共查询到16条相似文献,搜索用时 72 毫秒
1.
现代机械设备正朝着大型、复杂和高速方向发展,导致其长期在强噪声环境下运行,使得通过振动分析检测微弱故障变得极为困难。因此,从强噪声背景中提取微弱故障信号成为机械故障诊断的关键问题。随机共振利用噪声能量来加强特征信号能量,特别适合于现代机械设备微弱故障诊断,然而,共振系统结构参数对其输出结果影响较大。针对这一实际情况,为了更好地对故障轴承进行精确诊断,以随机共振理论为依据,提出了基于人工蜂群算法的自适应随机共振新方法。以随机共振输出信噪比作为算法的目标函数,利用人工蜂群算法搜索全局最优解,实现双稳系统参数的自适应调节,获得信噪比最大时的系统参数,最终实现从强噪声环境中检测出微弱信号。数值仿真和轴承故障诊断试验表明:该方法得到的输出频率谱故障频率峰值比经典随机共振方法得到的峰值高20%,可用于强噪声环境下轴承故障识别和诊断。 相似文献
2.
应用改进的变尺度混沌优化算法对水分生产函数模型进行求解,求解程序用Visual Basic编写。以河西武威绿洲春小麦数据为例,将混沌算法应用于小麦灌溉制度优化设计中,并与动态规划法进行对比,证明了改进的混沌优化算法可以提高灌溉制度优化设计的精度与速度。 相似文献
3.
4.
5.
针对农业机械设备在强背景噪声下微弱故障特征难以提取的问题,提出一种基于自适应奇异值分解的随机共振微弱故障特征提取方法。首先,将原始信号奇异值分解并重构得到分量信号,构建互信息差分谱,权衡各分量信号对原始信号的贡献率,自适应选取有效奇异值个数,以克服已有方法人为主观选择或仅考虑奇异值大小等不足;其次,对选取的有效奇异值对应的分量信号自适应随机共振,使其微弱故障特征增强;最后,对增强的分量信号统计学平均以提取微弱故障特征。仿真和轴承外圈故障试验结果表明,该方法不仅克服了强背景噪声下有效奇异值的选取困难,而且结合自适应随机共振,有效提取出仿真信号100 Hz和轴承外圈155.5 Hz的故障特征频率,因此,所提方法不仅能够更好的增强微弱故障特征,而且分析结果优于单纯的奇异值分解和随机共振方法。该文提出的方法不仅可适用于强噪声背景下轴承的故障诊断,同时为农业机械设备的轴承故障诊断提供参考。 相似文献
6.
7.
针对实测触电故障信号具有非平稳特性而不易被辨识问题,提出了一种基于泄漏电流时频奇异谱和模糊聚类的触电故障诊断方法。首先,利用平滑伪威格纳-维尔分布(smoothed pseudo wigner-ville distribution,SPWVD)对触电故障信号进行时频分析并依据信号的能量分布特征选择时频区域;然后对选择的时频区域进行奇异谱分析,以获取的局部时频矩阵奇异值作为触电信号的特征量输入FCM,即可实现触电信号的故障诊断。对剩余电流保护装置试验平台上获取的实测触电故障信号的时频矩阵奇异值进行模糊C均值聚类,结果表明该方法识别准确率为97.50%,平均识别时间为0.008 5 s,其中植物和动物触电测试样本识别准确率分别为100%,95.00%,从而验证了基于泄漏电流时频奇异谱和模糊聚类的触电故障诊断方法的有效性,该研究可为研发新一代基于触电故障诊断的剩余电流保护装置提供理论依据和方法参考。 相似文献
8.
针对复杂强噪声背景下的非平稳振动信号的弱故障和复合故障检测的难题,引入经验小波变换(empirical wavelet transform,EWT)以提高故障确诊率,并提出一种基于EWT的复杂强噪声背景下弱故障的检测方法。EWT能够通过完全自适应小波基提取信号的固有模式,与经典小波变换一样具有完备的理论基础。通过对含有复杂强噪声的仿真信号和实际信号进行EWT分析,并对比经验模态分解,验证了基于EWT的复杂强噪声背景下弱故障检测的可行性和有效性。该研究可为复杂工况下机械设备的弱故障和复合故障检测以及故障特征提取提供参考。 相似文献
9.
基于改进粒子群算法的车辆转向梯形机构优化 总被引:1,自引:3,他引:1
通过对车辆转向机构的尺寸和定位参数进行优化,能有效减小车辆转向机构的实际运动轨迹和理论运动轨迹间误差,进而有效改善车辆的操纵性能和提高转向安全性。该文研究了转向梯形机构的工作原理及其对车辆转向性能的影响,建立了转向梯形机构的非线性优化模型;然后引入越界检测函数改进传统粒子群优化算法,并给出了求解转向梯形机构非线性优化模型的方法;编制了改进粒子群算法的实现程序,并对3款不同车型的转向梯形机构进行了优化设计;最后选取3种不同智能算法分别对途乐GRX转向梯形机构进行多组优化试验。试验结果表明,改进粒子群算法的收敛速度快于传统粒子群算法和基于模拟退火的粒子群算法,求解精度略逊于基于模拟退火的粒子群算法,但仍能保证求解精度。 相似文献
10.
