首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the findings of the effect of some selected deficit irrigation scheduling practices on irrigated maize crop in a sub-catchment in south western part of Tanzania. Field experiments, in which maize (TMV1-ST) variety was planted under total irrigation, were conducted during the dry seasons of 2004 and 2005. Surface irrigation method was used and the crop was planted in basins. The seasonal water applied ranged from 400 to 750 mm. Soil moisture content from both cropped and bare soils, leaf area index, dry matter, and grain yields were measured. The dry matter yield ranged between 6,966 and 12,672 kg/ha, and grain yields obtained were between 1,625 and 4,349 kg/ha. The results showed that deficit irrigation at any crop growth stage of the maize crop led to decrease in dry matter and grain yields, seasonal evapotranspiration and deep percolation. Deficit irrigation in any one growth stage of the maize crop only seems to affect grain production and no significant effect on biomass production, but deficit irrigation that spanned across two or more growth stages affect both biomass and grain production drastically. Crop water use efficiency (WUE) and Irrigation water use efficiency (IWUE) were strongly influenced by the number of growth stages in which deficit irrigations were applied and how critical the growth stages were to moisture stress rather than the amount of irrigation water applied. While maximum WUE was obtained under full irrigation, maximum IWUE was obtained in the deficit irrigation treatment at vegetative growth stage, which suggest that IWUE may be improved upon by practicing deficit irrigation at the vegetative growth stage of the maize crop.  相似文献   

2.
The environmental benefits of water table management (WTM), as a method to reduce nitrate pollution, are well known. However, there are few published studies on the effects of WTM on water use efficiency (WUE). This paper highlights the agronomic interest of WTM for increasing WUE of irrigated grain corn production. A field study was conducted in 2001 and 2002 at a large scale WTM research facility in Québec, Canada. The region experienced periods of drought during the two growing seasons. This study shows that, by keeping the water table at 0.80 m below the soil surface, there were on average 35% increases in grain corn yields, compared to conventional free drainage. The WUEs obtained with WTM (5.1 kg m−3 in 2001 and 7.1 kg m−3 in 2002) indicate that the method is generally more water efficient than conventional sprinkler and furrow irrigation. The WUE of WTM also compares well with that of water conservation methods such as alternate furrow irrigation and deficit sprinkler irrigation. Moreover, WTM requires low inputs in terms of equipment, energy, and labour, because it makes use of existing subsurface drainage systems, which are widespread in Eastern Canada due to the region's soils and climate, and because of its design, which does not necessitate high-pressure pumps and allows for automated management. Hence, WTM appears to be an interesting alternative to conventional irrigation methods due to its combined environmental and agronomical benefits.  相似文献   

3.
Food production and water use are closely linked processes and, as competition for water intensifies, water must be used more efficiently in food production worldwide. A field experiment with wither wheat (Triticum Aestivum L.), involving six irrigation treatments (from rain-fed to 5 irrigation applications), was maintained in the North China Plain (NCP) for 6 years. The results revealed that dry matter production, grain yield and water use efficiency (WUE) were each curvilinearly related to evapotranspiration (ET). Maximum dry matter at maturity was achieved by irrigating to 94% and maximum grain yield to 84% of seasonal full ET. A positive relationship was found between harvest index (HI) and dry matter mobilization efficiency (DMME) during grain filling. Moderate water deficit during grain filling increased mobilization of assimilate stored in vegetative tissues to grains, resulting in greater grain yield and WUE. Generally, high WUE corresponded with low ET, being highest at about half potential ET. At this location in NCP, highest WUE and grain yield was obtained at seasonal water consumption in the range 250–420 mm. For that, with average seasonal rainfall of 132 mm, irrigation requirements was in the range of 120–300 mm and due to the deep root system of winter wheat and high water-holding capacity of the soil profile, soil moisture depletion of 100–150 mm constituted the greater part of the ET under limited water supply. The results reveal that WUE was maximized when around 35% ET was obtained from soil moisture depletion. For that, seasonal irrigation was around 60–140 mm in an average season.  相似文献   

