首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selective sparing of a class of striatal neurons in Huntington's disease   总被引:29,自引:0,他引:29  
A distinct subpopulation of striatal aspiny neurons, containing the enzyme nicotinamide adenine dinucleotide phosphate diaphorase, is preserved in the caudate nucleus in Huntington's disease. Biochemical assays confirmed a significant increase in the activity of this enzyme in both the caudate nucleus and putamen in postmortem brain tissue from patients with this disease. The resistance of these neurons suggests that the gene defect in Huntington's disease may be modifiable by the local biochemical environment. This finding may provide insight into the nature of the genetically programmed cell death that is a characteristic of the disease.  相似文献   

2.
Exposure of cultures of cortical cells from mouse to either of the endogenous excitatory neurotoxins quinolinate or glutamate resulted in widespread neuronal destruction; but only in the cultures exposed to quinolinate, an N-methyl-D-aspartate agonist, was there a striking preservation of the subpopulation of neurons containing the enzyme nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d). Further investigation revealed that neurons containing NADPH-d were also resistant to the toxicity of N-methyl-D-aspartate itself but were selectively vulnerable to the toxicity of either kainate or quisqualate. Thus, neurons containing NADPH-d may have an unusual distribution of receptors for excitatory amino acids, with a relative lack of N-methyl-D-aspartate receptors and a relative preponderance of kainate or quisqualate receptors. Since selective sparing of neurons containing NADPH-d is a hallmark of Huntington's disease, the results support the hypothesis that the disease may be caused by excess exposure to quinolinate or some other endogenous N-methyl-D-aspartate agonist.  相似文献   

3.
Plant trichomes can act as efjective defenses against herbivores, but at least one species of ithomiid butterfly, Mechanitis isthmia, has evolved a unique adaptation for avoiding the trichomes on its spiny Solanum hosts. The larvae are gregarious all together they spin a fine silk scaffolding over the tops of the spines on which they can crawl and feed in safety.  相似文献   

4.
1-Methyl-4-phenyl-1,2,5,6- tetrahydropyri dine ( MPTP ) is known to cause an irreversible destruction of the dopaminergic nigrostriatal pathway and symptoms of parkinsonism in humans and in monkeys. However, MPTP has been reported to act only minimally or not at all in several other animal species. When MPTP (30 milligrams per kilogram of body weight) was administered parenterally to mice, a decrease in concentrations of neostriatal dopamine and its metabolites, a decrease in the capacity of neostriatal synaptosomal preparations to accumulate [3H]dopamine, and a disappearance of nerve cells in the zona compacta of the substantia nigra were observed. In contrast, MPTP administration had no effect on neostriatal concentrations of serotonin and its metabolites. MPTP administration thus results in biochemical and histological changes in mice similar to those reported in humans and monkeys and similar to those seen in Parkinson's disease in humans. The mouse should prove to be a useful small animal with which to study the mode of action of MPTP .  相似文献   

5.
6.
Monoamine oxidase activity was higher in the cerebral cortex and basal ganglia of patients dying from Huntington's disease than in controls. Enzyme kinetics and multiple substrate studies indicated that the increased activity was due to elevated concentrations of monoamine oxidase type B. Concentrations of homovanillic acid were increased in the cerebral cortex but not in the basal ganglia of brains of patients with Huntington's disease. These changes may represent a primary aminergic lesion that could underlie some of the mental symptoms of this disease.  相似文献   

7.
为了确定棘胸蛙(Quasipaa spinosa)白内障病的病原,进行了病原菌分离、人工感染、分离菌理化特性和16S rDNA基因序列分析。结果表明,从患病棘胸蛙分离出2种致病菌Mm1和Mm2,将其大腿肌肉注射感染健康棘胸蛙,表现出与自然发病蛙相似症状。通过理化特性与16S rDNA基因序列鉴定,分离菌为摩氏摩根菌(Morganella morganii),其对链霉素和庆大霉素高度敏感,对氨苄西林和头孢他啶产生抗药性。病理组织学观察发现,其感染可引起棘胸蛙白内障病,发病棘胸蛙的晶状体、肝、肠和肾损伤严重,出现组织溶解、核溶解等现象,且在肠部出现包涵体。本研究发现摩氏摩根菌可感染棘胸蛙,导致棘胸蛙白内障病,并初步研究了病原菌的生物学特性、病理特征和药物敏感性,以期为该病的诊断和防治提供理论依据。  相似文献   

