首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of salinity on seed germination, plant yield parameters, and plant Na, Cl and K concentrations of chickpea and lentil varieties was studied. Results showed that in both crops percentage emergence was significantly reduced by increasing NaCl levels (0–8dSm?1). From the plant growth studies it was found that differences existed among chickpea and lentil varieties in their response to NaCl application. In chickpea, the variety Mariye showed the comparatively lowest germination percentage and the lowest seedling shoot dry weight in response to salinity and was also among the two varieties which had the lowest relative plant height, shoot and root dry weight and grain yield at maturity. Similarly, variety DZ-10-16-2, which was the second best in germination percentage and the highest in terms of seedling shoot dry weight, also had the highest relative plant height, shoot and root dry weights, and grain yield at maturity. In lentil, however, such relationships were less pronounced. Chloride concentration (mg g?1) in the plant parts at salt levels other than the control was about 2–5 times that of Na. K concentration in the plants was significantly reduced by increasing NaCl levels. Chickpea was generally more sensitive to NaCl salinity than lentil. While no seeds were produced at salinity levels beyond 2dSm?1 in chickpea (no seeds were produced at this salt level in the most sensitive variety, Mariye), most lentil varieties could produce some seeds up to the highest level of NaCl application. Overall, varieties R-186 (lentil) and Mariye (chickpea) were the most sensitive of all varieties. On the other hand, lentil variety NEL-2704 and chickpea variety DZ-10-16-2 gave comparatively higher mean relative shoot and root dry weights, and grain yield, thus showing some degree of superiority over the others. The observed variations among the varieties may be useful indications for screening varieties of both crops for salt tolerance.  相似文献   

2.
Root systems of various chickpea genotypes were studied over time and in diverse environments, – varying in soil bulk density, phosphorus (P) levels and moisture regimes. In a pot study comparing a range of chickpea genotypes, ICC 4958 and ICCV 94916‐4 produced higher root length density (RLD) and root dry weight (RDW), which were better expressed under P stress conditions. In two field experiments in soils of intermediate and high soil bulk densities, ICC 4958 also had greater RLD and RDW, particularly under soil moisture stress conditions. The expression of greater rooting ability of ICC 4958 under a wide range of environmental conditions confirms its suitability as a parent for genetically enhancing drought resistance and P acquisition ability. The superiority of ICC 4958 over other genotypes was for root proliferation expressed through RLD. Thus, the variation in RLD can be the most relevant root trait that reflects chickpea's potential for soil moisture or P acquisition.  相似文献   

3.
Effect of Sodium Chloride Salinity on Seedling Emergence in Chickpea   总被引:5,自引:1,他引:5  
Although laboratory (Petri dish) germination as an estimate of seed viability is a standard practice, it may not give an accurate prediction of seedling emergence in the field, especially when saline irrigation water is used. Experiments were conducted to investigate seedling emergence in two chickpea cultivars (ILC 482 and Barka local) in response to varied salinity levels and sowing depths. Seeds were sown in potted soil at a depth of 2, 4 or 6 cm. The salinity treatments were 4.6, 8.4 and 12.2 dS m–1. Tap water (0.8 dS m–1) served as the control. Depth of sowing had a significant effect on seedling emergence. Seeds sown 6 cm deep showed the lowest seedling emergence. Similarly, salinity had an adverse effect on seedling emergence. The lowest seedling emergence percentages were obtained at the highest salinity treatment (12.2 dS m–1). The interaction between salinity treatment and seeding depth was significant. Hypocotyl injury was implicated as a possible cause of poor seedling emergence in chickpea under saline water irrigation and was less severe when pre-germinated seeds were used. ILC 482 appeared to be more tolerant to salinity than Barka local, suggesting that breeding programmes involving regional exchange of germplasm may be helpful.  相似文献   

4.
J. Gil  J. I. Cubero 《Plant Breeding》1993,111(3):257-260
The desi and kabuli chickpeas are characterized, among other things, by their seed coats being thicker in the desi than in the kabuli type. The inheritance of seed coat thickness, and its relation to flower colour and seed size, was studied. Seed coat thickness exhibits monogenic inheritance, the thin kabuli seed coat being the recessive character. Linkage was found between seed coat thickness and flower colour, the recombinant fraction being 0.19. No relationship was found between seed coat thickness and seed size. The role of these characters in the evolution of the chickpea is discussed.  相似文献   