4.
Water regulations have decreased irrigation water supplies in Nebraska and some other areas of the USA Great Plains. When available water is not enough to meet crop water requirements during the entire growing cycle, it becomes critical to know the proper irrigation timing that would maximize yields and profits. This study evaluated the effect of timing of a deficit-irrigation allocation (150 mm) on crop evapotranspiration (ETc), yield, water use efficiency (WUE = yield/ETc), irrigation water use efficiency (IWUE = yield/irrigation), and dry mass (DM) of corn (Zea mays L.) irrigated with subsurface drip irrigation in the semiarid climate of North Platte, NE. During 2005 and 2006, a total of sixteen irrigation treatments (eight each year) were evaluated, which received different percentages of the water allocation during July, August, and September. During both years, all treatments resulted in no crop stress during the vegetative period and stress during the reproductive stages, which affected ETc, DM, yield, WUE and IWUE. Among treatments, ETc varied by 7.2 and 18.8%; yield by 17 and 33%; WUE by 12 and 22%, and IWUE by 18 and 33% in 2005 and 2006, respectively. Yield and WUE both increased linearly with ETc and with ETc/ETp (ETp = seasonal ETc with no water stress), and WUE increased linearly with yield. The yield response factor (ky) averaged 1.50 over the two seasons. Irrigation timing affected the DM of the plant, grain, and cob, but not that of the stover. It also affected the percent of DM partitioned to the grain (harvest index), which increased linearly with ETc and averaged 56.2% over the two seasons, but did not affect the percent allocated to the cob or stover. Irrigation applied in July had the highest positive coefficient of determination (R2) with yield. This high positive correlation decreased considerably for irrigation applied in August, and became negative for irrigation applied in September. The best positive correlation between the soil water deficit factor (Ks) and yield occurred during weeks 12-14 from crop emergence, during the “milk” and “dough” growth stages. Yield was poorly correlated to stress during weeks 15 and 16, and the correlation became negative after week 17. Dividing the 150 mm allocation about evenly among July, August and September was a good strategy resulting in the highest yields in 2005, but not in 2006. Applying a larger proportion of the allocation in July was a good strategy during both years, and the opposite resulted when applying a large proportion of the allocation in September. The different results obtained between years indicate that flexible irrigation scheduling techniques should be adopted, rather than relying on fixed timing strategies.  相似文献   

5.
Quantifying the local crop response to irrigation is important for establishing adequate irrigation management strategies. This study evaluated the effect of irrigation applied with subsurface drip irrigation on field corn (Zea mays L.) evapotranspiration (ETc), yield, water use efficiencies (WUE = yield/ETc, and IWUE = yield/irrigation), and dry matter production in the semiarid climate of west central Nebraska. Eight treatments were imposed with irrigation amounts ranging from 53 to 356 mm in 2005 and from 22 to 226 mm in 2006. A soil water balance approach (based on FAO-56) was used to estimate daily soil water and ETc. Treatments resulted in seasonal ETc of 580–663 mm and 466–656 mm in 2005 and 2006, respectively. Yields among treatments differed by as much as 22% in 2005 and 52% in 2006. In both seasons, irrigation significantly affected yields, which increased with irrigation up to a point where irrigation became excessive. Distinct relationships were obtained each season. Yields increased linearly with seasonal ETc (R2 = 0.89) and ETc/ETp (R2 = 0.87) (ETp = ETc with no water stress). The yield response factor (ky), which indicates the relative reduction in yield to relative reduction in ETc, averaged 1.58 over the two seasons. WUE increased non-linearly with seasonal ETc and with yield. WUE was more sensitive to irrigation during the drier 2006 season, compared with 2005. Both seasons, IWUE decreased sharply with irrigation. Irrigation significantly affected dry matter production and partitioning into the different plant components (grain, cob, and stover). On average, the grain accounted for the majority of the above-ground plant dry mass (≈59%), followed by the stover (≈33%) and the cob (≈8%). The dry mass of the plant and that of each plant component tended to increase with seasonal ETc. The good relationships obtained in the study between crop performance indicators and seasonal ETc demonstrate that accurate estimates of ETc on a daily and seasonal basis can be valuable for making tactical in-season irrigation management decisions and for strategic irrigation planning and management.  相似文献   

