首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
思茅松天然种群及其种子园的遗传多样性   总被引:16,自引:0,他引:16  
采用垂直板聚丙烯酰胺凝胶电泳和水平切片淀粉凝胶电泳技术对思茅松 3个天然种群和思茅松种子园的遗传多样性状况进行了研究。 9种同工酶系统 16个基因位点的分析结果表明 :思茅松天然种群具有较高的遗传多样性 ,多态位点比率P =70 1% ,等位基因平均数A =2 2 7,平均预期杂合度He=0 2 91;群体间的遗传分化程度较低 ,基因分化系数GST=0 0 5 2。思茅松种子园的遗传多样性较天然种群丰富 ,以上各遗传参数值依次为P =73 5 % ,A =2 4 2 ,He =0 2 95 ,种子园营建是林木遗传改良的一种有效途径  相似文献   

2.
蒙古栎天然群体等位酶遗传多样性研究   总被引:4,自引:1,他引:3       下载免费PDF全文
以中国蒙古栎全分布区的8个天然群体和辽东栎1个天然群体为研究对象,进行了水平淀粉凝胶电泳技术的同工酶分析,共分析了13种酶系统产生22个位点。结果表明:(1)蒙古栎在种和群体水平的遗传变异水平较低,多态位点百分率P分别为52.38%、28.976%,期望杂合度He分别为0.099、0.085,观测杂合度Ho分别为0.092、0.088;(2)蒙古栎群体间遗传分化程度较高,分化度Gst为0.107,遗传多样性中的遗传变异量89.27%存在于群体内;蒙古栎群体水平的基因流Nm值为2 080。(3)蒙古栎群体间的平均遗传距离D较低,为0.0121,各群体之间的遗传一致度I为0.974~1.00;(4)东灵山辽东栎群体的遗传多样性较低,多态位点百分率P为36 36%,期望杂合度He为0.083,观测杂合度Ho为0.070;(5)利用群体间遗传距离进行的UPGMA聚类结果表明,蒙古栎自然分布区的东北部的4个群体和西南部的2个群体分别聚为一亚类,这与其地理分布格局大致吻合,但群体间遗传距离与地理距离无明显的相关性。(6)长期的砍伐和破坏,造成有效群体较小,而且经受繁殖瓶颈效应,是蒙古栎遗传多样性下降的主要原因。  相似文献   

3.
云南红豆杉天然群体的遗传多样性和群体分化   总被引:1,自引:0,他引:1  
利用云南红豆杉Taxusyunnanensis种子的单倍体胚乳,采用水平淀粉凝胶电泳技术,对分布于金沙江流域的云南红豆杉天然群体的遗传多样性和群体分化进行了研究.对8个酶系统15个酶位点的分析结果表明该地区的云南红豆杉天然群体遗传变异水平较高,多态位点比率P=0.933,等位基因平均数A=2.90.平均期望杂合度He=0.290;4个小群体间遗传分化很小.基因分化系数GST=0.071.云南红豆杉天然群体具有明显丰富的遗传变异和较小的群体间分化,其原因是云南红豆杉寿命长、风媒异花授粉、种子传播、基因交流频繁.  相似文献   

4.
白皮松保育遗传学 --天然群体遗传多样性评价与保护策略   总被引:2,自引:0,他引:2  
李斌  顾万春 《林业科学》2005,41(1):57-64
在白皮松天然林中采取分层取样 ,抽取 10个群体 2 10个单株。测定分析 16种酶系统 ,得到 31个酶位点。白皮松物种水平遗传多样性参数为 :平均等位基因数AS=1 74 2 ,平均有效等位基因数AeS=1 4 9,多态位点百分率PS=5 4 8% ,期望杂合度HeS=0 16 2 ;白皮松群体水平遗传多样性参数为 :平均等位基因数AP=1 39± 0 11,平均有效等位基因数AeP=1 30± 0 12 ,多态位点百分率PP=34 85 %± 8 4 6 % ,期望杂合度HeP=0 0 99± 0 0 4 9,观测杂合度HoP =0 0 95± 0 0 4 2。白皮松遗传多样性在松属树种中属于中等偏下 ,群体间分化明显 ,遗传分化系数FST =0 133,群体间遗传距离 D =0 12 8,大于松属平均水平。根据Nei’s遗传一致度将 10个群体分为 3组。白皮松群体遗传多样性中心与资源分布中心和表型多样性分布中心吻合 ,适宜采取中心群体原地保护和多群体异地联合保存相结合的保护策略。  相似文献   