8.
NMDA receptor losses in putamen from patients with Huntington's disease   总被引:19,自引:0,他引:19  
N-Methyl-D-aspartate (NMDA), phencyclidine (PCP), and quisqualate receptor binding were compared to benzodiazepine, gamma-aminobutyric acid (GABA), and muscarinic cholinergic receptor binding in the putamen and cerebral cortex of individuals with Huntington's disease (HD). NMDA receptor binding was reduced by 93 percent in putamen from HD brains compared to binding in normal brains. Quisqualate and PCP receptor binding were reduced by 67 percent, and the binding to other receptors was reduced by 55 percent or less. Binding to these receptors in the cerebral cortex was unchanged in HD brains. The results support the hypothesis that NMDA receptor-mediated neurotoxicity plays a role in the pathophysiology of Huntington's disease.  相似文献   

9.
At synapses between cortical pyramidal neurons and principal striatal medium spiny neurons (MSNs), postsynaptic D1 and D2 dopamine (DA) receptors are postulated to be necessary for the induction of long-term potentiation and depression, respectively-forms of plasticity thought to underlie associative learning. Because these receptors are restricted to two distinct MSN populations, this postulate demands that synaptic plasticity be unidirectional in each cell type. Using brain slices from DA receptor transgenic mice, we show that this is not the case. Rather, DA plays complementary roles in these two types of MSN to ensure that synaptic plasticity is bidirectional and Hebbian. In models of Parkinson's disease, this system is thrown out of balance, leading to unidirectional changes in plasticity that could underlie network pathology and symptoms.  相似文献   

10.
Alterations in L-glutamate binding in Alzheimer's and Huntington's diseases   总被引:12,自引:0,他引:12  
Brain sections from patients who had died with senile dementia of the Alzheimer's type (SDAT), Huntington's disease (HD), or no neurologic disease were studied by autoradiography to measure sodium-independent L-[3H]glutamate binding. In brain sections from SDAT patients, glutamate binding was normal in the caudate, putamen, and claustrum but was lower than normal in the cortex. The decreased cortical binding represented a reduction in numbers of binding sites, not a change in binding affinity, and appeared to be the result of a specific decrease in numbers of the low-affinity quisqualate binding site. No significant changes in cortical binding of other ligands were observed. In brains from Huntington's disease patients, glutamate binding was lower in the caudate and putamen than in the same regions of brains from control and SDAT patients but was normal in the cortex. It is possible that development of positron-emitting probes for glutamate receptors may permit diagnosis of SDAT in vivo by means of positron emission tomographic scanning.  相似文献   

11.
Long-term potentiation (LTP) at glutamatergic synapses is considered to underlie learning and memory and is associated with the enlargement of dendritic spines. Because the consolidation of memory and LTP require protein synthesis, it is important to clarify how protein synthesis affects spine enlargement. In rat brain slices, the repetitive pairing of postsynaptic spikes and two-photon uncaging of glutamate at single spines (a spike-timing protocol) produced both immediate and gradual phases of spine enlargement in CA1 pyramidal neurons. The gradual enlargement was strongly dependent on protein synthesis and brain-derived neurotrophic factor (BDNF) action, often associated with spine twitching, and was induced specifically at the spines that were immediately enlarged by the synaptic stimulation. Thus, this spike-timing protocol is an efficient trigger for BDNF secretion and induces protein synthesis-dependent long-term enlargement at the level of single spines.  相似文献   

12.
Pak DT  Sheng M 《Science (New York, N.Y.)》2003,302(5649):1368-1373
Synaptic plasticity involves the reorganization of synapses at the protein and the morphological levels. Here, we report activity-dependent remodeling of synapses by serum-inducible kinase (SNK). SNK was induced in hippocampal neurons by synaptic activity and was targeted to dendritic spines. SNK bound to and phosphorylated spine-associated Rap guanosine triphosphatase activating protein (SPAR), a postsynaptic actin regulatory protein, leading to degradation of SPAR. Induction of SNK in hippocampal neurons eliminated SPAR protein, depleted postsynaptic density-95 and Bassoon clusters, and caused loss of mature dendritic spines. These results implicate SNK as a mediator of activity-dependent change in the molecular composition and morphology of synapses.  相似文献   

13.
In neurons, individual dendritic spines isolate N-methyl-d-aspartate (NMDA) receptor-mediated calcium ion (Ca2+) accumulations from the dendrite and other spines. However, the extent to which spines compartmentalize signaling events downstream of Ca2+ influx is not known. We combined two-photon fluorescence lifetime imaging with two-photon glutamate uncaging to image the activity of the small guanosine triphosphatase Ras after NMDA receptor activation at individual spines. Induction of long-term potentiation (LTP) triggered robust Ca2+-dependent Ras activation in single spines that decayed in approximately 5 minutes. Ras activity spread over approximately 10 micrometers of dendrite and invaded neighboring spines by diffusion. The spread of Ras-dependent signaling was necessary for the local regulation of the threshold for LTP induction. Thus, Ca2+-dependent synaptic signals can spread to couple multiple synapses on short stretches of dendrite.  相似文献   

