首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to investigate endocrinologic test values and the response to treatment of two commonly encountered causes of endocrinopathic laminitis, equine Cushing's disease (ECD) and equine metabolic syndrome (EMS), in a veterinary practice setting. In particular, the study aimed to determine whether insulin concentration correlated to the severity of clinical laminitis in horses with EMS or ECD. Twenty-five horses were included in the study and assigned to one of three groups: ECD (n = 6), EMS (n = 10), and controls (n = 9). Blood samples were collected at an initial visit and then at regular intervals for the next 12 months. Plasma concentrations of adrenocorticotropin (ACTH), cortisol, and insulin and serum concentrations of glucose and total thyroxine (T4) were obtained. Horses with ECD had significantly higher plasma ACTH concentrations than EMS horses or controls. Horses with EMS and ECD both had significantly higher plasma insulin concentrations than control horses, which was correlated with the Obel grade of laminitis (r = 0.63). After treatment, there was a trend for a reduction in plasma ACTH concentration in horses with ECD. A program of diet and exercise for horses with EMS resulted in reductions in both plasma insulin concentrations and bodyweight, which was variable, depending on the individual. There was a significant correlation between the change in plasma insulin concentration and Obel grade of laminitis (r = 0.69). This study has highlighted the importance of baseline plasma insulin concentration as a potential indicator of the susceptibility of horses to laminitis and the response to a program of diet and exercise.  相似文献   

2.
Plasma levels of adrenocorticotropic hormone (ACTH), cortisol and catecholamines were used to study the role of the sympatho-adrenal system in equine grass sickness. Statistical evaluation determined differences of hormone levels between seven horses with grass sickness (one acute, five subacute and one chronic), six horses with colic (one with laminitis) and 16 control horses before and after mild stress. Plasma levels of the hormones were higher in horses with acute and subacute grass sickness than in the other groups. No differences were detected between horses with colic and stressed control horses but some hormone levels differed between control and colic horses and control horses before and after stress. It is possible that hyperactivation of the sympatho-adrenal system is caused by stress but it is uncertain whether the stress is only a result of the severity of the disease or also plays a role in its aetiology.  相似文献   

3.
AIM: To compare the changes in plasma concentrations of noradrenaline, adrenaline and cortisol in lambs after ring castration plus tailing and in calves after dehorning with or without prior local anaesthesia. METHODS: Male lambs were castrated and tailed with rings and calves were dehorned by amputation using a scoop with or without prior local anaesthesia. Blood samples were taken before and after treatment and plasma concentrations of noradrenaline, adrenaline and cortisol were determined. RESULTS: Castration plus tailing of lambs resulted in a rapid increase in noradrenaline concentrations, a lack of an adrenaline response and a marked increase in cortisol concentration. There were similar changes in catecholamine concentrations in calves that were dehorned both with and without local anaesthetic, with adrenaline being elevated within 5 min of treatment and noradrenaline exhibiting a more protracted response. Dehorning caused a marked cortisol increase which was reduced to control concentrations by local anaesthesia for as long as the associated nerve blockade lasted. CONCLUSIONS: The very short-lived adrenaline responses in calves were attributed to dehorning-induced nociceptor input leading to sympathetic stimulation of the adrenal medulla. The longer lasting noradrenaline responses in lambs and calves were thought be due to 'wash-out' of noradrenaline from damaged tissue associated with rings and amputation wounds, respectively.  相似文献   

