首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
三峡上游梯级水库蓄水发电后,三峡水库支流库湾水华情势有显著不同。为弄清新情势下影响三峡水库支流库湾水华的影响因素,于2015年对香溪河库湾开展了为期一年的跟踪监测研究。结果表明:叶绿素a浓度季节性变化显著,夏季最高,春秋季次之,冬季最低,全年平均值为14.38μg/L,变化范围为0.36μg/L ~108.00μg/L;春季,叶绿素a浓度与水温、pH、混合层深度表现为正相关,与浊度总氮、总氮溶解性硅、真光层深度表现为负相关;夏季,叶绿素a浓度与水温、pH、滞留时间、混合层深度表现正相关,而与总氮表现为负相关;秋季,叶绿素a浓度与水温、混合层深度表现正相关,与浊度、溶解性硅、真光层深度表现负相关;冬季,叶绿素a与溶解性硅表现为负相关,与其他环境因子具有一定的相关性,但相关性不显著。总氮、总磷和叶绿素a的浓度水平均指示香溪河水体处于富营养化状态。  相似文献   

2.
三峡水库香溪河库湾水温结构及其对春季水华的影响   总被引:15,自引:0,他引:15  
2007年9月至2008年8月对香溪河库湾进行每月1次的水温现场监测,分析研究了香溪河库湾水温结构特征,并初步探讨了水温对春季水华的影响。结果表明,整体上香溪河库湾水体下游水温高于上游,中、上游存在明显的底层温差异重流现象;垂向水温全年以正温层为主,春、夏季出现了水温分层现象;水温年变化明显,夏季高,春秋季次之,冬季最低;分析发现,水温的迅速上升是香溪河库湾2008年春季水华暴发的重要诱导因素之一,在春季水华暴发严重的区域,表征水温结构特征的水体稳定度与表层叶绿素a浓度具有较好的正相关关系,水体稳定度对春季水华暴发的强弱程度具有较大的影响。  相似文献   

3.
三峡水库175 m蓄水前后香溪河库湾浮游植物的群落结构   总被引:2,自引:0,他引:2  
2011年9-11月三峡水库175 m蓄水期前后,在香溪河库湾沿程布点和采样,监测分析库湾浮游植物群落结构及水体环境的时空动态。结果表明,蓄水期前后香溪河库湾共鉴定浮游植物7门、42属,主要为绿藻和硅藻;浮游植物密度随时间变化呈降低趋势,浮游植物成分空间差异不显著,时间上则由绿藻向硅藻演替;营养物质、光热条件等环境因子时间差异明显,空间差异不显著。利用物种多样性指数评价香溪河库湾水质,蓄水期前后库湾水质较好,为中污染状态。利用冗余分析(redundancy analysis,RDA)浮游植物群落结构与环境因子之间的关系,水位、表底温差、溶解性硅酸盐浓度ρ(SiO2-3-Si)、真光层深度/混合层深度(Zeu/Zmix)、水位日变幅、硝酸盐氮浓度是浮游植物群落结构的主要影响因子。  相似文献   

4.
为了探究华阳河湖群叶绿素a浓度的季节动态与空间分布规律,2016年4月(春季)、7月(夏季)、10月(秋季)和2017年1月(冬季),对华阳河湖群叶绿素a的季节动态及环境因子进行调查,在龙感湖、黄大湖和泊湖分别设置9个(S_1~S_9)、8个(S_(10)~S_(17))和7个(S_(18)~S_(24))采样点,共计24个采样点;通过分层聚类法分析叶绿素a的时空分布特征,并运用主成分分析法探讨了华阳河湖群叶绿素a与环境因子的关系。结果显示,华阳河湖群水体叶绿素a浓度呈现明显的时空分布特征,叶绿素a年均值为7.18μg/L,变化范围0.27~66.61μg/L,最大值出现在2016年10月(秋季),最小值出现在2017年1月(冬季);叶绿素a浓度的季节变化呈现夏、秋季较高,春、冬季较低的动态特征。在空间变化上,叶绿素a浓度在龙感湖最高,其次是泊湖,黄大湖最低。运用分层聚类分析法将华阳河湖群的叶绿素a的时空特征分为三类;主成分分析表明,水体中营养盐是影响叶绿素a季节动态和空间分布的主要环境因子,总氮在3个湖泊中与叶绿素a显著正相关,总磷与叶绿素a在泊湖和黄大湖呈负相关,而在龙感湖呈正相关。研究表明,越冬水鸟的排泄物对叶绿素a的时空分布有重要影响。  相似文献   

