首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the past years, nrDNA ITS sequences have supported the identification of many powdery mildew fungi because comprehensive analyses showed that differences in these sequences have always correlated with the delimitation of different species and formae speciales of the Erysiphales. Published data, obtained using direct sequencing of the PCR products, suggested that even one to five nucleotide differences in the ITS sequences delimit different, albeit closely related, species, and/or indicate differences in host range patterns. Here we show that such differences in the ITS sequences can be detected even in a single sample of a powdery mildew fungus. We sequenced the ITS region in 17 samples, representing six powdery mildew species, both directly and after cloning the PCR products. Among these, samples of O. longipes exhibited two or three, samples of O. neolycopersici three or four, those of an Oidium sp. from Chelidonium majus up to seven, and a sample of another Oidium sp. from Passiflora caerulea two different ITS types determined after cloning. No ITS nucleotide polymorphisms were found in samples of O. lycopersici and Erysiphe aquilegiae. This suggests that some powdery mildew taxa are more variable at the ITS level than others. Thus, although the ITS sequences determined by direct sequencing represent robust data useful in delimitation and phylogenetic analysis of distinct species of the Erysiphales, these need to be used with precaution, and preferably determined after cloning, especially when dealing with closely related taxa at species and sub-species levels. With this method a hitherto undetected genetic diversity of powdery mildews can be revealed.  相似文献   

2.
The vapour phase and protectant activities of members of seven homologous series of alkyldinitrophenols against cucumber powdery mildew (Oidium sp.) are discussed. No correlation existed between vapour activities in vitro or in vivo and vapour pressure, but a positive correlation between Vapour' protection in vivo and conventional protectant activity was evident. Although vapour activity occurs with some homologues, results obtained for zone assays in vivo are probably better explained in terms of easy movement of the compound in the leaf surface than in terms of vapour transmission. Alkyldinitrophenyl-crotonates showed no zone activity in vivo but often good protectant activity. The possible existence of two optimum π-values for protectant activity is suggested. No appreciable systemic activity was found with these compounds.  相似文献   

3.
Biocontrol of parsley powdery mildew, caused by Oidium sp., was examined for 3 years under greenhouse conditions using a filamentous fungus, strain Kyu-W63, which produces antifungal volatiles. Kyu-W63 was cultured on potato-dextrose agar in sterile polycarbonate pots and then placed at 30-cm intervals in the center of each ridge in 1998, 1999, and 2000. This Kyu-W63 treatment significantly inhibited disease severity compared to control plots.  相似文献   

4.
In field trials against apple scab (caused by Venturia inaequalis) and powdery mildew (caused by Podosphaera leucotricha), improved control of one or other disease has been given by the newer systemic fungicides benomyl, triarimol and the thiophanates. However, in tests on apple seedlings in the greenhouse, biological evidence of translocation from individual deposits was generally limited to movement within the treated leaf. In greenhouse tests with cucumbers and marrows, using Oidium sp., there was again little evidence for movement of toxicant from a treated leaf, although effective disease control was readily obtained by root application of several compounds at low dosage. These results suggest that the systemic properties of the compounds evident when used as soil or seed treatments are of little account when they are applied as foliar sprays.  相似文献   

5.
In 2002, a powdery mildew with catenate conidia lacking fibrosin bodies was found on cucumber in a greenhouse in Kanagawa Prefecture, Japan. Morphological observation revealed that the fungus belongs to Oidium subgenus Reticuloidium, anamorph of the genus Golovinomyces. Molecular phylogenetic analyses of the nucleotide sequences of the rDNA ITS regions and D1/D2 domains of the 28S rDNA indicated that the fungus belongs to the clade of G. orontii with other Golovinomyces fungi from a wide range of host plants, suggesting that the fungus was newly transported from abroad. Because there has been no prior report of cucumber powdery mildew caused by Reticuloidium, further research on the physiology, epidemiology, control and resistant cucumber varieties is required.  相似文献   