5.
Chickpea is sensitive to cold conditions (<15 °C), particularly at its reproductive phase and consequently it experiences significant decrease in the seed yield. The information about the effects of cold stress on chickpea during the seed filling phase is lacking. Moreover, the underlying metabolic reasons associated with the low temperature injury are largely unknown in the crop. Hence, the present study was undertaken with the objectives: (i) to find out the possible mechanisms leading to low temperature damage during the seed filling and (ii) to investigate the relative response of the microcarpa (Desi) and the macrocarpa (Kabuli) chickpea types along with elucidation of the possible mechanisms governing the differential cold sensitivity at this stage. At the time of initiation of the seed filling (pod size ∼1 cm), a set of plants growing under warm conditions of the glasshouse (temperature: 17/28 ± 2 °C as average night and day temperature) was subjected to cold conditions of the field (2.3/11.7 ± 2 °C as average night and day temperature), while another set was maintained under warm conditions (control). The chilling conditions resulted in the increase in electrolyte leakage, the loss of chlorophyll, the decrease in sucrose content and the reduction in water status in leaves, which occurred to a greater extent in the macrocarpa type than in the microcarpa type. The total plant weight decreased to the same level in both the chickpea types, whereas the rate and duration of the seed filling, seed size, seed weight, pods per plant and harvest index decreased greatly in the macrocarpa type. The stressed seeds of both the chickpea types experienced marked reduction in the accumulation of starch, proteins, fats, crude fibre, protein fractions (albumins, globulins, prolamins and glutelins) with a larger decrease in the macrocarpa type. The accumulation of sucrose and the activity levels of the enzymes like starch synthase, sucrose synthase and invertase decreased significantly in the seeds because of the chilling, indicating impairment in sucrose import. Minerals such as calcium, phosphorous and iron as well as several amino acids (phenylalanine, tyrosine, threonine, tryptophan, valine and histidine) were lowered significantly in the stressed seeds. These components were limited to a higher extent in the macrocarpa type indicating higher cold sensitivity of this type.  相似文献   

6.
Seed yield in chickpea (Cicer arietinum L.) is substantially increased by advancing sowing date from the traditional spring to early winter at low to medium elevation areas around the Mediterranean Sea. This shift, however, increases the probability of the exposure to subzero temperatures as low as -10 °C for up to 60 days in a year. These low temperatures often reduce seed yield of cold-susceptible cultivars. Yield losses from cold were estimated in two experiments conducted at Tel Hadya, Syria. In experiment 1, of 96 genotypes sown on nine dates ranging from autumn to spring during the 1981–82 season, those lacking tolerance to cold were killed and produced no yield in autumn sowing, whereas lines with cold tolerance produced nearly 4 t/ha which corresponds to a four-fold increase over spring sowing. Moderately cold-tolerant genotypes sown during early winter produced substantially more seed yield than the normal spring-sown crop. Seedlings were more cold tolerant than the plants in early or late vegetative stages. In experiment 2, in which yield loss due to cold in the field was estimated in 12 yield trials comprising 288 newly bred lines in the 1989–90 season, the regression of cold susceptibility on seed yield in each of the trials was highly significant and negative. On average, winter-sown trials produced 67 % more seed yield than spring-sown trials, but 125 out of 288 genotypes produced yield more than double in winter sowing. Early maturing lines suffered severe cold damage and many lines produced no seed.  相似文献   

7.
Three field experiments were conducted on chickpea ( Cicer arietinum L.) and four on lentil ( Lens culinaris Med.) at different winter-sown rainfed locations in Jordan from 1988/89 to 1990/91 to study the effect of the duration of weed-free and weed-infested conditions on yields and yield components of the crops. Chickpea seed yields were reduced on average by 81 % and straw yields by 63 % when fields remained weed infested until harvest compared with weed-free conditions throughout the growing season. The corresponding lentil seed and straw yield decreases were 63 % and 55 %. As the duration of weed-free period increased and the duration of weed-infested period decreased, yields increased. However, the critical period of weed interference was between 35 and 49 days after emergence in chickpea and between 49 and 56 days after emergence in lentil, when these crops were at an advanced stage of vegetative growth. There were significant negative correlations between the weed dry weight and the seed or straw yields. The reduction in seed yields in both crops because of weed interference occurred mainly through the reduced number of pods /plant, which in turn was partly the result of reduced number of secondary branches. In chickpea, some reduction also occurred through reduced 100-seed weight.  相似文献   