5.
利用BP神经网络短期预测太湖不同湖区叶绿素a浓度   总被引:1,自引:0,他引:1  
人工神经网络具有强大的非线性能力,能对复杂的水环境系统中非线性行为进行准确有效地预测。选择太湖典型湖区梅梁湾(4个样点)和湖心区(2个样点)为研究对象,通过对其2006-2008年的常规水质参数进行主成分分析,选择合适的输入因子及最优的网络参数,建立优化的BP神经网络模型,以期实现叶绿素a浓度的月预测。结果表明,梅梁湾的预测值与实测值的平均相对误差为71%,湖心区的预测值与实测值的平均相对误差为39%,2者预测精度均较低,其原因主要与太湖的水动力条件、水文气象及藻型生态系统等因素有关。  相似文献   

6.
根据2013年6月(春季)和11月(秋季)平潭海坛湾的调查数据,研究了海坛湾叶绿素a的分布特征及其与环境生物因子的相关关系。结果表明,海坛湾春、秋季叶绿素a平均含量分别为3.1 mg/m3和1.1 mg/m3,春季叶绿素a含量呈现从内湾向湾口方向逐渐减小的趋势,秋季略呈湾外侧高于内侧的趋势。春季海坛湾叶绿素a含量高于福建省北部海湾和台湾海峡等历史水平,秋季水平相当。春季叶绿素a含量与盐度、营养盐和浮游动物密度相关,秋季与悬浮物质含量相关。  相似文献   

7.
卫星遥感北太平洋渔场叶绿素a浓度   总被引:15,自引:1,他引:15  
毛志华 《水产学报》2005,29(2):270-274
海洋叶绿素a(Chla.)含量是了解世界海洋中地球生物化学循环的基础和估算海洋生产力的基本指标,是判断水域的肥瘠程度和评价水域渔业潜在生产力的基本依据。富集浮游植物的海域是海洋食植动物的大密度存在和水产资源丰富存在的基础,许多鱼类如金枪鱼等中上层鱼群集在锋面两侧或涡旋,这些特征与营养盐供给或混合层深度变化相关。北太平洋渔场已成为我国远洋渔业的重要组成部分,卫星遥感技术可以实现大面积同步的观测和一年四季连续的观测,是测定北太平洋渔场海洋叶绿素a的最有效方法。1 材料和方法1.1 数据来源卫星资料采用美国海洋水色卫星的宽视场海洋水色扫描仪(SeaWiFS)资料,全球海上测量资料利用国际海洋水色协调工作组(IOCCG)在世界大洋范围测量的1175个站位光谱数据和对应的叶绿素a浓度,南海测量数据由国家海洋技术中心在南海测量的48个站位光谱数据和叶绿  相似文献   

8.
摘要:人工神经网络具有强大的非线性能力,能对复杂的水环境系统中非线性行为进行准确有效地预测。本文选择太湖的梅梁湾和湖心区两个典型湖区为研究对象,分别设置4个和2个采样点。通过对其2006-2008年三年的常规水质监测参数进行主成分分析,选择合适的输入因子及最优的网络参数,建立优化的BP网络模型,以实现叶绿素a浓度的月预测。结果表明,梅梁湾湖区和湖心区的预测值与实测值的平均相对误差分别为71%和39%,两者预测精度均较低,原因与太湖的水动力条件、水文气象及藻型生态系统等因素有关。  相似文献   

