首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Resistance to viruses such as wheat streak mosaic virus (WSMV) and barley yellow dwarf virus(BYDV) is lacking in the primary gene pool of wheat, and therefore resistance is being introgressed from wild relatives such as Thinopyrum species. Resistance to BYDV was found in partial amphiploids (2n = 8x = 56, consisting of 42 wheat and14 alien chromosomes) obtained in hybrids between wheat and both Th. intermedium and Th.ponticum. GISH analysis revealed that the alien genomes of all but one resistant partial amphiploid were heterogeneous consisting of different ratios of St, Js and J genome chromosomes obtained from theThinopyrum parent. Translocated chromosomes consisting of Robertsonian, interstitial and terminal translocations between the different genomes were also detected. The tissue blot immunoassay showed that partial amphiploids having resistance could be inoculated with the virus but both virus multiplication and spread were completely blocked. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
F. Ahmad  A. Comeau 《Plant Breeding》1991,106(4):275-283
New intergeneric hybrids were obtained between Triticum aestivum L. cv. Tukuho’ (2n = 6x = 42, AABBDD) and Agropyron fragile (Roth) Candargy PGR 8097 (2n = 4x = 28, PPPP) at a frequency of 1.06 %, through the use of direct embryo culture and in ovulo embryo culture. Such hybrids could be used to transfer barley yellow dwarf virus (BYDV) resistance and winterhardiness into bread wheat. The somatic chromosome number in all the hybrid plants was 2n = 5x = 35, as expected. Considerable variation in chromosome pairing was observed among the different hybrid plants. Average meiotic chromosome configuration at metaphase I was 17.29 Is + 6.57 rod Us + 1.97 ring Us + 0.18 III + 0.03 IV + 0.002 VI. The high level of chromosome pairing in some F1 hybrids was attributed to Ph-suppressor gene(s) present in A. fragile. The hybrids could not be backcrossed to wheat, but amphiploid seeds have been obtained by colchicine treatment.  相似文献   

3.
W. Tadesse    S. L. K. Hsam    F. J. Zeller 《Plant Breeding》2006,125(4):318-322
A total of 50 wheat (Triticum aestivum L.) cultivars were evaluated for resistance to tan spot, using Pyrenophora tritici‐repentis race 1 and race 5 isolates. The cultivars ‘Salamouni’, ‘Red Chief’, ‘Dashen’, ‘Empire’ and ‘Armada’ were resistant to isolate ASC1a (race 1), whereas 76% of the cultivars were susceptible. Chi‐squared analysis of the F2 segregation data of hybrids between 20 monosomic lines of the wheat cultivar ‘Chinese Spring’ and the resistant cultivar ‘Salamouni’ revealed that tan spot resistance in ‘Salamouni’ was controlled by a single recessive gene located on chromosome 3A. This gene is designated tsn4. The resistant cultivars identified in this study are recommended for use in breeding programmes to improve tan spot resistance in common wheat.  相似文献   

4.
The wheat progenitors and other wild relatives continue to be important sources of genes for agronomically desirable traits, which can be transferred into durum wheat (Triticum turgidum; 2n = 4x = 28; AABB genomes) cultivars via hybridization. Chromosome pairing in durum × alien species hybrids provides an understanding of genomic relationships, which is useful in planning alien gene introgression strategies. Two durum cultivars, ‘Lloyd’ and ‘Langdon’, were crossed with diploid wheatgrass, Thinopyrum bessarabicum (2n = 2x = 14; JJ), to synthesize F1 hybrids (2n = 3x = 21; ABJ) with Ph1. ‘Langdon’ disomic substitution 5D(5B) was used as a female parent to produce F1 hybrids without Ph1, which resulted in elevation of pairing between durum and grass chromosomes – an important feature from the breeding standpoint. The F1 hybrids were backcrossed to respective parental cultivars and BC1 progenies were raised. ‘Langdon’ 5D(5B) substitution × Th. bessarabicum F1 hybrids were crossed with normal ‘Langdon’ to obtain BC1 progeny. Chromosome pairing relationships were studied in F1 hybrids and BC1 progenies using both conventional staining and fluorescent genomic in situ hybridization (fl‐GISH) techniques. Multicolour fl‐GISH was standardized for characterizing the nature and specificity of chromosome pairing: A–B, A–J and B–J pairing. The A–J and B–J pairing will facilitate gene introgression in durum wheat. Multicolour fl‐GISH will help in characterizing alien chromosome segments captured in the durum complement and in their location in the A and/or B genome, thereby accelerating chromosome engineering research.  相似文献   

