首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Twelve lysimeters with a surface area of 0.5 m2 and a length of 60 cm were taken over mole drains from a Denchworth heavy clay soil and divided into two groups with either a standard agricultural tilth or a finer topsoil tilth. The influence of topsoil tilth on leaching of the herbicide isoproturon and a bromide tracer was evaluated over a winter season. The effect of variations in soil moisture status in the immediate topsoil on leaching of isoproturon, chlorotoluron and linuron was investigated in the following winter season. Here, water inputs were controlled such that lysimeters received 50 mm at a maximum intensity of 2 mm h?1 over a 4‐week period with herbicides applied on day 15. Three treatments received the water either all prior to application, all after application, or evenly spread over the 4‐week period. Leaching losses of the three herbicides were monitored for a subsequent drainage event. Analysis of covariance showed a significant effect of topsoil tilth and total flow on both the maximum concentrations (P = 0.034) and total losses (P = 0.012) of isoproturon in drainflow. Both concentrations and losses were c 35% smaller from lysimeters with the finer tilth. However, generation of the fine tilth in the field was restricted by a wet autumn and this is not considered a reliable management option for reducing pesticide losses from heavy clay soils. In the second experiment, variation in soil moisture content prior to and after application did not have any significant effect (P < 0.05) upon subsequent losses of the three herbicides to drains. © 2001 Society of Chemical Industry  相似文献   

2.
In this work we have studied the influence of phytoplasma-induced grapevine yellows (yellowing) on some features of the thylakoids from field grown grapevine (Vitis vinifera L. cv. Chardonnay) leaves. Changes in photosynthetic pigments, soluble proteins, ribulose-1,5-bisphosphate carboxylase, photosynthetic activities and thylakoid membrane proteins were investigated. The level of total chlorophyll and carotenoids, on a unit fresh weight basis, showed a progressive decrease in phytoplasma infected leaves. Similar results were also observed for total soluble proteins and ribulose-1,5-bisphosphate carboxylase activity. When various photosynthetic activities were followed in isolated thylakoids, phytoplasma infection caused marked inhibition of whole chain and photosystem (PS) II activity. Smaller inhibition of PSI activity was observed even in severely infected leaves. The artificial exogenous electron donors, DPC and NH2OH significantly restored the PSII activity in both mild and severely infected leaves. The same results were obtained when Fv/ Fm was evaluated by Chl fluorescence measurements. The marked loss of PS II activity in infected leaves was evidently due to the loss of 33, 28–25, 23, 17 and 10 kDa polypeptides. This conclusion was confirmed by immunological studies showing that the content of the 33 kDa protein of the water-splitting complex was diminished significantly in infected leaves. Phytoplasma infection induced a fast degradation of LHCP II which became visible as yellowish colour in leaves.  相似文献   

3.
植物提取物多羟基双萘醛对苹果腐烂病菌的抑制作用研究   总被引:1,自引:0,他引:1  
 研究了植物提取物多羟基双萘醛(WCT)对苹果腐烂病菌的抑制作用。平板对峙试验表明WCT对苹果腐烂病菌有较强的抑菌活性,而且随着浓度提高抑制作用增强,当浓度为50 mg·mL-1时抑菌效果较好,EC50为25.04 mg·mL-1;在果园WCT对苹果腐烂病也有很好的防治效果,苹果树在刮除病疤再涂抹WCT后能促进病疤部位形成较厚的愈合层。苹果树苗在涂抹WCT后,PPO、POD酶活性和叶绿素含量开始升高,明显高于健康对照;并且在叶片中诱导一种分子量约为59 kD蛋白大量表达, WCT处理后该蛋白的表达量比健康对照显著增加。通过基体辅助激光解析电离飞行时间质谱(MALD I-TOF MS) 分析该蛋白, 将所得的肽指纹图谱(peptide mass fingerprint,PMF) 在SWISSPROT蛋白质数据库中比对发现该蛋白是RUBP羧化酶大亚基。以上研究结果表明WCT对苹果腐烂病菌具有一定的抑制作用和诱导寄主产生抗性的作用。  相似文献   