香梨内部发生的褐变病害对香梨品质有严重影响,迫切需要对香梨内部早期褐变实现快速准确判别以减少贮藏期损失并提高商品率。该研究基于压电梁式传感器搭建声振无损检测装置系统,从香梨声振响应信号中提取了11个时域特征参数和7个频域特征参数,分别组成时域特征向量、频域特征向量和组合域特征向量(时域和频域参数组合),然后利用补偿距离评估技术评估各特征参数对香梨内部褐变的敏感性,输入敏感性较大的特征参数训练香梨内部褐变K-近邻域(K-nearest neighbor, KNN)判别模型。通过对模型判别结果的混淆矩阵分析,采用3个时域参数(波形因子、峭度、方根幅值)和1个频域参数(频率方差)构建香梨内部早期褐变KNN模型(近邻数K=5)用于判别早期褐变香梨,准确率和F1值分别为91.84%和92.59%;对已识别的褐变香梨,采用2个时域参数(波形因子、裕度因子)和1个频域参数(均方频率)构建香梨内部轻度褐变KNN模型(K=7)进一步判别其中的轻度褐变香梨,准确率和F1值分别为81.82%和83.33%。研究结果可为今后声振法香梨内部褐变实时在线检测和自动化分级技术研发提供参考。 相似文献
11.
变速箱齿轮磨损将导致振动信号中出现冲击响应成分,通过对每转内冲击响应成分的监测,可实现变速箱齿轮磨损故障诊断。为了提高变速箱齿轮磨损故障可视化监测与诊断效果,该文提出了一种极坐标角频分布方法。将采集的变速箱振动信号通过连续小波变换进行消噪处理并转变为极坐标角频分布,充分表现变速箱齿轮不同磨损工况时冲击成分的变化。以每种磨损工况时6转内的能量作为齿轮磨损特征向量,并将特征向量输入给BP神经网络进行分类训练和模式识别,有效地识别了变速箱的4种磨损状态。该研究结果为极坐标角频分布方法在变速箱状态监测与故障诊断的工程应用提供了参考。 相似文献
12.
为了解决传统最大相关峭度反褶积(maximum correlated kurtosis deconvolution,MCKD)在故障诊断中容易出现因参数选择不当而影响诊断效果的问题,该文提出了一种基于量子遗传算法(quantum genetic algorithm,QGA)的自适应最大相关峭度反褶积方法(maximum correlated kurtosis deconvolution with quantum genetic algorithm,QMCKD)用于齿轮和轴承复合故障诊断。通过量子遗传算法自适应选择最大相关峭度反褶积的2个关键参数滤波器长度(L)和反褶积周期(T)。使用QMCKD处理原始振动信号,提取复合故障信号中的所有单个故障信号,分别对单个故障信号进行频谱分析从而识别故障特征。在对齿面磨损-滚动轴承外圈损伤复合故障诊断中,QMCKD能够识别齿轮故障频率及其2~4倍频,识别轴承故障频率及其2~6倍频,且主要频率成分周围干扰谱线很少,故障类型容易识别。与直接频谱分析和变分模态分解(variational mode decomposition,VMD)相比,该方法在诊断效果上具有优越性。在对齿根裂纹-轴承滚动体损伤复合故障诊断中,QMCKD能够突出齿轮故障频率及其2~5倍频,突出轴承故障频率及其2~8倍频,齿轮和轴承故障特征明显,验证了方法的稳定性。试验结果表明QMCKD能够有效识别复合故障中齿轮和轴承的故障特征,可用于齿轮箱的齿轮、轴承复合故障诊断。 相似文献
13.
基于双树复小波包变换能量泄漏特性分析的齿轮故障诊断 总被引:1,自引:4,他引:1
为有效利用双树复小波包变换提取齿轮故障特征信息,提出基于双树复小波包能量泄漏特性分析的故障诊断方法。首先根据高斯白噪声频率充满整个频带的特性,通过双树复小波包变换对高斯白噪声进行分解,利用频带能量泄漏的定量分析方法,验证了双树复小波包变换具有较低的频带能量泄漏特性;其次利用双树复小波包变换逐层分解信号,对每层分解所得分量求其FFT谱的峭度,得到基于双树复小波包变换的谱峭度图,根据图中峭度最大的原则,可以自动准确的选择信号分解最佳层数和最佳分量;最后将基于双树复小波包变换的谱峭度图的故障诊断方法应用于实际工程中,对齿轮故障振动信号进行分析,选择最佳分解层数和分量后利用希尔伯特包络解调,有效准确地提取了故障特征信息,验证了方法的可行性和有效性。该研究可为旋转机械设备中齿轮箱故障诊断的故障特征提取提供参考。 相似文献
14.
针对旋转机械的自主故障诊断,提出一种基于EMD和MLEM2的智能解决方法。利用EMD预处理振动信号,在最适合的IMF分量上提取6个时域指标和5个频域指标构成无量纲的轴承故障特征向量。根据设备运行数据形成决策表,使用改进的MLEM2算法挖掘诊断规则,再结合改进的规则匹配策略进行状态识别。EMD能够剥离故障最本质的信息,提高所选分量的信噪比,而MLEM2算法无需对连续属性事先离散化,获得的诊断规则更完备、准确。SKF6203轴承试验表明,该方法诊断精度达到93.75%,相当于能够自主获取知识的专家系统,且只要一次初始设定,无需后续人工干预,是一种有效的智能诊断方法。 相似文献
15.
针对全寿命周期内滚动轴承振动信号的特征提取与智能诊断问题,该研究提出一种基于层次多尺度散布熵的滚动轴承智能故障诊断方法.首先,在散布熵的基础上,结合层次分解和多尺度分析的理论思想,提出一种信号复杂性度量方法——层次多尺度散布熵(Hierarchical Multiscale Dispersion Entropy,HMD... 相似文献
16.
大中型水轮机组的安全运行对于水电站以及电网的运行有重要影响.在分析水轮机组状态监测与故障诊断原理的基础上,设计了一种新颖的网络化水轮机组状态实时监测与故障诊断系统.该系统有过程层、监测层和站控层3个层次,通过RS-485总线和以太网相互联接;现场节点以AVR单片机ATmega8515为核心;监测站是一台高性能的工业计算... 相似文献