5.
Z. S. Lin    D. H. Huang    L. P. Du    X. G. Ye    Z. Y. Xin 《Plant Breeding》2006,125(2):114-119
Among the regenerated plants derived from immature hybrid embryos of wheat–Thinopyrum intermedium disomic addition line Z6 × common wheat variety ‘Zhong8601’, a plant with a telocentric chromosome and barley yellow dwarf virus (BYDV) resistance was obtained. The telocentric chromosome paired with an entire Thinopyrum chromosome to form a heteromorphic bivalent at meiotic metaphase I. Genomic in situ hybridization showed that the telosome originated from Th. intermedium. Two ditelosomic additions and one disomic substitution were identified among the offspring of the plant. Two random amplified polymorphic DNA molecular markers were identified among 150 random primers used to detect the different arms of the alien chromosome. These might be useful for developing translocation lines with BYDV resistance.  相似文献   

6.
S. Singh    R. K. Gumber    N. Joshi    K. Singh 《Plant Breeding》2005,124(5):477-480
Interspecific hybridization is known to improve productivity and resistance to diseases in many crops. Therefore, an attempt was made to introgress productivity and disease resistance into chickpea from wild Cicer species. The true F1 hybrids of cultivated chickpea genotypes ‘L550’ and ‘FGK45’ with C. reticulatum were backcrossed twice to their cultivated female parents to minimize the linkage drag of undesirable wild traits. The pedigree method was followed to advance the segregating populations from straight crosses (without backcross) and BC1/BC2 generations to F5–F7. The interspecific derivatives recorded up to a 16.9% increase over the check cultivars and a 25.2% increase over the female parent in a preliminary yield evaluation trial. Of the 22 interspecific derivatives thus derived, four desi and two kabuli lines were further evaluated for seed yield in replicated trials at three diverse locations. These lines possess a high degree of resistance to wilt, foot rot and root rot diseases, and recorded a 6.1–17.0% seed yield increase over the best check cultivars.  相似文献   

7.
The inheritance of resistance to root‐lesion nematode was investigated in five synthetic hexaploid wheat lines and two bread wheat lines using a half‐diallel design of F1 and F2 crosses. The combining ability of resistance genes in the synthetic hexaploid wheat lines was compared with the performance of the bread wheat line ‘GS50a’, the source of resistance to Pratylenchus thornei used in Australian wheat breeding programmes. Replicated glasshouse trials identified P. thornei resistance as polygenic and additive in gene action. General combining ability (GCA) of the parents was more important than specific combining ability (SCA) effects in the inheritance of P. thornei resistance in both F1 and F2 populations. The synthetic hexaploid wheat line ‘CPI133872’ was identified as the best general combiner, however, all five synthetic hexaploid wheat lines possessed better GCA than ‘GS50a’ The synthetic hexaploid wheat lines contain novel sources of P. thornei resistance that will provide alternative and more effective sources of resistance to be utilized in wheat breeding programmes.  相似文献   

8.
A mungbean (V. radiata) line (BC3F3 generation) which is resistant to two species of bruchid beetles (Callosobruchus chinensis and C. maculatus) was successfully developed in Thailand using a wild mungbean variety (V. radiata var. sublobata). One accession (TC1966) of wild mungbean was found to be completely resistant to C. chinensis and C. maculatus occurring at Chainat Field Crops Research Center in Thailand. The resistance was controlled by a single dominant gene (R). A breeding program to develop a bruchid-resistant mungbean cultivar with good agronomic characters under the environmental conditions of Thailand was initiated in 1987.‘Chainat 60’ (‘CN60’), a recommended mungbean cultivar in Thailand, was crossed with TC1966 to incorporate the resistance gene. Agronomic characters of the hybrids were improved by recurrent backcrossing using ‘CN60’ as a pollen parent. Seed yield per plant, days to flowering, and seed size of the bruchid-resistant BC3F2 population reached the level of ‘CN60’ after three consecutive backcrossings. Bruchid-resistant line (BC3F3, R/R) was selected from individual BC3F2 plants.  相似文献   