4.
To determine the effects of exercise, high heat and humidity and acclimation on plasma adrenaline, noradrenaline, beta-endorphin and cortisol concentrations, five horses performed a competition exercise test (CET; designed to simulate the speed and endurance test of a three-day event) in cool dry (CD) (20 degrees C/40% RH) and hot humid (30 degrees C/80% RH) conditions before (pre-acclimation) and after (post-acclimation) a 15 day period of humid heat acclimation. Plasma adrenaline and noradrenaline concentrations pre-acclimation were significantly increased compared with exercise in the CD trial at the end of Phases C (P<0.05) and D (P<0.05 and P<0.01, respectively) and at 2 min recovery (P<0.01), with adrenaline concentrations still elevated after 5 min of recovery (P<0.001). Plasma beta-endorphin concentrations were increased at the end of Phases C (P<0.05) and X (P<0.01) and at 5 and 30 min recovery (P<0.05) in the pre-acclimation session. Plasma cortisol concentrations were elevated after the initial warm up period pre-acclimation (P<0.01) and at the end of Phase C (P<0.05), compared with the CD trial. A 15 day period of acclimation significantly increased plasma adrenaline concentrations at 2 min recovery (P<0.001) and plasma cortisol concentration at the end of Phase B (P<0.01) compared with pre-acclimation. Acclimation did not significantly influence noradrenaline or beta-endorphin responses to exercise, although there was a trend for plasma beta-endorphin to be lower at the end of Phases C and X and after 30 min recovery compared with pre-acclimation. Plasma adrenaline, noradrenaline, beta-endorphin and cortisol concentrations were increased by exercise in cool dry conditions and were further increased by the same exercise in hot humid conditions. Exercise responses post-acclimation suggest that adrenaline and noradrenaline may play a role in the adaptation of horses to thermal stress and that changes in plasma beta-endorphin concentrations could be used as a sensitive indicator of thermal tolerance before and after acclimation. The use of plasma cortisol as a specific indicator of heat stress and thermal tolerance before or after acclimation in exercising horses appears limited.  相似文献   

5.
The in vitro reactivity of vasoconstrictive mediators that are implicated in acute laminitis was determined in palmar and plantar digital arteries and veins obtained from healthy horses and in palmar digital vessels of horses with early laminitis (Obel grade I). To obtain baseline reactivity data, 3 experiments were conducted, using healthy horses: (1) the reactivity of palmar and plantar digital arteries and veins to angiotensin II, norepinephrine, and 5-hydroxytryptamine (serotonin) were compared; (2) the direct effects of bacterial endotoxin on vascular reactivity were assessed; and (3) the reactivity of palmar digital arteries and veins to angiotensin II, norepinephrine, prostaglandin F2 alpha (PGF2 alpha), serotonin, and a thromboxane-endoperoxide analog (U46619) were determined. The vascular reactivity of these same 5 vasoconstrictors then was determined in horses with early laminitis and was compared with data from healthy (control) horses. Obel grade-I laminitis was experimentally induced in horses, using carbohydrate overload. Dose responses were conducted for each agent at concentrations between 10(-8)M and 10(-4)M. The potency of a drug was defined as the mean effective concentration necessary to induce 50% of maximal contraction (EC50). There were no differences in EC50 concentrations and in maximal contractions between forelimb and hind limb arteries and veins for angiotensin II, norepinephrine, and serotonin. Incubation with endotoxin had no effect on the reactivity of arteries and veins to angiotensin II, norepinephrine, and serotonin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Background: Determination of adrenocorticotropic hormone (ACTH) concentration is a commonly used test in the evaluation of endocrine causes of equine laminitis, but the concentration in healthy horses can be high at certain times of year, which alters the specificity of the ACTH test. Objective: To determine if circulating concentrations of ACTH, cortisol, glucose, insulin, and thyroxine vary month to month in healthy horses and in horses with equine metabolic syndrome (EMS). Animals: Nine healthy adult horses were studied on their farm/stable over the course of 1 year. After the diagnosis of EMS, 10 laminitic horses residing at the same farm/stable were also studied. Methods: Prospective study of healthy and laminitic horses. Plasma/serum samples were analyzed for concentrations of hormones and glucose. Results: ACTH was the only analyte to show a discrete seasonal pattern, with concentrations in healthy and EMS horses frequently outside of the reference range (9–35 pg/mL) in August through October. Insulin was elevated (>40 μIU/mL) in EMS horses during most months and median serum glucose was generally higher in EMS horses (100 mg/dL, range, 76–163 mg/ dL) than in controls (94 mg/dL, range, 56–110 mg/dL), but no seasonal patterns for insulin or glucose were found. Conclusions and Clinical Importance: An increased ACTH concentration in horses in late summer or autumn should be interpreted with caution. In contrast, insulin concentration is maintained within the reference range throughout the year in healthy horses, thus an increased insulin concentration at any time of year should raise suspicions of EMS, ECD, or both.  相似文献   