8.
9.
The inheritance of resistance to dry root rot of chickpea caused by Rhizoctonia bataticola was studied. Parental F1 and F2 populations of two resistant and two susceptible parents, along with 49 F1 progenies of one of the resistant × susceptible crosses were rested for their reaction to dry root rot using the blotting-paper technique. All F, plants of the resistant × susceptible crosses were resistant; the F2 generation fitted a 3 resistant: 1 susceptible ratio indicating monogenic inheritance, with resistance dominant over susceptibility. F3 family segregation data confirmed the results. No segregation occurred among the progeny of resistant × resistant and susceptible × susceptible crosses.  相似文献   

10.
Thirty short- to medium-duration chickpea germplasm accessions from diverse geographic origins and with a wide range of physiological and morphological traits were grown in three environments at ICRISAT Asia Center, Patancheru, during 1992/93. Data were recorded on time to flowering, leaf area, 100-seed mass, pod volume, and pod-filling percentage. Quantitative data on the last two traits were recorded for the first time to examine their relevance to the characterization of germplasm accessions and their use as selection criteria in breeding. The accessions exhibited considerable variation for the traits. The broad-sense heritabilities were 0.98 for pod volume and 0.85 for pod-filling percentage. The two traits showed consistent relationships with other morphological characters indicating that the pod volume and pod-filling percentage traits can be utilized in genotype characterization of chickpea.  相似文献   

11.
R.P.S. Pundir  G.V. Reddy 《Euphytica》1998,102(3):357-361
Two new traits – open flower and small leaf in chickpea are discussed. Open flower, a natural mutant in a good agronomic background is reported for the first time, small leaf trait has been reported earlier, and has now been studied by breeders. Both useful traits were found to be monogenic recessive. The joint F2 segregation data revealed no linkage between flower colour and flower type, but flower type and leaf size showed some linkage. Open flower could contribute to a higher rate of cross pollination and utilization of heterosis. The small leaf allows light to penetrate the crop canopy, and could be useful in designing a physiologically efficient plant type in chickpea. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Quantitative information regarding biomass accumulation and partitioning in chickpea (Cicer arietinum L.) is limited or inconclusive. The objective of this study was to obtain baseline values for extinction coefficient (KS), radiation use efficiency (RUE, g MJ?1) and biomass partitioning coefficients of chickpea crops grown under well‐watered conditions. The stability of these parameters during the crop life cycle and under different environmental and growth conditions, caused by season and sowing date and density, were also evaluated. Two field experiments, each with three sowing dates and four plant densities, were conducted during 2002–2004. Crop leaf area index, light interception and crop biomass were measured between emergence and maturity. A KS value of 0.5 was obtained. An average RUE of 1 g MJ?1 was obtained. Plant density had no effect on RUE, but some effects of temperature were detected. There was no effect of solar radiation or vapour pressure deficit on RUE when RUE values were corrected for the effect of temperature. RUE was constant during the whole crop cycle. A biphasic pattern was found for biomass partitioning between leaves and stems before first‐seed stage. At lower levels of total dry matter, 54 % of biomass produced was allocated to leaves, but at higher levels of total dry matter, i.e. under favourable and prolonged conditions for vegetative growth, this portion decreased to 28 %. During the period from first‐pod to first‐seed, 60 % of biomass produced went to stems, 27 % to pods and 13 % to leaves. During the period from first‐seed to maturity, 83 % of biomass was partitioned to pods. It was concluded that using fixed partitioning coefficients after first‐seed are not as effective as they are before this stage. Environmental conditions (temperature and solar radiation) and plant density did not affect partitioning of biomass.  相似文献   