6.
Since 2003, Torenia fournieri plants grown for experimental purposes were repeatedly infected by powdery mildew in a laboratory in Hungary. Based on morphological characteristics, the pathogen belonged to the mitosporic genus Oidium subgen. Reticuloidium, the anamorph stage of Golovinomyces. The rDNA ITS sequence was identical to that of two other powdery mildew fungi, infecting Arabidopsis and Veronica, respectively, in different parts of the world. According to a previous phylogenetic analysis of ITS and 28S rDNA sequences, those two powdery mildews belong to a recently evolved group of Golovinomyces characterized by multiple host range expansions during their evolution. Both the ITS sequence and the morphological data indicate that the powdery mildew anamorph infecting Torenia also belongs to this group. It is likely that the powdery mildew infections of the experimental T. fournieri plants, native to south-east Asia, were the result of a very recent host range expansion of a polyphagous Golovinomyces because (i) T. fournieri is absent from our region, except as an experimental plant grown in the laboratory, (ii) the powdery mildew fungus infecting this exotic plant belongs to a group of Golovinomyces where host range expansion is a frequent evolutionary scenario, (iii) cross-inoculation tests showed that this pathogen is also able to infect other plant species, notably A. thaliana and tobacco, and (iv) no Golovinomyces species are known to infect T. fournieri anywhere in the world. Although host range expansion has often been proposed as a common evolutionary process in the Erysiphales, and also in other biotrophic plant pathogens, this has not been clearly demonstrated in any case studies so far. To our knowledge, this is the first convincing case of a host range expansion event in the Erysiphales.  相似文献   

7.
Since 2001, several isolates of Blumeria graminis, the causal agent of cereal powdery mildew, maintained on detached leaves at the John Innes Centre, Norwich, UK, have spontaneously become infected with an unknown filamentous fungus whose mycelia have quickly overgrown the powdery mildew colonies and destroyed them completely. A total of five isolates of the contaminant were obtained and identified as Paecilomyces farinosus based on morphological characteristics and rDNA ITS sequence data. To determine whether these P. farinosus isolates can be considered as biocontrol agents (BCAs) of powdery mildews, we studied the interactions between P. farinosus and the following four powdery mildew species: B. graminis f.sp. hordei infecting barley, Oidium neolycopersici infecting tomato, Golovinomyces orontii infecting tobacco and Podosphaera fusca infecting cucumber. The powdery mildew colonies of all these four powdery mildew species were quickly destroyed by P. farinosus in leaf cultures but neither conidial suspensions nor cell-free culture filtrates of P. farinosus isolates could suppress the spread of powdery mildew infections on diseased barley, tomato, tobacco or cucumber plants in the greenhouse. It is concluded that P. farinosus cannot be considered as a promising BCA of powdery mildew infections although it can destroy powdery mildew colonies in detached leaf cultures and can be a menace during the maintenance of such cultures of cereal, apple, cucurbit and tomato powdery mildew isolates.  相似文献   

8.
The new powdery mildew fungicide quinoxyfen belongs to the novel quinoline class of chemistry. Although its biochemical mode of action is unknown, quinoxyfen does not act in the same way as other cereal fungicides. It is a systemic protectant which inhibits the early stages of mildew infection on a wide range of crops, and provides season-long protection from a single early-season spray applied around GS 31. The base-line sensitivity profile of quinoxyfen was defined for barley powdery mildew (Erysiphe graminis f.sp. hordei) from over 340 field isolates collected from different parts of the UK from 1991 onwards. Sensitivities ranged from <0·0001→0·16 mg litre-1 with a mean of 0·003 mg litre-1. Current work is extending the base-line sensitivity studies to wheat powdery mildew (E. graminis f.sp. tritici), and includes isolates from European trials, but so far this new data set has shown no differences from barley powdery mildew. Quinoxyfen-resistant mutants were generated in the laboratory, and some similar resistant strains were obtained from treated field crops. These laboratory and field strains were always defective, in some way, for sporulation and, curiously, all required the presence of quinoxyfen for survival in culture. Attempts to generate resistant mutants that sporulated normally were unsuccessful. These studies suggested that the resistance risk for quinoxyfen is low. The recommended anti-resistance strategy accompanying introduction of quinoxyfen avoids seed treatments and late-season applications. Instead, a single early (GS 31) treatment using either pre-formulated mixtures or alternating with a fungicide with different mode of action is recommended. This strategy will be supported by continued monitoring of wheat and barley powdery mildew. ©1997 SCI  相似文献   