5.
白皮松天然群体遗传多样性的等位酶分析   总被引:1,自引:0,他引:1  
采用8种等位酶对白皮松4个天然群体的遗传多样性和遗传分化进行了研究.在4个群体中共检测到10个基因位点,15个等位基因,其中6个位点为多态位点;群体总体水平多态位点比率P=60%,平均有效基因数A=1.92,平均期望杂合度He=0.106,种群平均遗传距离为0.006 8.南漳白皮松群落平均等位基因数A=1.9,平均有...  相似文献   

6.
长阳栓皮栎天然群体遗传多样性的等位酶分析   总被引:1,自引:1,他引:0  
采用5种等位酶对长阳栓皮栎天然群体的遗传多样性和遗传变异进行了研究。共检测到7个基因位点,15个等位基因,其中5个位点为多态位点;群体多态位点比例P=71.4%,平均等位基因数A=3.2000,平均有效等位基因数AE=1.6090,平均期望杂合度HE=0.3563,观测杂合度HO=0.3625。长阳栓皮栎群体的遗传多样性较高,遗传变异水平较高。  相似文献   

7.
白皮松交配系统及其种内遗传多样性分量比的研究   总被引:5,自引:0,他引:5       下载免费PDF全文
应用同工酶淀粉凝胶技术分析了白皮松天然群体的交配系统,结果表明白皮松天然群体的多位点异交率为0.451~0.522,在松属中处于较低水平,这与白皮松天然群体较低的杂合度和很弱的基因流结果吻合,进一步讨论了导致白皮松异交率低的原因。白皮松群体内家系间存在明显的遗传分化,其半同胞家系分化系数为0.322,高于群体间的遗传分化水平。群体/家系/子代个体三者间的遗传多样性分量比为DAP:DAF:DIF≈1:2:4。  相似文献   

8.
湘鄂西地区珙桐天然群体遗传结构的研究   总被引:3,自引:0,他引:3  
以珙桐叶为材料,对湘西和鄂西两天然珙桐群体的60个样品进行RAPD分析.结果表明,9个随机多态引物,获得24个多态标记位点,平均每个引物产生2.67个多态位点;湘西和鄂西两群体之间的遗传多样性差异不明显,Shannon指数分别为0.427 4和0.448 1;种内平均遗传多样性为0.326 9,群体内平均遗传多样性为0.297 6,群体间的遗传多样性为0.029 3,基因分化系数为0.089 6,基因流为5.079 2.两个天然珙桐群体的遗传相似性非常高,达到0.923 3,遗传距离为0.079 8;湘西群体的多态百分位率略高于鄂西.这表明,湘西和鄂西两群体间存在着非常频繁的基因流.  相似文献   

9.
以江西境内的5个毛红椿天然群体为研究对象,开展基于ISSR与SSR分子标记的群体遗传多样性研究。结果显示,5个群体总体表现为杂合子过剩,纯合子不足,总的遗传多样性偏低;物种水平的基因多样度(h)为0.2524,各群体基因多样度按大小排序为:九连山>官山>井冈山>马头山>岩泉。毛红椿群体规模小且林龄结构单一,推测这是造成其杂合子过剩但是基因多样性低下的主要原因。遗传分化指标(GST)显示受检测的毛红椿各群体间已发生显著分化,但群体内的遗传变异约占总变异的70%,仍是变异的主要来源;群体间基因流值(Nm)仅为0.596,多世代后的随机遗传漂变会逐渐加剧毛红椿群体遗传分化。为保证遗传完整性及保持群体的多样性水平,在江西境内可仅选择遗传多样性水平较高的九连山与官山两个群体来开展毛红椿的资源保存以及迁地保护。  相似文献   