9.
A. N. Mishra    K. Kaushal    S. R. Yadav    G. S. Shirsekar    H. N. Pandey 《Plant Breeding》2005,124(5):520-522
Recessively inherited gene Sr2 has provided the basis of durable resistance to stem rust (caused by Puccinia graminis tritici) in wheat (Triticum aestivum L.) worldwide. The associated earhead and stem melanism or ‘pseudo‐black chaff’ is generally used as a marker for this gene. Sr2 has been postulated in many wheat cultivars of India including ‘Lok 1’, based on associated pseudo‐black chaff in adult plants, and leaf chlorosis in seedlings. However, dominant inheritance of the resistance factor operating in ‘Lok 1’, and a 13 : 3 (resistant : susceptible) F2 segregation in the ‘Sr2‐line’ (‘Chinese Spring’6 × ‘Hope’ 3B) × ‘Lok 1’ cross confirmed that Sr2 was absent in ‘Lok 1’. Susceptible plants with a pseudo‐black chaff phenotype were observed in F2 populations of ‘Agra Local’ (susceptible) × ‘Lok 1’, and the ‘Sr2‐line’ × ‘Lok 1’ crosses. Most of the F3 families derived from the susceptible F2 segregants with pseudo‐black chaff phenotypes were true breeding for the expression of pseudo‐black chaff with susceptibility to stem rust. Thus, linkage of pseudo‐black chaff with Sr2 in wheat can be broken, and hence, caution may be exercised in using pseudo‐black chaff as a marker for selecting Sr2 in breeding programmes.  相似文献   

10.
Tomato (Solanum lycopersicum) production in tropical and subtropical regions of the world is limited by the endemic presence of Tomato yellow leaf curl virus (TYLCV). Breeding programmes aimed at producing TYLCV‐resistant tomato cultivars have utilized resistance sources derived from wild tomato species. So far, all reported breeding programmes have introgressed TYLCV resistance from a single wild tomato source. Here, we tested the hypothesis that pyramiding resistances from different wild tomato species might improve the degree of resistance of the domesticated tomato to TYLCV. We have crossed TYLCV‐resistant lines that originated from different wild tomato progenitors, Solanum chilense, Solanum peruvianum, Solanum pimpinellifolium, and Solanum habrochaites. The various parental resistant lines and the F1 hybrids were inoculated in the greenhouse using viruliferous whiteflies. Control, non‐inoculated plants of the same lines and hybrids were exposed to non‐viruliferous whiteflies. Following inoculation, the plants were scored for disease symptom severity, and transplanted to the field. Resistance was assayed by comparing yield of inoculated plants to those of the control non‐inoculated plants of the same variety. Results showed that the F1 hybrids between the resistant lines and the susceptible line suffered major yield reduction because of infection, but all hybrids were more resistant than the susceptible parent. All F1 hybrids resulting from a cross between two resistant parents, showed a relatively high level of resistance, which in most cases was similar to that displayed by the more resistant parent. In some cases, the hybrids displayed better levels of resistance than both parents, but the differences were not statistically significant. The F1 hybrid between a line with resistance from S. habrochaites and a line with resistance from S. peruvianum (HAB and 72‐PER), exhibited the lowest yield loss and the mildest level of symptoms. Although the resistance level of this F1 hybrid was not statistically different from the level of resistance displayed by the 72‐PER parent itself, it was statistically better than the level of resistance displayed by the F1 hybrids between 72‐PER and any other resistant or susceptible line.  相似文献   