9.
BACKGROUND: Physcion is a key active ingredient of the ethanol extract from roots of Chinese rhubarb (Rheum officinale Baill.) that has been commercialised in China for controlling powdery mildews. The biological mechanism of action of physcion against the barley powdery mildew pathogen was studied using bioassay and microarray methods. RESULTS: Bioassay indicated that physcion did not directly affect conidial germination of Blumeria graminis Speer f. sp. hordei Marchal, but significantly inhibited conidial germination in vivo. Challenge inoculation indicated that physcion induced localised resistance rather than systemic resistance against powdery mildew. Gene expression profiling of physcion‐treated barley leaves detected four upregulated and five downregulated genes (ratio ≥ 2.0 and P‐value < 0.05) by using an Affymetrix Barley GeneChip. The five upregulated probe sequences blasted to the same barley leaf‐specific thionin gene, with significant changes varying from 4.26 to 19.91‐fold. All downregulated genes were defence‐related, linked to peroxidase, oxalate oxidase, bsi1 protein and a pathogenesis‐related protein. These changes varied from ? 2.34 to ? 2.96. Quantitative real‐time PCR data confirmed that physcion enhanced the gene expression of leaf‐specific thionin of barley. CONCLUSION: Results indicated that physcion controls powdery mildew mainly through changing the expression of defence‐related genes, and especially enhancing expression of leaf‐specific thionin in barley leaves. Copyright © 2010 Society of Chemical Industry  相似文献   

10.
Powdery mildew (Blumeria graminis f. sp. tritici) results in serious economic loss in wheat production. Exploration of plant resistance to wheat powdery mildew over several decades has led to the discovery of a wealth of resistance genes and quantitative trait loci (QTLs). We have provided a comprehensive summary of over 200 powdery mildew genes (permanently and temporarily designated genes) and QTLs reported in common bread wheat. This highlights the diverse and rich resistance sources that exist across all 21 chromosomes. To manage different data for breeders, here we also present a bridged mapping result from previously reported powdery mildew resistance genes and QTLs with the application of a published integrated wheat map. This will provide important insights to empower further breeding of powdery mildew resistant wheat via marker-assisted selection (MAS).  相似文献   

11.
Powdery mildew, caused by Blumeria graminis f. sp. hordei (Bgh), is a worldwide disease problem on barley (Hordeum vulgare) with potentially severe impact on yield. Historically, resistance genes have been identified chiefly from cultivated lines and landraces; however, wild barley (H. vulgare subsp. spontaneum) accessions have proven to be extraordinarily rich sources of powdery mildew resistance. This study describes the characterization of a collection of 316 wild barley accessions, known as the Wild Barley Diversity Collection (WBDC), for resistance to powdery mildew and the genetic location of powdery mildew resistance loci. The WBDC was phenotyped for reaction to 40 different Bgh isolates at the seedling stage and genotyped with 10 508 molecular markers. Accessions resistant to all 40 isolates of Bgh were not found; however, three accessions (WBDC 053, 085 and 089) exhibited resistance to 38 of the isolates. Gene postulation analyses revealed that many accessions, while resistant, contained none of the 12 genes present in the Pallas near‐isogenic lines Mla1, Mla3, Mla6, Mla7, Mla9, Mla12, Mla13, Mlk1, MlLa, Mlg, Mlat and Ml(Ru2), suggesting that the accessions carry novel genes or gene combinations. A genome‐wide association study of powdery mildew resistance in the WBDC identified 21 significant marker‐trait associations that resolved into 15 quantitative trait loci. Seven of these loci have not been previously associated with powdery mildew resistance. Taken together, these results demonstrate that the WBDC is a rich source of powdery mildew resistance, and provide genetic tools for incorporating the resistance into barley breeding programmes.  相似文献   