10.
黄藤遗传多样性的RAPD分析   总被引:4,自引:0,他引:4       下载免费PDF全文
利用RAPD标记从DNA水平对收集的4个天然黄藤种群进行遗传多样性分析。15条引物扩增得到154条片段,整个种的多态性位点比率为75.97%,Ne i’s指数为0.258 4,Shannon信息指数为0.388 8。黄藤种的遗传多样性为0.257 8,种群间的Ne i遗传分化系数为0.141 2,各种群间的遗传变异非常小。4个种群间的遗传相似性分析结果显示:毛感乡和尖峰岭种群间的遗传相似度最高,吊罗山和坝王岭种群间的遗传相似度最低。AMOVA分析结果表明:种群间基因分化系数为0.026 2,大部分遗传变异(97.38%)来源于群体内。研究结果揭示:收集的天然黄藤种群具有较高的遗传多样性,有良好的保存和利用价值,尖峰岭种群可以作为重点保护。  相似文献   

11.
Gmelina arborea is an important timber-yielding tree that grows naturally in the tropical and subtropical regions of Southeast Asia and has also been introduced as a plantation species outside these regions. Genetic diversity in this tree species was observed in stone/seed-related traits and in vitro responses of cultured nodal segments from plants of eight different populations representing natural forests, fragmented forests and plantations. Variance analysis showed significant differences between populations for these traits. However, it was not possible to separate the different populations using these traits by multivariate analysis, even after environmental variation was reduced over six subcultures. Genetic diversity was therefore analysed using molecular markers. Inter-simple sequence repeat (ISSR) primers yielded 95% polymorphic loci among the eight populations and UPGMA analysis enabled separation of these populations on the basis of their genetic distances. Diversity was also analyzed using population genetics parameters like Nei’s genetic diversity and gene differentiation. Nei’s genetic diversity was 0.29 between populations and 0.11 within populations. AMOVA analysis indicated 41 and 59% within- and between-population genetic diversity, respectively. Mantel test suggested that genetic differentiation between six Indian populations was positively correlated to geographic distance (r = 0.626, P = 0.029). Assessment of the genetic variation in G. arborea populations is an important step in selection of conservation strategies for this species since diversity forms the basis for species adaptation.  相似文献   

12.
The genetic variability of four natural populations of Larix gmelinii from East Siberia was determined and compared by RAPD analysis. Comparison of the RAPD profiles provided an estimation of variability in 193 RAPD fragments. More than 89% of these fragments were found to be polymorphic. The main genetic variability parameters of the two populations from Central Yakutia, a region free of fluoride pollution, had considerably higher values than those from East Transbaikalia, a region potentially affected by fluoride pollution (FLU, near a fluorite quarry growing on soils with a high natural content of fluorides). AMOVA revealed that 72.94% of the variation was within populations, while only 7.05% of the variation was between populations within geographical regions. The genetic diversity of the FLU fluoride-tolerant population was the lowest, but only slightly lower than that of a fluoride non-tolerant population from Chita, 50 km distant from FLU. Although this study demonstrates the absence of fundamental alterations of genetic structure within the populations of L. gmelinii growing on soils with a high content of fluorides, it is presumed that the reduction of genetic diversity was the genetic response of the FLU population to such an environmental stress as a constantly high concentration of fluorides within the soil.  相似文献   

13.
UGPase gene related with wood cellulose synthesis was transferred into C. acuminata using the method of Agrobacte- rium-mediated genetic transformation, and an efficient transformation system was developed for C. acuminata on the basis of evaluations of several factors affecting Agrobacterium-mediated DNA transfer rate. The highest transformation rate was achieved when pre-cultttred leaf explants were infected with an Agrobacterium culture corresponding to OD600 (0.5) for 10 min, and cultured on explant regeneration medium for three days. The results of Southern hybridization showed that genomic DNA of the kanamycin-resistant shoots to an UGPase gene probe substantiated the integration of the transgene. Transformation efficiency (6%) was achieved under the optimized transformation procedure, This system should facilitate the introduction of important useful genes into C, acuminata.  相似文献   

