steers and 5,009 pens of heifers that were fed high-concentrate diets for 90 d or more were obtained from 15 feedlots from the western United States and Canada. The data set included pen means for more than 3.1 million cattle fed between 1998 and 2004. Performance measurements assessed included ADG, DMI, dietary NE, shrunk initial weight (SIW), and shrunk final weight. Mature final weight (MFW) for cattle in each pen was estimated based on regression of slaughter weight against SIW and ADG across all pens. Equations were developed to standardize performance projections (ADG, MFW, and break-even values) and analyze feedlot cattle close-outs. Generally, as diet NE concentration increased, DMI was decreased but G:F, dressing percentage, and yield grade all increased. Pens of cattle with greater SIW had greater ADG, DMI, and shrunk final weight but a lower G:F and dressing percentage. Dressing percentage and yield grade were correlated positively. Equations of the NRC relating gain to NE intake explained 85 and 80% of the variation in DMI of steers and heifers, respectively, with mean ratios of predicted to observed DMI (DMIratio) at 1.000 +/- 0.0506 and 0.974 +/- 0.0490. However, a significant (P < 0.001) bias in the NRC estimate of DMI was detected (r(2) = 0.10 and 0.05, for steers and heifers) between the DMIratio and ADG in which DMIratio increased as ADG increased. This was due to inherent confounding of ADG and MFW in the original NE equation of Lofgreen and Garrett. Based on iterative optimization to minimize the difference between expected and observed DMI, revised equations for retained energy (RE, Mcal/kg) were developed for steers and for heifers: RE(steer) = 0.0606 x (LW x 478/MFW(steer))(0.75)ADG(0.905); RE(heifer) = 0.0618 x (LW x 478/MFW(heifer))(0.75)ADG(0.905), where LW = mean shrunk live weight. The revised equations decreased the SD of the DMIratio by 5.4% (from 0.0496 to 0.0469) and eliminated the bias in DMIratio that was related to ADG (r(2) = 0.0006). The similarity between the 2 equations derived for steers and for heifers for estimation of RE from ADG supports the concept that scaling by MFW accounts for energy utilization differences between sexes.  相似文献   

16.
Energy density in growing diets may affect carcass quality of cattle; however, few reports have described the impact of energy source. The objectives of this research were to determine effects of source [dried distillers grains with solubles (DDGS) vs. corn] and amount (limit-fed to gain 0.9 vs. 1.4 kg of BW/d) of energy during the growing phase on feedlot performance and marbling. Angus-cross steers (144 head) were blocked by BW (average initial BW = 252 ± 36 kg), allotted within each block to 8 pens (6 steers/pen, 24 pens total), and randomly assigned to 1 of 4 feeding systems in a 2 × 2 factorial arrangement of treatments: 1) 65% DDGS fed to gain 0.9 kg of BW/d, 2) 65% DDGS fed to gain 1.4 kg of BW/d, 3) 65% corn fed to gain 0.9 kg of BW/d, and 4) 65% corn fed to gain 1.4 kg of BW/d. Fecal grab samples were collected on d 52 of the growing phase to determine digestibility of DM, ADF, NDF, ether extract (EE), and CP. After the 98-d growing phase, all steers were fed the same finishing diet. Steers were slaughtered by pen when average BW within the pen was 544, 522, and 499 kg for the large, medium, and small BW blocks, respectively. Average daily gain and DMI differed (P<0.01) by design during the growing phase. Compared with the corn-based diets, digestibilities of DM, NDF, and EE were decreased (P<0.02) when DDGS-based diets were fed during the growing phase, whereas the digestibility of N was increased (P<0.01). The ADG was greatest (P=0.02) during the finishing phase for steers fed to gain 0.9 kg of BW/d initially, but source of energy during the growing phase did not affect (P=0.24) finishing phase ADG. Steers fed to gain 0.9 kg of BW/d during the growing phase also had less backfat (P=0.08), decreased USDA yield grades (P=0.03), and greater LM area (P<0.01) than steers fed to gain 1.4 kg of BW/d. There was an interaction between energy source and amount for marbling scores (P=0.02). Steers fed corn-based diets to gain 0.9 kg of BW/d during the growing phase had the most marbling, whereas those fed to gain 0.9 kg of BW/d on DDGS had the least marbling; the remaining feeding systems were intermediate. Overall ADG and DMI were affected (P < 0.06) by both source and amount of energy fed during the growing phase. Feeding the DDGS-based diet to achieve greater ADG during the growing phase increased marbling, whereas feeding the corn-based diet to increase ADG during the growing phase decreased marbling.  相似文献   