13.
Summary The chick pea germplasm collection maintained at ICRISAT Center, Patancheru, India, is the largest collection of this crop available in one place. This collection was grown in instalments and described for qualitative and agronomical traits. The importance and distribution of six qualitative traits, namely flower colour, plant colour, growth habit, seed shape, seed surface and seed colour have been discussed.Approved as J. A. No. 365 by the International Crops Research Institute for the Semi-Arid Tropics (ICRI-SAT).  相似文献   

14.
Growth, nodulation and nitrogen (N) fixation efficiency of Banki (Local) and ICGS-44 (exotic) varieties of groundnut was significantly ( P < 0.05) improved by their inoculation either with NC-92 or Rudy Patric (R.P.) strains of rhizobium. Nodules did not form without inoculation in plants growing in sterilized sand. Inoculation with R.P. strain of rhizobium resulted in greater shoot growth, N content in shoot and number and weight of nodules in groundnut varieties. The R.P. inoculant increased agronomic efficiency by 112.5 % in Banki and 100 % in ICGS-44 variety of groundnut. Improvement in N fixation efficiency by inoculation with R.P. inoculant was 334 and 286% in Banki and ICGS-44 variety, respectively. However, Physiological efficiency was maximum in Banki variety when inoculated with NC-92 strain of rhizobium.  相似文献   

15.
Isoxaflutole at 75 g ai ha?1 is registered in Australia for the control of several broadleaf weeds in chickpea (Cicer arietinum L.). Although isoxaflutole provides satisfactory control of problematic weeds, under certain conditions crop injury can occur. Higher air temperature and moisture content of soil are reported to affect the metabolism of soil applied herbicide. Controlled environment experiments were used to determine the tolerance of chickpea to isoxaflutole under a range of temperature and soil moisture levels. For the soil moisture study, the variables examined were two desi chickpea genotypes (Kyabra as a tolerant cultivar and Yorker as a sensitive cultivar), three soil moisture levels [50 % field capacity (FC), 75 % FC and FC] with three herbicide rates [0, 75 (recommended rate) and 300 g ai ha?1]. For the temperature by soil moisture study, the variables examined were two other desi chickpea genotypes (97039‐1275 as a tolerant line and 91025‐3021 as a sensitive line), three temperature regimes (20/5, 30/15 and 35/25 °C), two soil moisture conditions (50 % FC and FC) with the same three herbicide rates. The results demonstrated that the chickpea genotypes exhibited differential tolerance to isoxaflutole, but that differences in response were affected by rate, temperature and soil moisture. Increasing temperature and soil moisture content made the susceptible chickpea genotype more vulnerable to isoxaflutole damage. Injury to the susceptible genotype in terms of increased leaf chlorosis and reduction in shoot height and dry matter production increased as soil moisture increased from 50 % FC to FC and temperature increased from 20/5 to 35/25 °C. Overall damage of the sensitive genotype from increasing rates of isoxaflutole also increased when soil moisture content increased from 50 % FC to FC within the fixed temperature regime of 30/15 °C. The sensitivity of chickpea to isoxaflutole depends on existing temperature and moisture content and the chances of crop damage were enhanced with increasing temperature and moisture levels.  相似文献   