4.
The chlorophyll production of wheat (Triticum vulgare L. cv. Mericopa), corn (Zea mays L. cv. Everta), and alfalfa (Medicago sativa L. cv. Saranac), treated with the herbicide 4-chloro-5-methylamino-2-(3-trifluoro-methylphenyl)pyridazin- 3-one (norflurazon) and grown under high light intensity (10 760 lux) was markedly reduced. Corn and wheat seedlings germinated and grown for 7 days in an agar medium containing 1 mg/1 norflurazon were almost completely bleached. Alfalfa was even more sensitive to norflurazon, 0.1 mg/1 causing almost complete chlorosis. Under low light intensity (10.76 lux) the influence of norflurazon on chlorophyll production was greatly reduced. It is thought that norflurazon inhibits carotenoid synthesis leaving the chlorophyll of the plant subject to photooxidation. Electron micrographs of chloroplasts from green, partially bleached, and bleached areas of corn leaves treated with norflurazon indicate that the herbicide causes progressive deterioration of the lamellar system.  相似文献   

5.
The effect of the monooxygenase inhibitor, 1-aminobenzotriazole (ABT) on isoproturon phytotoxicity and metabolism was studied in resistant (R) and susceptible (S) biotypes of Phalaris minor and in wheat (Triticum aestivum). Addition of ABT (2·5, 5 and 10 mg litre-1) to isoproturon (0·25, 0·5, 1, 2 and 4 mg litre-1) in the nutrient solution significantly enhanced the phytotoxicity of isoproturon against the R biotype. Isoproturon at 0·25 mg litre-1 reduced the dry weight (DW) of the S biotype by 77%, whereas the R biotype required 4·0 mg litre-1 for similar reduction. Addition of 10 mg litre-1 of ABT to the 0·25 mg litre-1 isoproturon caused 71 and 82% reduction in DW of R and S biotypes, respectively. Wheat was more sensitive to the mixture of isoproturon and ABT than the R biotype of P. minor. Reduced concentrations of ABT in the mixture from 10 to 2·5 mg litre-1 increased the DW of the R biotype more than that of the S biotype. The R biotype metabolised [14C]isoproturon at a faster rate than the S biotype. ABT (5 mg litre-1) inhibited the degradation of [14C]isoproturon in both biotypes of P. minor and in wheat. In the presence of ABT, about half of the applied [14C]isoproturon remained as parent herbicide in all the three species after two days. The metabolites were similar in the R and S biotypes and wheat as determined by co-chromatography with reference standards and mass spectroscopy (MS). ABT inhibited the appearance of the hydroxy and monomethyl metabolites and their conjugates in all the test plants. These results suggest that the activity of the enzymes responsible for the degradation of isoproturon is greater in the R than in the S biotype of P. minor, resulting in its rapid detoxification. Incorporation of the monooxygenase inhibitor ABT into the nutrient solution greatly inhibited the degradation of [14C]isoproturon in the R biotype and increased its phytotoxicity. Both hydroxylation and N-dealkylation reactions were found to be sensitive to ABT; inhibition of hydroxylation was greater than that of demethylation. Since ABT could not completely suppress isoproturon degradation, it is possible that more than one monooxygenase is involved. © 1998 SCI  相似文献   