14.
We have examined the pattern of random amplified polymorphic DNA (RAPD) variation among six populations of Crataegus monogyna from northern Italy, extending over an area of about 20,000 km2. The aim was to evaluate local differentiation in relation to geographical distance. Of the 73 loci analysed, 65 were polymorphic, and there were no bands at complete fixation at the population level. The mean genetic diversity was 0.291, with the values for individual populations ranging between 0.252 and 0.333. According to the analysis of molecular variance most of the genetic variation was found within populations (about 80%), with a significant proportion being attributable to genetic differences between populations. No evidence for isolation by distance was found in the set of populations sampled. The efficacy of RAPD markers in analysing genetic variation, and the contribution of the results in terms of the preservation of biodiversity and defining the most appropriate strategies for collecting forest reproductive material, are discussed.  相似文献   

15.
The Mediterranean evergreen woody plants Quercus coccifera and Pinus halepensis grow in a range of environments where selection by drought, heat and high irradiance can drive genetic and phenotypic differentiation of populations. However, the role of these stresses in filtering out maladaptive genotypes remains unknown. We hypothesize that this filtering is an important process for woody Mediterranean species due to their low phenotypic plasticity reported in previous studies. We have studied the response of saplings of Q. coccifera and P. halepensis, originating from two contrasting populations (a rock outcrop and a garrigue formation), to water stress. Isozyme characterization of genetic diversity was done to determine whether populations were genetically distinct. Water response analysis was based on water relations, gas exchange, chlorophyll a fluorescence, pigment content, antioxidant status and morphological and structural parameters. Ecotypic differentiation was found for both Q. coccifera and P. halepensis populations, with a higher population isozyme similarity and a higher frequency of dominance of a few genotypes at the rock outcrop in both the species. P. halepensis exhibited small but significant differences between populations for plastic responses to water, with lower phenotypic plasticity in saplings from the rock outcrop. Although it was not found in Q. coccifera, this pattern suggests that ecotypic differentiation rendering stress-tolerant ecotypes involves a decreased plasticity. Phenotypic plasticity was not high but it explained over 75% of the total variability among individual plants. Thus, and although evidence for ecotypic divergence was found in both the species, saplings were plastic enough to blur ecotypic differentiation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Teak (Tectona grandis L.f.) is considered to be an extraordinarily durable building timber with a worldwide reputation. Its widespread use has entailed the over-exploitation of natural forests and a large reduction in natural diversity. Fifteen microsatellite markers were used to study the genetic variability and structure of 166 teak trees distributed over the whole natural area of teak. Analysis showed that in the teak natural area there were four main centers of genetic variability. Two clusters were in India and could be considered as main centers of genetic diversity in teak. The third cluster mainly consisting of populations in Thailand and Laos was genetically very distinct from the Indian populations but presented only half as much allelic variability. A fourth cluster from Central Laos showed even less genetic variability. The use of SSR markers for conservation of teak forest diversity is discussed.  相似文献   

17.
The endangered Vatica mangachapoi, a long-lived, tropical tree with economic and ecological importance found in Hainan, China, was used to assess the hypothesis that historical human activities in Hainan’s tropical rain forest could have negative effects on the genetic diversity of V. mangachapoi. Three hundred and twenty individuals from 11 natural populations—which were classified into three groups according to levels of disturbance—were sampled and analyzed with ISSR markers. Although genetic diversity of V. mangachapoi is high at the species level, it is relatively low within populations. A significant genetic differentiation occurs among different disturbance levels. Significant isolation-by-distance indicated relevant historical anthropogenic changes. Our findings showed that historical human disturbances significantly increase the genetic differentiation and slightly decrease the genetic diversity of long-lived tree V. mangachapoi. Relevant targeting conservation actions were recommended.  相似文献   