12.
13.
普通小麦“兰考90(6)”品系对白粉病抗性的遗传研究   总被引:7,自引:0,他引:7  
 普通小麦(Triticum aestivum L.)"兰考90(6)"系列品系是以六倍体小黑麦(X Triticosecale Wittmack;AABBRR)为白粉病抗源培育的新的小麦-黑麦1BL/1RS异易位系。这些品系高抗白粉病。小麦白粉病抗性基因推导试验证明,"豫麦66"携带的抗病基因与大多数已经报道的小麦抗白粉病基因不同。用白粉菌[Blumeria graminis (DC.) E. O. Speer f. sp. tritici]单孢堆分离物进行的遗传分析表明,"兰考90(6)"品系携带一个小种专化的隐性抗白粉病基因。对"中国春"和"兰考90(6)21-12"杂交F2分离群体进行1RS染色体检测,结果证明该抗白粉病基因不在1RS染色体臂上。本研究为有效利用"兰考90(6)"系列品系中的抗白粉病基因提供了科学依据。  相似文献   

14.
15.
为探索国内研制的新型一体化智能孢子捕捉系统在黄瓜霜霉病和黄瓜白粉病预测预报上的应用,在田间自然发病情况下,通过对捕捉孢子的形态进行识别,优化一体化智能孢子捕捉系统主要工作参数如有/无空气切割头、空气采集口高度和空气采集时间;通过病害及孢子的动态监测分析大棚黄瓜霜霉病和黄瓜白粉病病情指数与孢子捕捉量的关系。结果表明,当不加装空气切割头、空气采集口高度为70 cm、孢子捕捉时间在10:00—10:30时段有利于孢子的捕捉。黄瓜霜霉病和黄瓜白粉病病情指数与连续7 d孢子捕捉总量具有强正相关性。连续多日监测到黄瓜霜霉病菌孢子囊且数量快速增加是黄瓜霜霉病发生或快速上升的一个预测指标。黄瓜白粉病发病之前没有监测到黄瓜白粉病菌分生孢子,且在病害盛发期分生孢子捕捉量仍较少。研究表明,一体化智能孢子捕捉系统适用于黄瓜霜霉病的预测,但在黄瓜白粉病的预测上尚存在一定问题。  相似文献   

16.
The effects of three film-forming compounds, Ethokem, Bond and Vapor Gard, on infection of barley by the powdery mildew fungus Blumeria graminis f. sp. hordei were examined in glasshouse and field experiments. The three compounds provided significant control of powdery mildew infection when applied as pre- or post-inoculation treatments in the glasshouse. Such treatment had no effect on plant growth. Bond and Vapor Gard reduced the germination of conidia of B. graminis by 78% and 85% respectively, and reduced the subsequent formation of appressoria (73% and 85% respectively) and haustoria (75% and 79% respectively). The three compounds were less effective in field experiments, although they provided significant control of mildew infection and had no impact on plant growth and grain yield.  相似文献   

17.
This work is a detailed study of the infection of fungal biotrophic pathogens causing powdery mildew diseases on introgression lines originating from the intergeneric hybridisation between wheat and barley (Triticum aestivum L. × Hordeum vulgare L.). Powdery mildew fungi are among the most widespread biotrophic pathogens of plants also and infect dicot and monocot species. Most powdery mildew species are strictly host specific. They colonize only a narrow range of species or one particular host species. The intergeneric hybridisation between wheat and barley could result in expansions of host ranges of the barley powdery mildew. Our experiments covered natural infections in the field and artificial infections under greenhouse conditions. Formae speciales of powdery mildew were identified on the basis of the sequencing results of ribosomal internal transcribed spacer sequences (rDNA-ITS). We identified Blumeria graminis f.sp. tritici isolate 14 (HM484334) on the wheat parent and all wheat-barley introgression lines and B. g. f. sp. hordei isolate MUMH1723 (AB 273556) on the barley parent, respectively. The wheat-barley introgression lines were inoculated with barley powdery mildew under greenhouse conditions. According to our results the added barley chromosomes (or segments) do not cause host range expansion of barley powdery mildew.  相似文献   