11.
A study was conducted under controlled environment conditions in a phytotron to determine the nature of the inheritance of resistance Helminthosporium leaf blight (HLB) in a synthetic hexaploid wheat line, ‘Chirya‐3’, against the isolate KL‐8 of Bipolaris sorokiniana from the major wheat growing region of India. Crosses were made between two susceptible lines ‘WH 147’ and ‘Chinese Spring’. Analyses of F1 and F2 populations of these two crosses (‘WH 147’בChirya‐3’ and ‘Chinese Spring’בChirya‐3’) showed that resistance against the isolate in ‘Chirya‐3’ was governed by two recessive genes functioning in a complementary interaction giving an F2 segregation pattern of 1 : 15 (resistant : susceptible). The segregation pattern of the resistant F2 progenies in F3 families from both crosses confirmed that two homozygous recessive genes were responsible for resistance to the isolate of Bipolaris sorokiniana in the synthetic line ‘Chirya‐3’. It is proposed that the genes be designated as hlbr1 and hlbr2.  相似文献   

12.
Ten selected inbred backcross lines (IBL), from a Lycopersicon esculentum cv.‘Peto 84’×Lycopersicon pennellii IBL population, with resistance to beet armyworm (BAW), Spodoptera exigua, higher fruit mass and fruit yield, were crossed with eight elite cultivated L. esculentum inbred lines in a Design II mating design. Three elite inbreds were also crossed to ‘Peto 84′, the IBL recurrent parent, as a control for combining ability. Field plots of all resulting F1 progenies and control cultivars were inoculated with BAW eggs and evaluated for resistance to BAW, fruit mass, fruit yield, vine size and maturity at three field locations. Reductions in fruit damage by BAW were found in four of the 10 IBL F1 progenies. Significant male and female general combining ability (GCA) estimates for BAW resistance were observed, but significant specific combining ability for BAW resistance was not detected. The fruit mass of F1 hybrids was significantly lower than large-fruited controls, but was not significantly different from elite inbred by ‘Peto 95’F1 hybrids. Selection based on inbred performance identified IBL with positive GCA for BAW resistance and yields in Design II hybrids. BAW resistance in the 09 selected IBL and IBL- derived F1 progeny was associated with two undesirable traits, later maturity and larger vine size. Index selection of IBL was more effective at identifying IBL with positive GCA for fruit mass and fruit yield than GCA for BAW resistance.  相似文献   

13.
Genetic basis of seedling-resistance to leaf rust in bread wheat 'Thatcher'   总被引:1,自引:0,他引:1  
A. N. Mishra    K. Kaushal    G. S. Shirsekar    S. R. Yadav    R. N. Brahma    H. N. Pandey 《Plant Breeding》2005,124(5):514-516
The bread wheat cultivar ‘Thatcher’ is documented to carry the gene Lr22b for adult‐plant resistance to leaf rust. Seedling‐resistance to leaf rust caused by Puccinia triticina in the bread wheat cultivar ‘Thatcher’, the background parent of the near‐isogenic lines for leaf rust resistance genes in wheat, is rare and no published information could be found on its genetic basis. The F2 and F3 analysis of the cross ‘Agra Local’ (susceptible) × ‘Thatcher’ showed that an apparently incompletely dominant gene conditioned seedling‐resistance in ‘Thatcher’ to the three ‘Thatcher’‐avirulent Indian leaf rust pathotypes – 0R8, 0R8‐1 and 0R9. Test of allelism revealed that this gene (temporarily designated LrKr1) was derived from ‘Kanred’, one of the parents of ‘Thatcher’. Absence of any susceptible F2 segregants in a ‘Thatcher’ × ‘Marquis’ cross confirmed that an additional gene (temporarily designated LrMq1) derived from ‘Marquis’, another parent of ‘Thatcher’, was effective against pathotype 0R9 alone. These two genes as well as a second gene in ‘Kanred’ (temporarily designated LrKr2), which was effective against all the three pathotypes, but has not been inherited by ‘Thatcher’, seem to be novel, undocumented leaf rust resistance genes.  相似文献   