9.
选取香溪河绿藻水华爆发时优势藻种—小球藻(Chlorella),经过分离纯化后作为实验原材料,分别检测了培养液中氨氮和硝氮的浓度,分析了小球藻对氨氮和硝氮吸收动力学特征以及不同氮素对其吸收速率的影响。实验表明,当氨氮浓度为11.62~2.97 mg/L,实验第2~3天时,小球藻氨氮去除效率不断加强,达到74.44%;当硝氮浓度为10.55~0.047 mg/L;实验第2~5天时,硝氮去除效率也不断加强,达到96.92%。无论是氨氮还是硝氮的培养条件下,小球藻在实验初始阶段都保持着较高的吸收速率,分别为1.44 mg/h和0.97 mg/h,随着培养介质中氮素浓度不断下降,其吸收速率也随之下降,其中用氨氮培养的小球藻在第3天达到最大吸收速率,为1.44 mg/h;用硝氮培养的小球藻在第4天达到最大吸收速率,为0.97 mg/h。小球藻对氨氮和硝氮的最大半饱和常数分别为2.85 mg/L和5.09 mg/L,表明单一氮源培养小球藻时,小球藻对氨氮更具有亲和力。实验结果为研究小球藻对氮素吸收速率从而控制小球藻生长提供理论依据,有助于通过调整、改变营养盐的输入通量及输入类型抑制小球藻繁殖,避免绿藻水华的发生。  相似文献   

10.
为了解长江口的水质状况,现场测量叶绿素a浓度,结合高光谱遥感影像,运用波段比值模型、一阶微分模型和水体叶绿素a提取指数(Water Chlorophyll-a Index,WCI)对整个研究区域叶绿素a浓度进行反演推算,并进行空间分布评价;利用实测数据和遥感影像的关系建立反演模型,并结合相关系数、均方根误差和平均相对误差,分析和评价反演效果。结果显示,波段比值模型和叶绿素a浓度的相关性达到0.9099,均方根误差为1.7922,平均相对误差为9.09%;一阶微分模型的相关性为0.9483,均方根误差为2.2073,平均相对误差为15.31%;WCI模型的相关性高达0.9778,均方根误差为1.4405,平均相对误差为6.20%。利用WCI模型对整个研究区域的叶绿素a浓度进行模拟,可见研究区域的中间部分叶绿素a含量较低,从中间到两边逐渐增大,南部出现最大值,造成此差异的原因可能是因为北靠近居民生活区,南邻上海青草沙水库,并且附近存在植被。研究表明,WCI模型的反演效果优于波段比值模型和一阶微分模型,是一种计算简单、精度较高的方法,可以有效地提取水体叶绿素a的浓度,未来可广泛应用于水体环境质量监测。  相似文献   

11.
本文分析了平潭三十六脚湖2016年1月至2017年5月气象和水质历史数据,以环境因子作为输入参数,叶绿素a浓度作为输出参数,构建了BP人工神经网络模型。从历史样本数据中随机抽取80%的数据进行模型演算,剩下20%的数据作为测试数据进行检验。结果表明:以气温、电导率、水温3个指标为输入因子时,模型输出的叶绿素a浓度和监测数据的拟合度达到R~2=0.97,RMSE=0.05μg/L、RSR=0.17,误差较小。2019年3月13日至4月26日对三十六脚湖进行5次采样,将实测的叶绿素a浓度值与模型演算值进行对比分析,发现其标准偏差比RSR为0.24,实测值与演算值的偏离程度较小,精度达到期望值。该模型有望用于平潭三十六脚湖湖区叶绿素a浓度预测和水华预警,为水体富营养化防控提供参考。  相似文献   