7.
Six Welsh gelding ponies were premedicated with 0.03 mg/kg of acepromazine intravenously (i.v.) prior to induction of anaesthesia with midazolam at 0.2 mg/kg and ketamine at 2 mg/kg i.v.. Anaesthesia was maintained for 2 h using 1.2 % halothane concentration in oxygen. Heart rate, electrocardiograph (ECG), arterial blood pressure, respiratory rate, blood gases, temperature, haematocrit, plasma arginine vasopressin (AVP), dynorphin, ß-endorphin, adrenocorticotropic hormone (ACTH), cortisol, dopamine, noradrenaline, adrenaline, glucose and lactate concentrations were measured before and after premedication, immediately after induction, every 20 min during anaesthesia, and at 20 and 120 min after disconnection. Induction was rapid, excitement-free and good muscle relaxation was observed. There were no changes in heart and respiratory rates. Decrease in temperature, hyperoxia and respiratory acidosis developed during anaes-thesia and slight hypotension was observed (minimum value 76 ± 10 mm Hg at 40 mins). No changes were observed in dynorphin, ß-endorphin, ACTH, catecholamines and glucose. Plasma cortisol concentration increased from 220 ± 17 basal to 354 ± 22 nmol/L at 120 min during anaesthesia; plasma AVP concentration increased from 3 ± 1 basal to 346 ± 64 pmol/L at 100 min during anaesthesia and plasma lactate concentration increased from 1.22 ± 0.08 basal to 1.76 ± 0.13 mmol/L at 80 min during anaesthesia. Recovery was rapid and uneventful with ponies taking 46 ± 6 min to stand. When midazolam/ketamine was compared with thiopentone or detomidine/ketamine for induction before halothane anaesthesia using an otherwise similar protocol in the same ponies, it caused slightly more respiratory depression, but less hypotension. Additionally, midazolam reduced the hormonal stress response commonly observed during halothane anaesthesia and appears to have a good potential for use in horses.  相似文献   

8.
Reliable physiological markers for performance evaluation in sport horses are missing. To determine the diagnostic value of plasma ACTH and cortisol measurements in the warmblood horse, 10 initially 3-yr-old geldings of the Hannovarian breed were either exposed to a training schedule or served as controls. During experimental Phase 1, horses were group-housed, and half of the horses were trained for 20 wk on a high-speed treadmill. During Phase 2, groups were switched and one group was trained for 10 wk as during Phase 1, whereas the control group was confined to boxes. During Phase 3 horses were initially schooled for riding. Thereafter, all horses were regularly schooled for dressage and jumping, and half of the horses received an additional endurance training for 24 wk. During all phases horses were exposed at regular intervals to various standardized treadmill exercise tests. During and after the tests frequent blood samples were taken from an indwelling jugular catheter for determination of ACTH and cortisol. Treadmill exercise increased both hormones. Maximum ACTH concentrations were recorded at the end of exercise, and maximum cortisol levels were recorded 20 to 30 min later. Except for one test there were no differences in ACTH levels between trained horses and controls. There was no significant effect of training on the cortisol response (net increase) to treadmill exercise in any of the tests during Phase 1. During Phase 2 higher cortisol responses were recorded in controls than in trained horses (P < .05) after 10 wk of training (controls confined to boxes). During Phase 3 plasma cortisol responses were also higher in controls than in trained horses (P < .05 after 6, 18, and 24, P < or = .07 after 12 wk of training) when the inclination of the treadmill was 5%, but not at 3%. There was no overlap in net cortisol responses at 30 min between trained and untrained horses. An ACTH application after 24 wk of training resulted in higher cortisol responses in controls than in trained horses (P < or = .05), without any overlap between the groups at 30 min after ACTH. Plasma cortisol responses to either treadmill exercise or ACTH injection may be a reliable physiological marker for performance evaluation. Prerequisites are sufficient differences in training status and sufficient intensity of exercise test conditions.  相似文献   