6.
The application of a single-layer canopy temperature energy balance (CTEB) model for determining integrated daily ET rates was tested, with possible applications towards determining irrigation requirements (“how much to irrigate”) as a complement to crop water stress index (CWSI) measurements (“when to irrigate”), an irrigation scheduling tool which uses much of the same data. Evapotranspiration (ET) rates estimated using the CTEB model were compared to Bowen ratio energy balance (BREB) measurements made over substantial portions of the growing seasons of corn and potato crops. Canopy temperature, net radiation and soil heat flux data were collected and analyzed at 20-minute intervals, and ET for each interval was summed to obtain daily and multi-day estimations. Only full canopy conditions were examined. Two methods for atmospheric stability correction were applied to the aerodynamic resistance required by the CTEB model; an iterative procedure proposed by Campbell, and a second procedure proposed by Monteith which uses an adjustment coefficient. To reduce instrumentation requirements for combined CTEB/CWSI data collection, estimates of ET were also determined using net radiation and soil heat flux values estimated from solar radiation measurements. Results showed that uncorrected CTEB ET estimates agreed reasonably well with BREB measurements over corn and potato canopies (RMSE = 0.5 to 0.7 mm day for observed average ET ranging from 4.8 to 5.5 mm day, with a trend toward seasonal overprediction with corn. Stability corrections usually lowered the daily RMSE 0.1 to 0.2 mm day, with seasonal ET more in agreement with BREB ET. The Monteith-based adjustment gave slightly better results. CTEB ET model with estimated net radiation and soil heat flux terms produced similar average and total ET, but somewhat larger daily errors (RMSE=0.5 to 0.9 mm day). Seasonal total ET by the uncorrected CTEB model generally overestimated within 10% (ranging from 1% to 10%) of the observed BREB total ET, an acceptable error for most irrigation practices. Stability corrections generally caused seasonal ET to be underestimated within 1% to 9%.  相似文献   

7.
Evaluation of crop water stress index for LEPA irrigated corn   总被引:6,自引:0,他引:6  
This study was designed to evaluate the crop water stress index (CWSI) for low-energy precision application (LEPA) irrigated corn (Zea mays L.) grown on slowly-permeable Pullman clay loam soil (fine, mixed, Torrertic Paleustoll) during the 1992 growing season at Bushland, Tex. The effects of six different irrigation levels (100%, 80%, 60%, 40%, 20%, and 0% replenishment of soil water depleted from the 1.5-m soil profile depth) on corn yields and the resulting CWSI were investigated. Irrigations were applied in 25 mm increments to maintain the soil water in the 100% treatment within 60–80% of the “plant extractable soil water” using LEPA technology, which wets alternate furrows only. The 1992 growing season was slightly wetter than normal. Thus, irrigation water use was less than normal, but the corn dry matter and grain yield were still significantly increased by irrigation. The yield, water use, and water use efficiency of fully irrigated corn were 1.246 kg/m2, 786 mm, and 1.34 kg/m3, respectively. CWSI was calculated from measurements of infrared canopy temperatures, ambient air temperatures, and vapor pressure deficit values for the six irrigation levels. A “non-water-stressed baseline” equation for corn was developed using the diurnal infrared canopy temperature measurements as T cT a = 1.06–2.56 VPD, where T c was the canopy temperature (°C), Ta was the air temperature (°C) and VPD was the vapor pressure deficit (kPa). Trends in CWSI values were consistent with the soil water contents induced by the deficit irrigations. Both the dry matter and grain yields decreased with increased soil water deficit. Minimal yield reductions were observed at a threshold CWSI value of 0.33 or less for corn. The CWSI was useful for evaluating crop water stress in corn and should be a valuable tool to assist irrigation decision making together with soil water measurements and/or evapotranspiration models. Received: 19 May 1998  相似文献   