12.
烟台四十里湾叶绿素a和初级生产力的分布特征   总被引:2,自引:0,他引:2       下载免费PDF全文
2006~2010年5、8、10月,分别对烟台四十里湾近岸水域进行了30航次的综合调查,调查内容包括海水水质、浮游植物、叶绿素以及水文气象等要素。四十里湾近岸水域表层叶绿素a和初级生产力的季节与年际变化结果显示,浮游植物数量、叶绿素a含量和初级生产力一般在8月出现高值;仅2008年浮游植物数量最高值出现在10月,2009年叶绿素a含量和初级生产力最高值出现在5月。2008年10月浮游植物数量平均值为所有航次中最高,达到51.61×104cells/L,且各站位间差别显著(P<0.01);2007年10月最低,仅为0.02×104cells/L。2006~2009年,表层叶绿素a含量和初级生产力均值呈逐年增加趋势,2009年分别达到8.72μg/L和1481.42mg/m3·d;2010年(叶绿素a:6.13μg/L;初级生产力:733.91mg/m3·d)又降至与2008年相当。近5年,四十里湾浮游植物数量、叶绿素a含量和初级生产力均呈现湾东部高于西部的趋势,初级生产力与表层叶绿素a含量呈强正相关关系(R=0.921,P<0.01),并得出二者的回归方程式,这为海洋初级生产力的估算与评价提供了一种更简便的方法。  相似文献   

13.
利用2009年6月南海综合调查数据,分析了分粒级叶绿素a (Chl a) 的分布特征及其影响因素,其结果如下: Chl a浓度为未检出至0.51µg/L,平均值为0.10±0.09µg/L,其自表向底层逐渐升高, 至50m层达到最高值, 而后迅速降低,在100m以深的水体中, Chl a含量很少, 水深达到200m时, Chl a的含量接近于零, 部分站位Chl a含量低于检出限。分粒级Chl a 结果表明, Pico 级Chl a (<2µm) 浓度介于0.022-0.40 µg/L之间, 平均值为0.097±0.072 µg/L, 垂向分布上与Chl a 总量一致, 浓度最高值位于50 m; Nano 级Chl a (2-20µm )浓度介于0.0040-0.12µg/L之间, 平均值为0.016±0.018µg/L, 垂向分布变化不大, 在50m层有一高值; Micro 级Chl a (20-200µm)浓度介于0.0013-0.051µg/L之间, 平均值为0.0065±0.0086 µg/L, 垂向分布变化不大,在表层有一高值。分级Chl a 对总Chl a 的贡献主要以细胞粒径0.7-2 µm的Pico 级Chl a 占优势(81.7±8.89%), 其次是2-20 µm的Nano 级Chl a (13.2±6.19%); 粒径>20 µm的Micro 级Chl a 的贡献最小(5.10±3.72%)。调查海域内普遍存在潜在氮限制因素, 但不存在硅的限制。温度、营养盐浓度及营养盐比值(营养盐限制)、真光层厚度、水文状况是控制不同粒级Chl a 含量及分布的主要因素。  相似文献   

14.
为了解包头市南海湖水体水质状况及富营养化趋势,于2017年4月-2018年3月,在南海湖中选取20个采样点,对水体中叶绿素a含量及主要营养盐进行测定,并对叶绿素a和营养盐含量进行相关系分析。结果表明:南海湖水体总氮和总磷指标均超过了地表水Ⅴ类标准。南海湖氮磷营养盐存在着时空差异,总氮和氨氮随季节变化明显,其含量均呈现冬季>秋季>夏季>春季;总磷的含量主要表现为秋季最高,春季最低;硝态氮的含量在四个季节差异不大。空间上各营养盐均呈现东部、北部高,西部、南部低的趋势。水体中叶绿素a含量的变化区间为21.94~40.92μg·L-1,时间上呈现秋季>夏季>春季>冬季。空间上呈现东北高、西南低的趋势,与氮磷营养盐的分布趋势相同。叶绿素a在四个季节中与总氮,氨氮,总磷均呈现显著正相关(P<0.05)。  相似文献   