17.
In each of 2 yr, 20 Holstein steers (185+/-7 kg initial BW) were allocated to each of three treatments: pastured for 4.5 mo on grass/legume pastures and then fed 80% corn diets (DM basis) until slaughter; pastured for 4.5 mo on grass/legume pastures with ad libitum access to molasses-based protein supplements and fed 80% corn diets until slaughter; and placed in a feedlot and fed only 80% corn diets until slaughter (FEEDLOT). Half of the steers in each treatment were initially implanted with Revalor-S and not reimplanted. Supplemented steers on pasture had greater (P < 0.05) ADG than unsupplemented steers, and FEEDLOT steers gained faster and were fatter (P < 0.05) after 4.5 mo. Implanted steers had greater (P < 0.05) ADG with no significant treatment x implant status effect. Supplement intake was variable and related to ambient temperature. During the feedlot phase, steers previously on pasture had greater DMI and ADG (P < 0.05) but were not more efficient than FEEDLOT steers. Percentage of USDA Choice carcasses, fat thickness, dressing percentage, yield grade, and final weight were greater (P < 0.05) for FEEDLOT steers than for steers on other treatments. Implanting increased ADG of all steers but did not affect carcass traits, carcass composition, or feedlot performance during the finishing phase. Holstein steers consuming supplemented and unsupplemented pasture before slaughter will be leaner, have lower carcass weights, and have generally lower quality grades than those fed exclusively in a feedlot when slaughtered at similar ages.  相似文献   

18.
Over 2 yr, a total of 96 steers (approximately 7 mo of age) were allocated to 1 of 4 weaning management strategies: 1) control: weaned on the day of shipping; 2) creep-fed: allowed free-choice access to concentrate before weaning and shipping; 3) preweaned: weaned and provided supplemental concentrate on pasture before shipping; and 4) early-weaned: weaned at 70 to 90 d of age and kept on pasture. On the day of shipping, steers were loaded together onto a commercial livestock trailer and transported 1,600 km over 24 h before being received into the feedlot. At the feedlot, steers were penned by treatment (4 pens/treatment) and provided access to free-choice hay and concentrate in separate feeding spaces. Samples of blood were collected on d 0, 1, 4, 8, 15, 22, and 29 relative to shipping. Steer performance was assessed over the receiving period, including DMI of hay and concentrate, ADG, and G:F. Predetermined contrasts included control vs. early-weaned, creep-fed vs. preweaned, and control vs. creep-fed and preweaned. Overall ADG was greater (P < 0.01) for early-weaned vs. control steers (1.39 vs. 0.88 kg). In wk 1, early-weaned steers consumed more concentrate and less hay compared with control steers (P < 0.03), and preweaned steers consumed more concentrate (P < 0.01) but a similar amount of hay (P = 0.75) compared with creep-fed steers. Average DMI was greater for preweaned compared with creep-fed steers (2.84 vs. 2.50% of BW; P = 0.01) and tended to be greater for early-weaned compared with control steers (2.76 vs. 2.50% of BW; P = 0.06). Feed efficiency of early-weaned steers was greater than that of control steers (G:F = 0.17 vs. 0.12; P < 0.01) but similar for preweaned compared with creep-fed steers (P = 0.72). Plasma ceruloplasmin concentrations were less (P < 0.05) in control vs. early-weaned steers on d 0, but increased sharply after shipping and were greater in control vs. early-weaned steers on d 15 and 22 (P < 0.05). Creep-fed steers also experienced greater (P < 0.05) plasma ceruloplasmin concentrations than preweaned steers on d 29. These data suggest that early-weaned steers have improved performance in the feedlot compared with steers weaned directly before transport and feedlot entry. Differences in preshipping management appear to significantly affect measures of the acute phase protein response in steers.  相似文献   