8.
Many farmers in West Central Nebraska have limited irrigation water supplies, and need to produce crops with less water. This study evaluated the impact of four water management strategies on grain yield of surface-irrigated corn (Zea mays L.) at North Platte, Nebraska. Treatments included: (1) no irrigation (DRYLAND), (2) one irrigation prior to tassel formation (EARLY), (3) one irrigation during the silk stage (LATE), and (4) irrigation following farmer’s practices (FARMER). The study included three wet years (1992, 1993, and 1996) and 2 years with average annual rainfall for the area (1994 and 1995). Significant yield differences among treatments, and a yield response to irrigation, were only observed during the 2 years with average rainfall. During all years, the FARMER treatment was over-irrigated and resulted in considerable water losses by runoff and deep percolation. Grain yield response to irrigation during the three wet years was insignificant among the treatments, but significant during the dry years. The results of this study suggest that inducing stress is not a good strategy for increasing crop water productivity (yield per unit ETd) for corn and point out the need to minimize irrigation water losses and improve irrigation scheduling.  相似文献   

9.
Improving irrigation water management is becoming important to produce a profitable crop in South Texas as the water supplies shrink. This study was conducted to investigate grain yield responses of corn (Zea mays) under irrigation management based on crop evapotranspiration (ETC) as well as a possibility to monitor plant water deficiencies using some of physiological and environmental factors. Three commercial corn cultivars were grown in a center-pivot-irrigated field with low energy precision application (LEPA) at Texas AgriLife Research Center in Uvalde, TX from 2002 to 2004. The field was treated with conventional and reduced tillage practices and irrigation regimes of 100%, 75%, and 50% ETC. Grain yield was increased as irrigation increased. There were significant differences between 100% and 50% ETC in volumetric water content (θ), leaf relative water content (RWC), and canopy temperature (TC). It is considered that irrigation management of corn at 75% ETC is feasible with 10% reduction of grain yield and with increased water use efficiency (WUE). The greatest WUE (1.6 g m−2 mm−1) achieved at 456 mm of water input while grain yield plateaued at less than 600 mm. The result demonstrates that ETC-based irrigation can be one of the efficient water delivery schemes. The results also demonstrate that grain yield reduction of corn is qualitatively describable using the variables of RWC and TC. Therefore, it appears that water status can be monitored with measurement of the variables, promising future development of real-time irrigation scheduling.  相似文献   

10.
In the High Plains, corn (Zea mays L.) is an important commodity for livestock feed. However, limited water resources and drought conditions continue to hinder corn production. Drought-tolerant (DT) corn hybrids could help maintain high yields under water-limited conditions, though consistent response of such hybrids is unverified. In this two-year study, the effects of three irrigation treatments were investigated for a DT and conventional maize hybrid, Pioneer AQUAMax P0876HR and Pioneer 33Y75, respectively. In 2013, the drier of the 2 years, irrigation amounts and crop water use (ETc) were greater for the conventional hybrid, but grain water use efficiency (WUE) and harvest index were significantly greater for the DT hybrid. In 2014, grain yields and WUE were not significantly different between hybrids. However, irrigation amounts, ETc and biomass yields were greater for the conventional hybrid. Results from both years indicate that the DT hybrid required less water to maximize grain yield as compared to the conventional hybrid. Producing relatively high yields with reduced amounts of water may provide a means for producers to continue corn production in a semiarid environment with declining water supplies.  相似文献   

11.
Rainfed subsistence farming systems in sub-Saharan Africa generally obtain low crop yields as a result of highly erratic rainfall seasons. This paper presents results of research conducted to test the effects of improvements in farming techniques for subsistence rainfed systems. The research was carried out in the Makanya catchment of northern Tanzania where rainfall of less than 600 mm a−1 and spread over two agricultural seasons per year is clearly insufficient to support staple food crops under the present farming systems in the area. The research sought to prove that, with improved efficiency in tillage techniques, grain yields can improve even under the existing challenging hydro-climatic conditions. The research tested farming system innovations (SIs) at four sites located within a spatial distance of 10 km where a combination of runoff diversion (RD), on-site rain water harvesting (WH) and conservation tillage (CT) were compared against the traditional farming methods of hand-hoeing under strict rainfed conditions (Control). For RD, runoff generated from natural storms was directed into infiltration pits dug along the contour with the excavated soil deposited upward of the trenches (fanya juus). The impact of these techniques on maize yields under different SIs was investigated.The results showed that the innovations resulted in increased maize grain yields of up to 4.8 t ha−1 compared against current averages of less than 1 t ha−1. The average productivity of the available water over four seasons was calculated to range between 0.35 and 0.51 kg m−3. For the SIs that were tested, the distribution of yields within a cultivated strip showed variations with better yields obtained on the down slope side of the cultivated strip where ponding effects resulted in higher water availability for infiltration and storage. However, due to the large seasonal climate variability, statistical analysis did not show significant differences in the yields (p < 0.05) between different cultivation techniques.The study showed that there is scope to improve grain yields with the little available rainfall through the adoption of techniques which promote water availability and retention within the field. The re-partitioning of water within the field creates mitigation measures against the impact of dry spells and allows alternative cropping in addition to the traditional maize cultivated in the rainfall seasons.  相似文献   