9.
Isolated forefeet of healthy horses were pump-perfused with oxygenated Kreb's saline. Perfusion pressure increases were recorded following intra-arterial injection of histamine, serotonin and adrenaline. The same drugs were re-injected after the hoof vasculature had been perfused with hydrocortisone or betamethasone. The corticosteroids caused significant potentiation of the effects of adrenaline and serotonin, but not of histamine. It is suggested that the enhancement of the reactivity of the digital vasculature to neurohormones and mediators of inflammation may constitute a pharmacological basis for laminitis.  相似文献   

10.
Intradermal injection of 46 micrograms E coli endotoxin had no effect on the plasma cortisol and noradrenaline concentrations of four dairy cows. Mean values were similar to normal values reported in the literature. Intravenous injection of 75 micrograms of endotoxin on the following day caused a massive increase in plasma cortisol concentrations which lasted for seven hours. Plasma noradrenaline concentrations increased rapidly after the intravenous administration of endotoxin and remained high for at least one hour. A possible relationship between endotoxaemia and the pathogenesis of acute laminitis is discussed.  相似文献   

11.
OBJECTIVE: To measure concentrations of amines formed in the cecum of clinically normal ponies, determine amine concentrations in plasma samples collected in spring and winter, and compare concentrations of amines and serotonin in plasma samples obtained from clinically normal ponies and ponies predisposed to laminitis. SAMPLE POPULATION: Cecal contents obtained from 10 ponies euthanatized at an abattoir and blood samples obtained from 42 adult ponies. PROCEDURE: Cecal contents were assayed for amines by high-performance liquid chromatography (HPLC). Blood samples were collected at various times of the year from 20 ponies predisposed to acute laminitis and 22 clinically normal ponies. Plasma serotonin concentration was measured by HPLC, and tryptamine (TRP), tyramine (TYR), phenylethylamine (PEA), and isoamylamine (IAA) were measured by liquid chromatography-mass spectrometry. RESULTS: 15 amines were identified in cecal contents. Plasma TRP, TYR, PEA, and IAA concentrations ranged from 10pM to 100nM in both groups of ponies. Plasma concentrations of serotonin or other amines did not differ between clinically normal ponies and those predisposed to laminitis; however, significantly higher concentrations of TRP, PEA, and IAA were found in samples obtained in the spring, compared with winter samples. CONCLUSIONS AND CLINICAL RELEVANCE: Various amines are found in the cecum of ponies, several of which can be detected in the plasma. Concentrations increase significantly in the spring and may reach concentrations close to the threshold for causing vasoconstriction. Release of amines from the cecum into the systemic circulation may contribute to hemodynamic disturbances in horses and ponies with acute laminitis.  相似文献   

12.
OBJECTIVE: To determine prevalence and clinical features of pituitary pars intermedia dysfunction (PPID) in horses with laminitis. DESIGN: Case series. ANIMALS: 40 horses with laminitis. PROCEDURES: Horses with laminitis that survived an initial episode of pain and were not receiving medications known to alter the hypothalamic-pituitary-adrenal axis were tested for PPID by evaluation of endogenous plasma ACTH concentration. Signalment, suspected cause, month of onset and duration of laminitis, Obel grade of lameness, pedal bone rotation, physical examination findings, results of endocrine function tests, treatment, outcome, and postmortem examination findings were recorded. RESULTS: Prevalence of PPID as defined by a single high plasma ACTH concentration was 70%. Median age of horses suspected of having PPID (n = 28) was 15.5 years, and median age of horses without PPID (12) was 14.5 years. Laminitis occurred most frequently in horses with and without suspected PPID during September and May, respectively. Chronic laminitis was significantly more common in horses suspected of having PPID. In horses suspected of having PPID, the most common physical examination findings included abnormal body fat distribution, bulging supraorbital fossae, and hirsutism. Five horses suspected of having PPID had no clinical abnormalities other than laminitis. Seventeen horses suspected of having PPID that were treated with pergolide survived, and 3 horses that were not treated survived. CONCLUSIONS AND CLINICAL RELEVANCE: Evidence of PPID is common among horses with laminitis in a primary-care ambulatory setting. Horses with laminitis may have PPID without other clinical signs commonly associated with the disease.  相似文献   