15.
4种机器学习模型反演太湖叶绿素a浓度的比较   总被引:2,自引:0,他引:2  
基于太湖实测叶绿素a浓度数据以及同步HJ-1B卫星CCD多光谱影像,综合比较4种机器学习模型(随机森林,RF;支持向量回归,SVR;反向传播人工神经网络,BPANN;深度学习,DL)反演太湖叶绿素a浓度的精度、稳定性及鲁棒性。利用11种波段组合分别建立基于RF、SVR、BPANN和DL的反演模型,筛选出最佳波段组合模型用于验证和评价。结果表明,模型精度方面,DL(决定系数R2=0.91,均方根误差RMSE=3.458μg/L,相对预测偏差RPD=3.13)和SVR(R2=0.88,RMSE=3.727μg/L,RPD=2.90)具有较优的验证精度;模型稳定性方面,DL模型不易受模型校正样本数影响,稳定性较好,而RF模型稳定性较差;模型鲁棒性方面,DL模型不易受噪声影响,鲁棒性较好,其次是SVR、BPANN和RF模型。综合4种模型的验证精度、稳定性和鲁棒性,DL模型在太湖叶绿素a浓度的反演具有较大应用潜力,能为研究湖泊水色参数提供借鉴。  相似文献   

16.
为了解长江口的水质状况,现场测量叶绿素a浓度,结合高光谱遥感影像,运用波段比值模型、一阶微分模型和水体叶绿素a提取指数(Water Chlorophyll-a Index, WCI)对整个研究区域叶绿素a浓度进行反演推算,并进行空间分布评价;利用实测数据和遥感影像的关系建立反演模型,并结合相关系数、均方根误差和平均相对误差分析和评价反演效果。结果显示,波段比值模型和叶绿素a浓度的相关性达到0.91,均方根误差为1.79,平均相对误差为9.09%;一阶微分模型的相关性为0.95,均方根误差为2.21,平均相对误差为15.31%;WCI模型的相关性高达0.98,均方根误差为1.44,平均相对误差为6.20%。利用WCI模型对整个研究区域的叶绿素a浓度进行模拟,可见研究区域的中间部分叶绿素a含量较低,从中间到两边逐渐增大,南部出现最大值,造成此差异的原因可能是因为北接居民生活区,南邻上海青草沙水库,并且附近存在植被。研究表明,WCI模型的反演效果优于波段比值模型和一阶微分模型,是一种计算简单、精度较高的方法,可以有效地提取水体叶绿素a的浓度,未来可广泛应用于水体环境质量监测。  相似文献   

17.
南海中部海域夏季叶绿素a浓度垂向分布特征   总被引:1,自引:0,他引:1  
根据2014年7月~8月南海中部海域(12N~18N,110E~117E) 调查获得的水柱方向上连续的叶绿素a浓度(Chl-a)数据,分析了南海中部海域夏季Chl-a垂向分布特征。结果表明:1)南海中部海域Chl-a垂向分布呈现先增加后减小的趋势,在30~70 m水层出现Chl-a高浓度区;2)次表层Chl-a最大值(subsurface chlorophyll a concentration maximum,SCM)强度变化为0.94~4.69 mgm-3, 平均为1.90 mgm-3, 是遥感表层Chl-a平均值的18.10倍,SCM深度变化为4~75.36 m,SCM厚度变化为19.01~80.36 m;3)从断面分布来看,局部海域Chl-a垂向分布受到上升流的显著影响,断面A上沿岸上升 流区表现出明显的SCM强度大、深度浅和厚度大的特征, 而断面B上中沙群岛岛礁上升流区同样表现出SCM强度大、深度浅的特征,但是厚度相对较小。  相似文献   