12.
Estimates of the effects of alternative discrete irrigation water scheduling options on consumptive use or evapotranspiration and on crop yield are developed for a northeastern Colorado case study. The analysis proceeds from the premise that farmers, rather than considering irrigation water as a continuously variable input, tend to treat irrigations as discrete events, and make scheduling decisions as choices among numbers of irrigations of approximately equal volume. The van Genuchten-Hanks model is employed to develop a transient-state water-crop production function model. Results for two crops – corn grain and edible dry beans – are presented here. Findings are that the effect of the number of irrigations on evapotranspiration and yield per hectare varies widely, depending upon the timing of applications. When farmers can choose the optimal timing of irrigations, a reduced number of irrigations has a relatively limited adverse effect on crop production until irrigations are reduced to less than four per season. However, there are many situations in which an inability to apply water can result in a very large reduction from potential maximum yield, particularly if water is withheld early in the season and/or during the rapid growth period of the crops. In many contexts of irrigation water management, water policy analysts will wish to consider the more realistic discrete-input simulation model for policy evaluation. Received: 1 November 1996  相似文献   

13.
Improving on-farm water management through an irrigation scheduling service   总被引:1,自引:1,他引:0  
Irrigation scheduling services (ISS) provide farmers with recommendations on timing and amount of irrigation, thus contributing to improving on-farm water management. There are wide variations in the level of services, from providing regional water use guidelines to local, on-farm advisory services. An ISS (ISS-ITAP) was created in 1988 in Albacete, Central Spain, a province encompassing 100,000 ha which are irrigated mostly with groundwater. The ISS-ITAP first offered general information on crop water requirements (ET), and after 1994 field-specific scheduling services were provided to growers. By 2005 the ISS-ITAP had expanded its services to over 33,500 ha, corresponding to about 30% of the irrigable area. The evolution of irrigation performance in a number of individual farms was followed over 10 years, and it was found that the proportion of fields which were adequately irrigated increased from 50 to over 70% in that period. Meanwhile, the proportion of deficit-irrigated fields declined from 20 to 10%, while the proportion of over-irrigated fields which also had initially decreased from 20 to 10%, went back to 20% at the end of the study period. To assess the benefits and costs of the ISS-ITAP, a comparison of the yields achieved in the scheduled farms against those obtained in the rest of the province was carried out. When the Service was evaluated in economic terms, using information from 2003, the pay-back was 2 years and the internal rate of return was 59.1%, highlighting the high returns on the public funds invested by ISS-ITAP to provide irrigation advisory service to growers in the Albacete province.  相似文献   

14.
15.
不同节水灌溉技术的节水机理试验研究   总被引:5,自引:1,他引:5  
根据甘肃省特殊自然地理条件,对于喷灌、滴灌、渗灌及波涌灌几种方式下,小麦和玉米两种作物的灌溉节水机理进行了对比试验研究,分析了不同节水灌溉方式下这两种作物的节水性和生育动态。试验结果表明,在降雨、灌溉水量和前期土壤特性一定的情况下,在喷灌、滴灌、渗灌及波涌灌几种节水灌溉技术中,渗灌的节水性最好,依次为滴灌、喷灌、波涌灌。小麦和玉米在渗灌条件下产量比滴灌、喷灌和波涌灌都高,小麦渗灌产量比滴灌增加7.6%,比喷灌增加13.1%,比波涌灌增加22.4%。玉米渗灌产量比滴灌增加1.3%.比喷道增加6.3%。  相似文献   