6.
The effect of pre-emergently applied herbicide clomazone on the photosynthetic apparatus of primary barley leaves (Hordeum vulgare L.) was studied. Clomazone application caused a reduction in chlorophyll (a+b) and carotenoid levels that was accompanied by a decline in the content of light harvesting complexes as judged from the increasing chlorophyll a/b ratio. The pigment reduction also resulted in changes in 77 K chlorophyll fluorescence emission spectra indicating lower chlorophyll (Chl) fluorescence reabsorption and absence of the long-wavelength emission forms of photosystem I. The maximal photochemical yield of photosystem II (PSII) and the reoxidation kinetics of the primary quinone acceptor QA were not significantly influenced by clomazone. A higher initial slope of Chl fluorescence rise in the Chl fluorescence induction kinetic indicated an increased delivery of excitations to PSII. Simultaneously, analysis of the Chl fluorescence quenching revealed that clomazone reduced function of the electron transport chain behind PSII. The decrease in the saturation rates of CO2 assimilation paralleled the decrease of the Chl content and has been suggested to be caused by a suppressed number of the electron transport chains in the thylakoid membranes or by their decreased functionality. The obtained results are discussed in view of physiological similarity of the clomazone effect with changes of photosynthetic apparatus during photoadaptation.  相似文献   

7.
Some aspects of the action of fluazifop-butyl on the chlorophyll content, chloroplast functioning and chloroplast ultrastructure of Elymus repens are reported. Over a period of 0–12 days after spraying with 0.25 or 1.0 kg ha?1 of the herbicide, chlorophyll a and b contents of this susceptible plant decreased, progressing from the youngest to the more mature leaves. Newly formed tillers and the youngest expanding leaves exhibited a more severe type of chlorosis and were often found to be devoid of chlorophyll. A similar progressive decline of the chlorophyll content was observed in an experiment where leaf segments were floated in fluazifop-butyl. Evidence of a rapid and significant alteration of the normal chlorophyll fluorescence of E. repens leaves treated with fluazifopbutyl was obtained. The herbicide, at a concentration range of 0.25–1.0 μg μ1?1, caused a significant loss of the fast fluorescence rise, fluorescence yield and, after 24 h, caused a total abolition of the fluorescence decay (PS decas). These results are discussed. Ultrastructural damage to chloroplasts was seen within 24 h after treatment with fluazifop-butyl. This damage ranged from a partial to total disruption of the outer chloroplast envelope and a disorganization of the internal thylakoid system. Such Ultrastructural effects on chloroplasts were found to intensify up to about 6–7 days after spraying, by which time nearly all chloroplasts in tissue sections were affected to some degree.  相似文献   

8.
We have studied the effect of the apple proliferation phytoplasmal infection on some features of the thylakoids from field grown apple (Malus pumila) leaves. Changes in photosynthetic pigments, soluble proteins, ribulose-1,5-bisphosphate carboxylase, nitrate reductase, photosynthetic activities and thylakoid membrane proteins were investigated. The level of total chlorophyll and carotenoids were reduced in phytoplasma-infected leaves. Similar results were also observed for soluble proteins and ribulose- 1,5-bisphosphate carboxylase activity. The in vivo nitrate reductase activity was significantly reduced in infected leaves. When various photosynthetic activities were followed in isolated thylakoids, phytoplasmal infection caused marked inhibition of whole chain and photosystem II activity while the inhibition of photosystem I activity was only marginal. The artificial exogenous electron donors, diphenyl carbazide and hydroxylamine significantly restored the loss of photosystem II activity in infected leaves. The same results were obtained when Fv/Fm was evaluated by chlorophyll fluorescence measurements. The marked loss of photosystem II activity in infected leaves could be due to the loss of 47, 33, 28–25, 23 and 17 kDa polypeptides. It is concluded that phytoplasmal infection inactivates the donor side of photosystem II. This conclusion was confirmed by immunological studies showing that the content of the 33 kDa protein of the water-splitting complex was diminished significantly in infected leaves.  相似文献   