19.
Two experiments were conducted to evaluate combinations of wet corn gluten feed (WCGF) and barley, as well as the particle size of dry-rolled barley and corn, in finishing steer diets containing WCGF. In Exp. 1, 144 crossbred steers (initial BW = 298.9 +/- 1.4 kg) were used to evaluate barley (0.566 kg/L and 23.5% NDF for whole barley) and WCGF combinations in finishing diets containing 0, 17, 35, 52, or 69% WCGF (DM basis), replacing barley and concentrated separator byproduct. A sixth treatment consisted of corn (0.726 kg/L and 11.1% NDF for whole corn), replacing barley in the 35% WCGF treatment. In Exp. 2, 144 crossbred steers (initial BW = 315.0 +/- 1.5 kg) were used to evaluate coarse or fine, dry-rolled barley or corn (0.632 and 0.699 kg/L; 26.6 and 15.9% NDF for whole barley and corn, respectively) in finishing diets containing WCGF. A factorial treatment design was used; the factors were grain source (corn or barley) and degree of processing (coarse or fine). The diets contained 50% WCGF, 42% grain (corn or barley), 5% alfalfa hay, and 3% supplement (DM basis). In Exp. 1, DMI and ADG responded quadratically (P < or = 0.03), peaking at 35 and 52% WCGF, respectively. The efficiency of gain was not affected (P > or = 0.42) by dietary treatment. Steers fed dry-rolled corn and 35% WCGF had heavier HCW, lower DMI, greater ADG, increased G:F, increased s.c. fat thickness at the 12th rib, and greater yield grades compared with steers fed dry-rolled barley and 35% WCGF (P < or = 0.04). The apparent dietary NEg was similar among the barley and WCGF combinations (P > or = 0.51); however, the corn and 35% WCGF diet was 25% more energy dense (P < 0.001) than was the barley and 35% WCGF diet. In Exp. 2, no grain x processing interactions (P > or = 0.39) were observed. Particle size was 2.15 and 2.59 mm for fine- and coarse-rolled barley and was 1.90 and 3.23 mm for fine- and coarse-rolled corn. Steers fed a combination of corn and WCGF had increased ADG, greater G:F, heavier HCW, larger LM area, more s.c. fat thickness at the 12th rib, greater yield grades, increased marbling, and more KPH compared with steers fed a combination of barley and WCGF (P < or = 0.03). Fine-rolling of the grain increased fat thickness (P = 0.04). The addition of WCGF to the barley-based diets increased DMI and gain. Decreasing grain particle size did not greatly affect performance of the steers fed the 50% WCGF diets; however, carcasses from the steers fed the fine-rolled grain contained more fat.  相似文献   

20.
A study was conducted to evaluate feed intake, ADG, carcass quality, eating behavior, and blood metabolites in feedlot beef steers fed diets that varied in proportion of wheat dried distillers grains with solubles (DDGS) replacing barley grain or barley silage. Two hundred crossbred steers (BW = 489 ± 30 kg) were blocked by BW and randomly allotted to 20 pens (5 pens per treatment). Steers were fed 1 of 4 diets: control without DDGS (CON), 25% (25DDGS), 30% (30DDGS), or 35% (35DDGS) wheat DDGS (DM basis). The CON diet consisted of 15% barley silage and 85% barley-based concentrate; the 3 wheat DDGS diets were formulated by substituting 20% barley grain and 5, 10, or 15% silage, respectively, with 25, 30, or 35% wheat DDGS so that the 35DDGS diet contained no silage. The diets were formulated such that wheat DDGS was substituted for both barley grain and barley silage to evaluate whether wheat DDGS can be fed as a source of both energy and fiber in feedlot finishing diets. Dry matter intake of steers fed 25DDGS was greater (P < 0.01), but final BW, ADG, and G:F were not different compared with steers fed CON diet. Carcass characteristics and liver abscess score were not different between CON and 25DDGS. Steers fed 25DDGS had longer eating time (min/d; P < 0.01), greater meal frequency (P < 0.04), but a slower eating rate (P < 0.04). Replacing barley silage with increasing amounts of wheat DDGS (from 25DDGS to 35DDGS) linearly reduced (P < 0.01) DMI. Final BW, ADG, and G:F were not affected by increasing amounts of wheat DDGS. Carcass traits were not different, whereas liver abscess scores linearly (P < 0.01) increased as more barley silage was replaced by wheat DDGS. Eating time (min/d) and duration of each meal linearly (P < 0.02) decreased, whereas eating rate (min/g of DM) linearly (P < 0.01) increased with increasing replacement of barley silage. Blood urea N was doubled (P < 0.01) compared with CON by inclusion of wheat DDGS. Results indicate that wheat DDGS can be used effectively in feedlot diets, decreasing the need for barley grain or silage without negatively affecting growth performance and carcass characteristics. A reduction in the amount of roughage required to maintain growth performance is a potential advantage in feedlot operations because forage is costly and often of limited availability. Thus, DDGS can be a possible alternative as long as they are available and cost effective; however, increased incidence of liver abscess and increased N content of manure need to be considered when greater amounts of wheat DDGS are included in finishing diets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号