14.
K. K. Nkongolo 《Euphytica》1996,90(3):337-344
Summary The Barley Yellow Dwarf Virus disease (BYDV) and the Russian wheat aphid (RWA) Diuraphis noxia (Mordvilko) have caused significant losses to wheat and barley in several areas of the world. Important sources of resistance to both BYDV and RWA have been found in Triticale. Different generations of interspecific wheat x Triticale crosses were produced and the progenies were screened for BYDV and RWA tolerance. Plants with equal chromosome numbers showed different levels of fertility. A significant correlation was observed between pollen fertility and seed set in primary florets (r=0.57). In generaL, pollen fertility, seed set and the number of euploid plants (2n=42) increased from one generation to the next. The expression of BYDV tolerance varied from population to population. Additive effects were predominant in F1 and some backcross populations. A dominant effect of rye tolerance genes was also observed in few populations. A monogenic trait or a quantitative (polygenic) character would not agree with the observed segregation patterns. The heritability of this oligogenic tolerance was quite different between populations and in many populations the tolerance genes were only partially expressed. Some transgressive segregation for tolerance and sensitivity was demonstrated. The genes controlling tolerance to RWA in Triticale lines, Muskox 658 and Nord Kivu were not expressed in advanced lines resistant to BYDV. This indicates that tolerance genes for BYDV and RWA in these lines are located on different chromosomes.  相似文献   

15.
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), has become a serious, perennial pest of wheat (Triticum aestivum L.) in many areas of the world. This study was initiated to determine the inheritance of RWA resistance in PI 140207 (a RWA-resistant spring wheat) and to determine its allelic relationship with a previously reported RWA resistance gene. Crosses were made between PI 140207 and ‘Pavon’ (a RWA-susceptible spring wheat). Genetic analysis was performed on the parents, F1, F2, backcross (BC) population and F2-derived F3 families. Analyses of segregation patterns of plants in the F1, F2, and BC populations, and F2-derived F3 families indicated single dominant gene control of RWA resistance in PI 140207. Results of the allelism test indicated that the resistance gene in PI 140207, while conferring distinctly different seedling reactions to RWA feeding, is the same as Dn 1, the resistance gene in PI 137739.  相似文献   

16.
R. Götz  W. Friedt 《Plant Breeding》1993,111(2):125-131
Barley yellow mosaic disease is caused by several viruses, i.e. barley yellow mosaic virus (BaYMV), barley mild mosaic virus (BaMMV) and BaYMV-2. The reaction of different barley germplasms to the barley mosaic viruses was studied in field and greenhouse experiments. The results show a complex situation; some varieties are resistant to all the viruses, while others are resistant to one or two of them only. Crosses between different barley germplasms were earned out in order to test whether genetic diversity of resistance against mosaic viruses does exist, particularly, BaMMV. A total of 45 foreign barley varieties were crossed to German cultivars carrying the resistance gene ym4. In F2 of 27 crosses, no segregation could be detected, leading to the conclusion that the resistance genes of the foreign parents are allelic with ym4 e.g. Ym1 (‘Mokusekko 3’) and Ym2 (‘Mihori Hadaka 3’). A total of 18 crosses segregated in F2 indicating that foreign parents, like ‘Chikurin Ibaraki 1’, ‘Iwate Omugi 1’, and “Anson Barley”, carry resistance genes different from the gene of German cultivars, e.g. ‘Asorbia’ or ‘Franka’. By means of statistical evaluation (Chi2-test), the observed segregation ratios were analyzed in order to obtain significant information on the heredity of resistance. All the resistance genes described here as being different from the gene ym4, act recessively. Most of the exotic varieties seem to carry only one resistance gene. In a few cases, more than one gene may be present.  相似文献   

17.
A breeding programme was developed to obtain barley yellow dwarf virus (BYDV)-resistant winter genotypes using the Yd2 gene. The aim was to incorporate the Yd2 allele into the new high-yielding genotypes to release cultivars that allow barley cultivation in areas where BYDV is endemic. The resistant lines were developed using pedigree selection. An ICARDA resistant line (83RCBB130) carrying the Yd2 gene was crossed with three susceptible, high-yielding winter varieties and their F1 lines were either selfed or backcrossed to the matching susceptible parent. The best lines selected from subsequent selfing generations were evaluated in replicated trials in the presence or absence of BYDV, starting from F6 and BC1F5 to F8 and BC1F7 generations. Four genotypes with superior agronomic traits and BYDV resistance were selected.  相似文献   