18.
Bracatinga (Mimosa scabrella) is a legume tree species common in the early stages of succession in Araucaria angustifolia forests in southern Brazil. Bracatinga can form high-density monospecific stands called bracatingais. Its traditional management for charcoal production involves maintenance of the seed bank. Our objective was to analyze the genetic diversity and structure of bracatingais to understand the mechanisms by which intraspecific diversity of M. scabrella is created and maintained in landscapes managed by family farmers in their agroforestry mosaics. We analyzed 14 bracatingais using 8 allozyme loci. We compared parental and progeny generation indices (7 loci) and described the mating system (9 loci) of two progenies. Overall diversity was high: A = 2.69, H o = 0.257, H e = 0.382 and similar between populations. Overall fixation (F = 0.364) was similar to the fixation index (f = 0.329). The genetic divergence among populations was low (Θp = 0.052) but significant. The progenies’ genetic diversity values were similar to those of the previous generation (H e pop11 = 0.342 vs. 0.420/H e pop10 = 0.432 vs. 0.400). Progenies were compatible with half-sib and full-sib crossing expectations (θ xy  = 0.204 and 0.194). Our data showed that there is a tendency for genetic structuring caused not only by the reproductive system but also by genetic drift. It is very likely that the high genetic diversity is amplified by internal migration within each bracatingal. This study showed that current landscape management can contribute to maintaining high levels of bracatinga genetic diversity, which contributes to its regional conservation.  相似文献   

19.
Segregation distortion of molecular markers has been reported in a broad range of organisms. It has been detected in an interspecific BC1 Populus pedigree established by controlled crossing between clone “LM50” (Populus tomentosa) and its hybrid clone “TB01” (P. tomentosa×P. bolleana). The study with a total of 150 AFLP markers (approximately 18.9% of the total loci) exhibited significant deviation from the Mendelian ratio (1:1) (p<0.01). Twenty-five percent of the markers were mapped on the pa-rental specific genetic linkage maps of clones “LM50” and “TB01” with a pseudo-test-cross mapping strategy. Twelve linkage groups had markers with skewed segregation ratios, but the major regions were on linkage groups TLG2, TLG4 and TLG6 in the linkage map of clone “LM50”. We also analyzed the association between distorted loci and expression of complex traits with Map-maker/QTL software. A total of 16 putative QTLs affecting 12 traits were identified in the distorted regions on seven linkage groups. Therefore we could detect the distribution of skewed loci along the entire genome and identify the association between quantitative traits and segregation loci via genetic mapping in an interspecific BC1 P. tomentosa family. Furthermore, the genetic nature and pos-sible causes of these segregation distortions for differentiation between female and male parents were also discussed.  相似文献   

20.
Understanding the genetic structure and diversity of edge populations can shed light on the role of peripheral populations and their relevance for conservation strategies. In this study, three fragmented and isolated Apennine populations of Scots pine (Pinus sylvestris L.) belonging to the rear edge of the species’ distribution were analyzed using both nuclear (nSSR) and chloroplast (cpSSR) microsatellites and were compared with an Alpine population belonging to the species’ main range. Although small population size and considerable isolation have probably reduced the genetic variability of Apennine populations, these fragmented populations maintain a high level of within-population genetic diversity. A significant among-population differentiation was found using both nSSR (F ST = 0.08) and cpSSR markers (ρ = 0.14). Analysis of molecular variance (AMOVA) on the nSSRs attributed all variabilities to the among Apennine populations component supporting the theoretical predictions regarding fragmentation effects on genetic structure. On the other hand, AMOVA on the cpSSRs attributed all variances to the between-region component and no differentiation was found within region, among the Apennine populations. This result suggests the importance of pollen gene flow in homogenizing populations on this geographical scale. Our results confirm the genetic distinctiveness of Apennine populations and their possible derivation from different glacial refugia than those of the Alps. Considering their peculiarity and the high level of intrapopulation genetic diversity that they still retain, fragmented Apennine populations should be considered of high priority for conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号