14.
Relationships between the M and P retino-geniculo-cortical visual pathways and "dorsal" visual areas were investigated by measuring the sources of local excitatory input to individual neurons in layer 4B of primary visual cortex. We found that contributions of the M and P pathways to layer 4B neurons are dependent on cell type. Spiny stellate neurons receive strong M input through layer 4Calpha and no significant P input through layer 4Cbeta. In contrast, pyramidal neurons in layer 4B receive strong input from both layers 4Calpha and 4Cbeta. These observations, along with evidence that direct input from layer 4B to area MT arises predominantly from spiny stellates, suggest that these different cell types constitute two functionally specialized subsystems.  相似文献   

15.
We studied the effects of environmental stimulation on the development of rat cortical pyramidal cell synaptic loci (dendritic spines) and the number of such cells staining by the rapid Golgi technique. Stimulation three to five times a day from the day of birth increased the number of spines per micrometer in 8-day-old animals and increased the number of neurons stanining at 8 to 16 days of age. This effect of afferent input upon development of the dendritic spine may represent the neuroanatomical basis for the influence of early experience on subsequent behavior. The number of neurons staining by the rapid Golgi technique appears to be related to those that are functionally involved at the time of tissue preparation.  相似文献   

16.
We demonstrated superresolution optical microscopy in a living higher animal. Stimulated emission depletion (STED) fluorescence nanoscopy reveals neurons in the cerebral cortex of a mouse with <70-nanometer resolution. Dendritic spines and their subtle changes can be observed at their relevant scales over extended periods of time.  相似文献   

17.
In mammalian excitatory neurons, dendritic spines are separated from dendrites by thin necks. Diffusion across the neck limits the chemical and electrical isolation of each spine. We found that spine/dendrite diffusional coupling is heterogeneous and uncovered a class of diffusionally isolated spines. The barrier to diffusion posed by the neck and the number of diffusionally isolated spines is bidirectionally regulated by neuronal activity. Furthermore, coincident synaptic activation and postsynaptic action potentials rapidly restrict diffusion across the neck. The regulation of diffusional coupling provides a possible mechanism for determining the amplitude of postsynaptic potentials and the accumulation of plasticity-inducing molecules within the spine head.  相似文献   

18.
Synaptic inputs on dendrites are nonlinearly converted to action potential outputs, yet the spatiotemporal patterns of dendritic activation remain to be elucidated at single-synapse resolution. In rodents, we optically imaged synaptic activities from hundreds of dendritic spines in hippocampal and neocortical pyramidal neurons ex vivo and in vivo. Adjacent spines were frequently synchronized in spontaneously active networks, thereby forming dendritic foci that received locally convergent inputs from presynaptic cell assemblies. This precise subcellular geometry manifested itself during N-methyl-D-aspartate receptor-dependent circuit remodeling. Thus, clustered synaptic plasticity is innately programmed to compartmentalize correlated inputs along dendrites and may reify nonlinear synaptic integration.  相似文献   

19.
Actin-based plasticity in dendritic spines   总被引:1,自引:0,他引:1  
Matus A 《Science (New York, N.Y.)》2000,290(5492):754-758
The central nervous system functions primarily to convert patterns of activity in sensory receptors into patterns of muscle activity that constitute appropriate behavior. At the anatomical level this requires two complementary processes: a set of genetically encoded rules for building the basic network of connections, and a mechanism for subsequently fine tuning these connections on the basis of experience. Identifying the locus and mechanism of these structural changes has long been among neurobiology's major objectives. Evidence has accumulated implicating a particular class of contacts, excitatory synapses made onto dendritic spines, as the sites where connective plasticity occurs. New developments in light microscopy allow changes in spine morphology to be directly visualized in living neurons and suggest that a common mechanism, based on dynamic actin filaments, is involved in both the formation of dendritic spines during development and their structural plasticity at mature synapses.  相似文献   

20.
用HRP法对七只山羊的腓神经的来源及节段性分布规律进行追踪观察,结果如下: 1.腓神经感觉神经元胞体主要集中于L_6和S_1脊神经节内,其次位于S_2脊神经节内。其胞体多呈椭圆形和圆形,可分大、中、小三型,而以中型为主。 2.腓神经运动神经元胞体主要集中于L_6和S_1脊髓腹角,其次位于L_S脊髓腹角。胞体多呈星状或三角形。多数为较大的多极神经元,少数为小型多极神经元。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号