18.
K. Murai 《Plant Breeding》2002,121(4):363-365
A ‘two‐line system’ using photoperiod‐sensitive cytoplasmic male sterility (PCMS) caused by Aegilops crassa cytoplasm under a long‐day photoperiod ( 15 h) has been proposed as a new means of producing hybrid varieties in common wheat. The PCMS line is maintained by self‐pollination under short‐day conditions, and hybrid seeds can be produced through outcrossing of the PCMS line with a pollinator under long‐day conditions. Two kinds of fertility restoration systems against the PCMS are known. One is involved with a set of multiple fertility‐restoring (Rf) genes in the wheat cultivar ‘Norin 61’ located on (at least) chromosomes 4A, 1D, 3D and 5D. The other is controlled by a single dominant major Rf gene, Rfd1, located on the long arm of chromosome 7B in the wheat cultivar ‘Chinese Spring’. To examine the degree of fertility restoration by these two systems, nine PCMS lines were crossed with ‘Norin 61’ and ‘Chinese Spring’ as the restorer lines, and the F1 hybrids were investigated. The degree of fertility restoration was estimated by comparing the seed set rates in the F1 hybrids having the Ae. crassa cytoplasm and those with normal cytoplasm. The results revealed that the fertility restoration ability of a set of multiple Rf genes in ‘Norin 61’ was higher than that of the Rfd1 gene in ‘Chinese Spring’.  相似文献   

19.
A. N. Mishra    K. Kaushal    S. R. Yadav    G. S. Shirsekar    H. N. Pandey 《Plant Breeding》2005,124(5):517-519
The gene Lr34 has contributed to durable resistance to leaf rust caused by Puccinia triticina in wheat worldwide. The closely associated leaf tip necrosis is generally used as the gene's marker. Lr34 has been postulated in many Indian bread wheat cultivars including ‘C 306’, based on the associated leaf tip necrosis and a few other field and glasshouse observations. The present study showed monogenic control of adult‐plant resistance in ‘C 306’ to leaf rust pathotype 77‐5 (121R63‐1). The F2 segregation in the crosses between ‘C 306’ and the two known carriers of Lr34, ‘Line 897’ and ‘Jupateco 73’‘R’ fitted a digenic ratio. The F3 families derived from the susceptible F2 segregants were true breeding for susceptibility, proving the absence of Lr34 in ‘C 306’. The cross between ‘Line 897’ and ‘Jupateco 73’‘R’ did not segregate for susceptibility. Resistance in the cross ‘Agra Local’ (susceptible) × ‘C 306’ was associated with leaf tip necrosis, showing that the leaf rust resistance gene in ‘C 306’ was associated with leaf tip necrosis, but was different from Lr34. This gene is being temporarily designated as Lr‘C 306’. Hence, leaf tip necrosis cannot be considered as an exclusive marker for selecting Lr34 in wheat improvement.  相似文献   

20.
YLM, a codaominant polymerase chain reaction (PCR) marker linked to Yd2, could substantially improve the precision and efficiency of barley yellow dwarf virus (BYDV) resistance breeding. The aim of this study was to assess the effectiveness of YLM in a marker‐assisted introgression programme and to quantify associations between the presence of Yd2 and other agronomic and quality traits. The Yd2 gene was introgressed into a BYDV‐susceptible background through two cycles of marker‐assisted backcrossing. BC2 F2‐derived lines, either carrying or not carrying the YLM allele associated with resistance, were compared in the presence and absence of BYDV. The YLM marker was shown to be effective in the introgression of Yd2. Lines carrying the YLM allele associated with resistance produced significantly fewer leaf symptoms and showed a reduction in yield loss when infected with BYDV. There were no deleterious effects associated with the introgression of Yd2 on grain yield, grain size or malting quality. The implications of marker‐assisted selection for Yd2 on barley improvement are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号