18.
海南陵水湾口海域不同季节鱼类资源声学探查   总被引:3,自引:0,他引:3  
在2014年11月至2016年1月间的不同季节,利用便携式分裂波束科学探鱼仪对海南陵水湾口海域的鱼类资源进行了4次声学调查。通过回波积分方法并结合拖网采样对调查海域内渔业资源结构组成、数量密度、资源量密度及其空间分布进行了探查与评估。结果发现,2014年11月共捕获游泳生物和底栖无脊椎动物86种,其中55种声学评估种类平均资源数量密度和平均资源量密度分别为9.34×105尾/km2和5.08 t/km2。2015年8月共捕获游泳生物和底栖无脊椎动物114种,其中63种声学评估种类平均资源数量密度和平均资源量密度分别为1.12×105尾/km2和0.93 t/km2。2016年1月共捕获游泳生物和底栖无脊椎动物105种,55种声学评估种类平均资源数量密度和平均资源量密度分别为0.16×105尾/km2和0.32 t/km2。2015年5月共捕获游泳生物和底栖无脊椎动物56种,其中声学评估种类34种。2014年11月和2015年8月鱼类回波均匀分布于30 m以浅水层,2015年5月主要集中于10~20 m水层,2016年1月则主要分布于20 m以浅水层,20~30 m水层次之且略大于0~10、10~20 m水层的一半。调查海域内单体目标强度以小于–58 d B的小规格鱼类目标为主,目标强度有随水深增加而增大的趋势,且大于–50 d B的单体目标均分布于10 m以深水层。  相似文献   

19.
西北印度洋鸢乌贼(Sthenoteuthis oualaniensis)资源具有一定的开发潜力, 可作为商业性捕捞对象。本研究基于西北印度洋 2017 年 1—3 月, 8—12 月鸢乌贼的渔捞日志数据, 结合同期海表面温度(sea surface temperature, SST) 及叶绿素 a 浓度(chlorophyll-a, Chl-a)数据, 运用渔场重心分析、地统计插值、GAM (generalized additive model)模型分析, 探究西北印度洋鸢乌贼渔场时空变动及其与海洋环境因子的关系。研究表明, 2017 年 1—3 月, 8—12 月鸢乌贼(Sthenoteuthis oualaniensis)渔场重心大多分布于海洋锋带附近, 分布范围集中于 13.6°N~17.2°N、58.3°E~ 62.2°E 海域, 1—3 月渔场重心向西南迁移, 8—11 月渔场重心往东北移动, 12 月向西南折回。GAM 模型分析结果显示, 西北印度洋鸢乌贼渔场最适 SST 范围是 25.5~27.0 ℃, 最适 Chl-a 浓度范围是 0.2~0.4 mg/m3 , 月份是影响鸢乌贼单位捕捞努力渔获量(catch per unit effort, CPUE)的主要因子。研究结果对于了解该海域鸢乌贼资源变动规律、 指导鸢乌贼资源科学生产具有重要意义。  相似文献   

20.
针对浮游植物叶绿素a(Chla)测定中遇到的纤维素滤膜溶解、样品保存时间和提取方法差异等影响测定结果的问题,选择了3种单胞藻:蛋白核小球藻(Chlorella pyrenoidesa)、亚心形扁藻(Platymonas subcordiformis)和牟氏角毛藻(Chaetoceros muelleri),分析了不同滤膜、提取溶剂、提取方法、样品保存时间等条件对Chla测定结果的影响。研究显示,使用玻璃纤维滤膜的测定结果最稳定;90%丙酮对蛋白核小球藻Chla提取效果不好,但对亚心形扁藻和牟氏角毛藻提取效果较好;冻融法提取牟氏角毛藻和亚心形扁藻Chla的效果好于研磨法;加入提取溶剂12 h后测得Chla浓度值最高,样品-20℃保存15 d后Chla浓度测定结果显著降低。结果表明,采用玻璃纤维滤膜过滤水样、冻融法提取12~24 h后Chla浓度测定效果最好,蛋白核小球藻应采用研磨法提取Chla,水样抽滤后保存时间不宜超过15 d。研究结果可为海水Chla浓度的分析测定提供参考资料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号