16.
Crop water requirements for rainfed and irrigated grain corn in China   总被引:1,自引:0,他引:1  
A basic parametric crop water use model (WATER) that employes climatic and environmental data to calculate temporal and spatial water consumption for a variety of major corps was applied specifically for grain corn to the region of China and Korea to investigate the evapotranspiration (ET) demand on grain corn and the associated irrigation water applications necessary for optimal crop production. A network of 241 stations provided the seasonal climatic input. The climatic input consisted of data averaged over approximately a 20 year period. Among the results, highest ET under full irrigation (first harvest) occurred in the northwestern inland sections of China, whereas least ET was found for the southeast. Under rainfed conditions, the relationship became nearly inverse. In order to achieve optimum crop yields, about 1000 mm of irrigation water was needed in the northwest, contrasted with none required in the south and east of China. A sensitivity analysis was applied to determine the degree of error introduced by faulty or uncertain environmental input data.  相似文献   

17.
Jilin province is one of the main dryland grain production areas in China. Recently, limited supplemental irrigation, using groundwater in the semi-arid western area of the province, has developed rapidly to improve the low grain productivity caused by rainfall variability. Research was conducted to estimate the actual crop water requirements and identify the timing and magnitude of water deficits of the main crops such as corn (Zea mays L.), soybean (Glycine max L.) and sorghum (Sorghum bicolor L.). Using the guidelines for computing crop water requirements in FAO Irrigation and Drainage paper 56 and historical rainfall distributions, the crop water requirements, ETc and the crop water deficits of corn, soybean and sorghum were calculated. Based on the water deficit analysis, a recommended average supplemental irrigation schedule was developed. Crop production was compared to full irrigation and to a rainfed control in a field experiment.On average, compared to the rainfed control, the full irrigation and the average supplemental irrigation treatments of corn, increased yields 49.0 and 43.9%, respectively; soybean yields of those treatments increased by 41.0 and 34.7%, and sorghum yields of those treatments increased by 55.5 and 46.3%. A supplemental irrigation schedule can be used in the semi-arid western Jilin province to improve crop yields.  相似文献   

18.
Three phasic models namely, Hanks (H-2), Stewart (S-2) and the Hall–Butcher (H–B), were evaluated on cowpea irrigated using a line source sprinkler system. Three sets of field data (1983, 1985, and 1986) were collected; the 1985 data were used for calibration while the 1983 and 1986 data were used for evaluation of the models. The model performance that most accurately matched the measured data was then used to simulate the most water-efficient irrigation schedule and deficit irrigation analysis for cowpea in Nigeria. Results showed that the models gave good estimates of cowpea grain yield with the H-2 model performing slightly better than the other two models. The weighted root mean square deviations were 0.043, 0.094, and 0.213 for the H-2, S-2 and the H–B model, respectively. Simulation studies with the H-2 model showed that irrigating at 40% moisture depletion is the most water-efficient schedule for cowpea and that greater yield from a given optimum seasonal water application for deficit irrigation can be achieved by splitting the seasonal deficit among the growth stages.  相似文献   

19.
Summary Measurements of corn yield and evapotranspiration (ET) were made under a wide variety of limited irrigations simulating drought conditions. Three locations were studied in two seasons. There was a strong linear relation between relative yield and ET (R2 = 0.95 for dry matter yield and R2 = 0.87 for grain yield) where variable irrigation was applied throughout the season as well as where irrigation was applied only at the early part of the season. Yield predictions using the model PLANTGRO (Hanks, 1974) were made from soil, crop, and climatic data. Agreement between prediction and measurements was better for relative dry matter yield (R2 ranged from 0.91 to 0.99) than a relative grain yield (R2 ranged from 0.93 to 0.97). The method for predicting grain yields could be improved but a relation involving seasonal estimates of relative transpiration gave good first-order predictions.Contribution from Utah State University Agricultural Experiment Station Journal Paper No 2506  相似文献   

20.
河北省黑龙港地区淡水资源短缺,是农业生产发展的制约因素。南皮试区(1980~1991)咸水灌溉的研究结果表明,利用2~5g/l的咸水灌溉,小麦、玉米两季亩产达到484.8~622.8kg,比不灌的旱作增产1.06~1.65倍;在汛期集中降雨淋洗的条件下,根层土壤不积盐;实行咸淡水轮灌、混灌,改善水质,增辟水源,获得作物丰产。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号