13.
There are no data available regarding the systemic (adverse) effects which might be induced by topical/dermal glucocorticoids (GCs) application in the horse. Besides their widespread use for the treatment of a variety of peripheral inflammatory disorders such as atopic dermatitis, eczemas or arthritis in the horse, their surreptitious application has become a concern in doping cases in competition/performance horses. Assessing both basal and ACTH‐stimulated plasma cortisol as well as basal ACTH concentrations following application of dexamethsone‐containing dermal ointment is necessary to determine influences on hypothalamus‐pituitary‐adrenal (HPA) axis. Ten clinically healthy adult standardbred horses (6 mares, 4 geldings) were rubbed twice daily each with 50 g dexamethasone‐containing ointment on a defined skin area (30 × 50 cm) for 10 days. RIA and chemiluminescent enzyme immuno‐metric assay were used to determine resting and ACTH‐stimulated plasma cortisol and basal ACTH concentrations, respectively. HPA feedback sensitivity and adrenal function were measured by a standard ACTH stimulation test. Dermal dexamethasone suppressed significantly the resting plasma cortisol level (to 75–98%) below baseline (P < 0.001) within the first 2 days and decreased further until day 10. ACTH stimulation test showed a markedly reduced rise in plasma cortisol concentrations (P < 0.001 vs. baseline). Plasma ACTH level decreased also during topical dexamethasone application. The number of total lymphocytes and eosinophil granulocytes was reduced, whereas the number of neutrophils increased. No significant change of serum biochemical parameters was noted. Dermal dexamethasone application has the potential to cause an almost complete and transient HPA axis suppression and altered leukocyte distribution in normal horses. The effects on HPA axis function should be considered in relation to the inability of animals to resist stress situations. The data further implicate that percutaneously absorbed dexamethasone (GCs) may cause systemic effects relevant to ‘doping’.  相似文献   

14.
AIM: To examine cardiovascular, hormonal and other physiological responses of 2-month-old lambs to rubber-ring castration and tail docking. METHODS: Twenty-two male lambs, well accustomed to handling and prepared with femoral artery and jugular vein cannulae, were studied during a 5 h control period and, at least 2 days later, for 1 h before and 4 h after castration and tail docking using rubber rings. Pressure recordings were made via femoral cannulae and blood samples for analysis of plasma constituents were taken from jugular cannulae. RESULTS: Mean systolic, diastolic and mean arterial blood pressure, heart rate and the plasma concentrations of adrenocorticotropic hormone (ACTH) and cortisol all increased markedly during the first 1 h after ring castration and tail docking. Although plasma ACTH and cortisol concentrations had returned to control levels by 2.5-3 h, blood pressures and heart rate were still elevated 4 h after ring application. In contrast, there were no significant changes in mean plasma concentrations of renin, electrolytes, minerals, glucose, lactate, urea, creatinine, total carbon dioxide and total proteins, plasma osmolality or the haematocrit after ring application. There were no significant changes in the mean values for any parameter during the 5 h control period or the 1 h period before ring application. CONCLUSION: Systolic, diastolic and mean arterial blood pressure and heart rate may be more sensitive than plasma ACTH or cortisol concentrations as indices of low-grade pain induced by ring castration and tail docking. Alternatively, it is possible that by 4 h after ring placement a small shift in sympathetic tone still persists in the absence of low-grade pain.  相似文献   

15.
Crib-biting is classified as an oral stereotypy, which may be initiated by stress susceptibility, management factors, genetic factors and gastrointestinal irritation. Ghrelin has been identified in the gastric mucosa and is involved in the control of food intake and reward, but its relationship to crib-biting is not yet known. The aim of this study was to examine the concentration and circadian variation of plasma ghrelin, cortisol, adrenocorticotropic hormone (ACTH) and β-endorphin in crib-biting horses and non-crib-biting controls. Plasma samples were collected every second hour for 24h in the daily environment of eight horses with stereotypic crib-biting and eight non-crib-biting controls. The crib-biting horses had significantly higher mean plasma ghrelin concentrations than the control horses. The circadian rhythm of cortisol was evident, indicating that the sampling protocol did not inhibit the circadian regulation in these horses. Crib-biting had no statistically significant effect on cortisol, ACTH or β-endorphin concentrations. The inter-individual variations in β-endorphin and ACTH were higher than the intra-individual differences, which made inter-individual comparisons difficult and complicated the interpretation of results. Further research is therefore needed to determine the relationship between crib-biting and ghrelin concentration.  相似文献   