18.
This paper reviews the taxonomy, biology, importance, host–pathogen interactions and control of lettuce powdery mildew. The main causal agent of this disease, Golovinomyces cichoracearum s.s., is an important powdery mildew pathogen of many members of the family Asteraceae. The pathogen is distributed worldwide and occurs on Lactuca sativa as well as wild Lactuca spp. and related taxa (e.g. Cichorium spp.). Powdery mildew of lettuce can be a major problem in production areas with favourable environmental conditions for disease development (dry, hot weather). The fungus grows ectophytically and appears as white, powdery growth on both the upper and lower sides of leaves. There is rather limited information on the geographic distribution of powdery mildew on wild Lactuca spp. Most L. sativa cultivars have been found to be susceptible. Large variability in virulence was confirmed and existence of different races is supposed. Resistance in L. sativa and some related wild Lactuca spp. is characterized by race‐specificity, but the genetic background of resistance is poorly understood. Sources of resistance are known in L. saligna and L. virosa. Lettuce powdery mildew can be effectively controlled by common fungicides (e.g. sulphur, myclobutanil, quinoline, strobilurins, etc.) and protective compounds (e.g. extract of neem oil, Reynoutria sachaliensis extracts). However, fungicide resistance may arise. Non‐fungicidal activators of plant systemic acquired resistance (SAR) had no direct effect on the causal agent. Future issues regarding lettuce powdery mildew research are summarized.  相似文献   

19.
A series of analogous tetracyclic 1, 12b-dihydro-4H-1,2,4-triazino[4,3-f] phenanthridines and 4H,12bH-1,2,5-oxadiazino[5,6-f]phenanthridines was prepared and tested for control of Erysiphe graminis f. sp. tritici (the causal agent of powdery mildew in wheat). Several analogs showed exceptional activity at doses as low as 6.25 mg litre?1 with substituted analogs VII, X , and XIV being the most potent. Singly substituted tetrahydrotriazinyl or oxadiazenyl rings with lipophilic aromatic components appeared to be the key requirements for optimal powdery mildew control. Substitution of the heterocyclic ring with multiple groups attenuated activity.  相似文献   

20.
Jasmonic acid (JA) signalling plays an important role in plant resistance to pathogens. Previously, JA has been found to play a role in induced disease resistance to necrotrophic pathogens in various plant species, but current researches showed that JA also enhanced resistance to biotrophic pathogens. However, its role in wheat (Triticum aestivum L.) powdery mildew (Blumeria graminis f. sp. tritici, Bgt) resistance reaction is largely unknown. To settle this issue, several typical powdery mildew resistant and susceptible wheat varieties were employed. The sensitivity to exogenous methyl jasmonate (MeJA) to wheat powdery mildew resistance, the concentration fluctuation of endogenous JAs after Bgt inoculation, and the expression profiles of nine pathogenesis-related protein genes (PR genes) after MeJA and Bgt treatments were studied systematically. Exogenous MeJA significantly enhanced the powdery mildew resistance of the susceptible varieties. After inoculation with Bgt, endogenous JAs accumulated rapidly, reached the maxima at 2 to 5 h post-inoculation (hpi), then decreased rapidly, and the concentration was almost the same as that of un-inoculated control at 96 hpi. The expression levels of the nine PRs were measured by real time quantitative RT-PCR (qRT-PCR) at different time points after MeJA application or Bgt inoculation respectively. The MeJA and Bgt strongly activated PR1, PR2, PR3, PR4, PR5, PR9, PR10 and Ta-JA2, but almost didn’t affect Ta-GLP2a. The induced powdery mildew resistance was positively correlated with the activated PR genes. JA plays a positive role in defence against Bgt. JA is a signalling molecule in wheat powdery mildew resistance and future manipulation of this pathway may improve powdery mildew resistance in wheat breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号