16.
Chickpea is considered sensitive to salinity, but the salinity resistance of chickpea germplasm has rarely been explored. This study aimed to (i) determine whether there is consistent genetic variation for salinity resistance in the chickpea minicore and reference collections; (ii) determine whether the range of salinity resistance is similar across two of the key soil types on which chickpea is grown; (iii) assess the strength of the relationship between the yield under saline conditions and that under non‐saline conditions; and (iv) test whether salinity resistance is related to differences in seed set under saline conditions across soils and seasons. The seed yield of 265 chickpea genotypes in 2005–2006 and 294 cultivated genotypes of the reference set in 2007–2008 were measured. This included 211 accessions of the minicore collection of chickpea germplasm from the International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT). The experiments were conducted in a partly controlled environment using a Vertisol soil in 2005–2006 and an Alfisol soil in 2007–2008, with or without 80 mm sodium chloride (NaCl) added prior to planting. In a separate experiment in 2006–2007, 108 genotypes (common across 2005–2006 and 2007–2008 evaluations) were grown under saline (80 mm NaCl) and non‐saline conditions in a Vertisol and an Alfisol soil. In 2005–2006 in the Vertisol and 2007–2008 in the Alfisol, salinity delayed flowering and maturity, and reduced both shoot biomass and seed yield at maturity. There was a large variation in seed yield among the genotypes in the saline pots, and a small genotype by environment interaction for grain yield in both soil types. The non‐saline control yields explained only 12–15 % of the variation of the saline yields indicating that evaluation for salinity resistance needs to be conducted under saline conditions. The reduction in yield in the saline soil compared with the non‐saline soil was more severe in the Alfisol than in the Vertisol, but rank order was similar in both soil types with a few exceptions. Yield reductions due to salinity were closely associated with fewer pods and seeds per pot (61–91 %) and to lesser extent from less plant biomass (12–27 %), but not seed size. Groups of consistently salinity resistant genotypes and the ones specifically resistant in Vertisols were identified for use as donor sources for crossing with existing chickpea cultivars.  相似文献   

17.
Due mainly to alterations in plant metabolism, lack of oxygen and excess salts are disturbances that affect crop yields. In different parts of the world crops are subjected t o those disttirbances, simultaneously or successively. Our objective was to determine the effects of a winter waterlogging followed by a spring salt peak on rapeseed yield, A pot experiment, combining waterlogging and salinization was carried out. The waterlogging duration was: 0 (control), 3, 7 and 14 days and the sahnity treatments were peaks of Electrical Conductivity of 5 and 8 dSm−1 and the control. The yield started decreasingfrotn 3 days during waterlogging, mainly due to the lower number of seeds per plant. The salt peak from 5 dSm−1 affected the yield only in plants which had suffered a waterlogging lower than 7 days, showing interaction between salinity and waterlogging, Only salinity reduced oil content. The saline peak affected the K, Ca and Na concentration in plant tissues, but the effect of salinity on rapeseed could be more related to soil water potential than specific ion toxicities or imbalance.  相似文献   

18.
Gene flow via outcrossing from transgenic plants to relatives will be one of the most important concerns to grow of the transgenic chickpea (Cicer arietinum L.) in European Union (EU). This report is therefore focused on spontaneous outcrossing rate in chickpea. A total of 39 kabuli type mutants with white flower and one desi type with pink flower were grown to estimate spontaneous outcrossing rate. Outcrossing rate ranged from 0.0 to 1.25% in mutant materials. Since labelling threshold for transgenic contamination in food and feed in European Union (EU) is 0.9%, outcrossing rate of 1.25% is higher than threshold of 0.9% in EU, and this result suggests that cultivation of transgenic chickpea will be under high risk to be contaminated chickpeas in neighbourhood fields.  相似文献   

19.
In a field study it was observed that sulphur fertilization of chickpea at 100 kg S ha−1 imparted cold tolerance under low temperature stress conditions. Further, foliar sprays of DMSO, H2SO4, KCl and H3BO3 proved effective in alleviating cold injury. Glucose spray also showed efficacy in this regard. The effects of sulphur fertilization and foliar applied DMSO and H2SO4 were largely associated with improved sulphur nutrition of plants, while improvement in K content under KCl treatment and B content under H3BO3 treatment was responsible for cold tolerance effects. Improvement in overall soluble carbohydrate and protein status of plants was held responsible for glucose effects possibly associated with osmoregulation.  相似文献   

20.
Twenty two RAPD and 22 ISSR markers were evaluated for their potential use in determination of genetic relationships in chickpea (Cicer arietinum L.) cultivars and breeding lines. We were able to identify six chickpea cultivars/breeding lines by cultivar-specific markers. All of the cultivars tested displayed a different phenotype generated either by the RAPD or ISSR primers. Though ISSR primers generated less markers than RAPD primers, the ISSR primers produced higher levels of polymorphism (% of polymorphic markers per primer) than RAPD primers. A high level of within cultivar homogeneity was observed in chickpea. Cultivars/breeding lines originating from a common genetic background showed closer genetic relationship. Chickpea lines with similar seed type(kabuli or desi) had a tendency to cluster together. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号