16.
The intensity and duration of exercise exert a major influence on energy expenditure and physiological changes in the horse. Stressful environmental conditions, acclimation, and training status may further modify these responses. To maintain functional homeostasis during exercise, changes in autonomic nervous activity and hormone secretion are coupled to both the feedforward and the feedback mechanisms that control substrate mobilisation and utilisation.During exercise, both the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis are activated, which increases the circulating levels of adrenocorticotropin (ACTH), cortisol, adrenaline and noradrenaline. Furthermore, adrenaline inhibits the release of insulin from the pancreas. Catecholamines, adrenaline, and noradrenaline increase glycogen breakdown in the muscles. In the liver, catecholamines, together with cortisol, increase blood glucose by activating glycogen breakdown and gluconeogenesis. Cortisol and catecholamines also enhance the mobilisation of free fatty acids from fat stores.In addition to efficient energy metabolism, the ability to exercise is highly dependent on the well-coordinated neuroendocrine control of cardiovascular function. Catecholamines increase oxygen delivery during exercise by enhancing cardiac output, splenic erythrocyte release, and skeletal muscle flow. Furthermore, cardiovascular homeostasis is maintained by changes in plasma renin activity and in plasma concentrations of atrial natriuretic peptide (ANP), arginine vasopressin, and aldosterone.  相似文献   

17.
BACKGROUND: Sepsis is an important cause for neonatal foal mortality. The hypothalamic-pituitary-adrenal axis (HPAA) responses to sepsis are well documented in critically ill humans, but limited data exist in foals. The purpose of this study was to evaluate the HPAA response to sepsis in foals, and to associate these endocrine changes with survival. HYPOTHESIS: Blood concentrations of arginine vasopressin (AVP), adrenocorticotropin hormone (ACTH), and cortisol will be higher in septic foals as compared with sick nonseptic and healthy foals. The magnitude of increase in hormone concentration will be negatively associated with survival. ANIMALS: Fifty-one septic, 29 sick nonseptic, and 31 healthy foals of < or =7 days of age were included. METHODS: Blood was collected at admission for analysis. Foals with positive blood culture or sepsis score > or =14 were considered septic. Foals admitted with disease other than sepsis and healthy foals were used as controls. AVP, ACTH, and cortisol concentrations were measured using validated immunoassays. RESULTS: AVP, ACTH, and cortisol concentrations were increased in septic foals. Septic nonsurvivor foals (n = 26/51) had higher plasma ACTH and AVP concentrations than did survivors (n = 25/51). Some septic foals had normal or low cortisol concentrations despite increased ACTH, suggesting relative adrenal insufficiency. AVP, ACTH, and cortisol concentrations were higher in sick nonseptic foals compared with healthy foals. CONCLUSIONS AND CLINICAL IMPORTANCE: Increased plasma AVP and ACTH concentrations in septic foals were associated with mortality. Several septic foals had increased AVP : ACTH and ACTH : cortisol ratios, which indicates relative adenohypophyseal and adrenal insufficiency.  相似文献   

18.
Background: Pituitary pars intermedia dysfunction (PPID) is a risk factor for pasture‐associated laminitis, which follows a seasonal pattern. Hypothesis: Hormonal responses to season differ between PPID and unaffected horses. Animals: Seventeen horses aged 8–30 years (14 horses ≥ 20 years of age). Methods: Longitudinal observational study. Blood was collected monthly from August 2007 until July 2008 after pasture grazing and again after overnight stall confinement. Blood hormone and metabolite concentrations were measured and pasture grass samples were analyzed to determine carbohydrate content. Analysis of variance analysis for repeated measures was performed. Results: Mean ACTH concentrations varied significantly over time (P < .001), with higher concentrations detected in August, September, and October compared with November–April. Pasture × time effects were detected for glucose and insulin concentrations, with peaks observed in September. Horses were retrospectively allocated to PPID (n = 8) and control (n = 9) groups on the basis of plasma ACTH concentrations. Changes in insulin concentrations over time differed in the PPID group when compared with the control group. Insulin concentrations were positively correlated with grass carbohydrate composition. Conclusions and Clinical Importance: PPID did not affect the timing or duration of the seasonal increase in ACTH concentrations, but higher values were detected in affected horses. Insulin concentrations differed between groups, but hyperinsulinemia was rarely detected. Glucose and insulin concentrations peaked in September when horses were grazing on pasture, which could be relevant to the seasonal pattern of laminitis.  相似文献   

19.
Nine Thoroughbred horses were assessed to determine the normal response of insulin, glucose, cortisol, plasma potassium (K) and erythrocyte K through conditioning and to exercise over 400 and 1,000 m. In addition, adrenaline, noradrenaline, cortisol, plasma K, erythrocyte K and L-lactate concentrations were evaluated in response to maximal exercise with and without the administration of acepromazine. Conditioning caused no obvious trends in plasma K, erythrocyte K, insulin or glucose concentration. Serum cortisol increased (P less than 0.05) from the initial sample at Week 1 to Weeks 4 and 5 (attributed to a response to training), and then decreased. During conditioning, three horses had low erythrocyte K concentrations (less than 89.3 mmol/litre). Further work is needed to define the significance of low erythrocyte K concentrations in the performance horse. In all tests maximal exercise increased plasma K, glucose and cortisol concentrations, whereas insulin and erythrocyte K concentrations decreased. Thirty minutes following exercise, plasma K and erythrocyte K concentrations returned to resting values; whereas glucose and cortisol concentrations continued to increase and the insulin concentration also was increased. The magnitude of the changes varied for pre-conditioned vs post-conditioned exercise tests and the duration of exercise. The administration of acepromazine prior to exercise over 1,000 m failed to alter the circulating noradrenaline and adrenaline concentrations in anticipation of exercise or 2 mins following exercise. Acepromazine administration, however, did cause lower L-lactate concentration 2 mins (P less than 0.03) and 30 mins (P less than or equal to 0.005) following exercise. Also, erythrocyte K showed a delayed return to baseline levels at 30 mins post exercise. Further evaluation of these trends may help explain the beneficial role acepromazine plays in limiting signs of exertional rhabdomyolysis when administered prior to exercise.  相似文献   

20.
OBJECTIVE: To determine and compare the number, type, location, and distribution of apoptotic epidermal cells in the laminae of clinically normal horses and horses with laminitis. SAMPLE POPULATION: Formalin-fixed samples of digital lamellar tissue from 47 horses (including clinically normal horses [controls; n = 7], horses with acute [4] and chronic [7] naturally acquired laminitis, and horses with black walnut extract-induced [11] or carbohydrate overload-induced [18] laminitis). PROCEDURE: Blocks of paraffin-embedded lamellar tissues were stained for DNA fragmentation with the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) technique. Differential immunohistochemical staining for caspases 3 and 14 were used to confirm apoptosis. RESULTS: The number of TUNEL-positive epidermal cells per 0.1 mm of primary laminae was significantly greater in the acute laminitis group than in the other groups. In the acute laminitis group, there were 17 and 1,025 times as many TUNEL-positive basal layer cells and keratinocytes, respectively, compared with the control group. Apoptosis of TUNEL-positive basal layer cells was confirmed by results of caspase 3 immunohistochemical staining. The TUNEL-positive keratinocytes did not stain for caspases 3 or 14. CONCLUSIONS AND CLINICAL RELEVANCE: The large number of apoptotic basal layer cells detected in the lamellar tissue of horses with acute naturally acquired laminitis suggests that apoptosis may be important in the development of acute laminitis. The role of the large number of TUNEL-positive keratinocytes detected in the interface of primary and secondary epidermal laminae of horses with acute laminitis remains to be elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号