9.
The rice field herbicide, propanil, was toxic to the nitrogen-fixing cyanobacterium Nostoc calcicola. A decrease in growth was observed with the increasing concentrations of propanil, 30 μg/ml being lethal. Since toxicity of the herbicide could be reversed by exogeneous supplementation of assimilable organic carbon glucose, it is suggested that carbon fixation was sensitive to the herbicide. The herbicide inhibited heterocyst differentiation and nitrogen fixation. There was a rapid decrease in total protein, nucleic acids (DNA, RNA), and carbohydrate content accompanied by a loss of photosynthetic pigments. The phycocyanin: chlorophyll a ratio showed positive correlation with increased dosages of the herbicide, suggesting the inhibition of chlorophyll a.  相似文献   

10.
Wheat (cv. WH-147) and five biotypes of Phalaris minor Retz. (KR-1, H-4, K-2, H-2 and J-1) were treated with isoproturon in controlled environmental conditions to assess their level of resistance. Resistance of P. minor to isoproturon was found in the order of KR-1 > H-4 > K-2 > H-2 = J-1. Compared with the susceptible (S) biotype (H-2), the resistant (R) biotypes (KR-1. H-4 and K-2) of P. minor required 13.0, 4.5 and 2.7 times higher doses of isoproturon for a 50% reduction in growth (GR50) and 2.4 times that of the S biotype (H-2) by wheat. The corresponding figures for KR-1, H-4, K-2 biotypes and wheat were 18, 4.1, 2.4 and 4.6 times based on dry weight reduction. The effect of isoproturon on photosynthesis was studied in vitro using five biotypes of P. minor and in viro with wheat. KR-1 (R) and H-2 (S) biotypes of P. minor. Under in vitro treatment conditions isoproturon inhibited the photosynthesis of all five P. minor biotypes, whereas in vivo the recovery was greater in the R biotype than in the wheat and the S biotype. Effects on chlorophyll fluorescence were also measured in wheat and the KR-1 (R) and H-2 (S) biotypes of P. minor. A 4-h treatment of excised leaves incubaled in isoproluron solution (0.025 and 0.05 mm concentration) resulted in a decreased fluorescence coefficient (Fv Fm ratio in which Fv= variable fluorescence (Fm - Fo): Fm= the maximum fluorescence and Fo= initial fiuorescence) in wheat (Triticum aestivum L.) and both biotypes of P. Minor. The recovery was, however, greater in the R biotype than in wheat and it was completely recovered within 24 h. No recovery was recorded in the case of the S biotype of P. minor and a greater recovery time was required for wheat than the R biotype. The higher dose required for growth inhibition in the R biotype and rapid recovery of oxygen evolution and fluorescence coeflicient under in viro conditions together with the absence of selectivity in vitro suggests that the target site was unaffected. It can be conjectured that resistance to isoproturon is most probably because of enhanced metabolism or sequestration of isoproturon, resulting in decreased target site delivery.  相似文献   

11.
The herbicide isoproturon [3‐(4‐isopropylphenyl)‐1,1‐dimethylurea] was incorporated in alginate‐based granules to obtain controlled‐release (CR) properties. The basic formulation (sodium alginate (1.87%)–isoproturon (0.67%) in water) was modified by addition of different sorbents. The effect on isoproturon release rate, modified by the incorporation of natural and acid‐treated bentonite in alginate formulation, was studied by immersion of the granules in water while shaking. The release of isoproturon was diffusion‐controlled. The time taken for 50% of the active ingredient to be released into water, T50, was longer for those formulations containing added bentonite (5.98 and 7.43 days, for natural and acid‐treated (1 M H2SO4) bentonite, respectively) than for the preparation without bentonite (3.78 days). The mobilities of non‐formulated technical grade (98%) and formulated isoproturon were compared using soil columns. The use of alginate‐based CR formulations containing bentonite reduced isoproturon movement compared with the technical product. Sorption capacity of the soil for isoproturon was measured using batch experiments (0.29 litre kg−1) and the results obtained here in agreement with those obtained under dynamic conditions. © 2000 Society of Chemical Industry  相似文献   

12.
BACKGROUND: Yellow stem borer (Tryporyza incertulas Walker), striped stem borer (Chilo suppressalis Walker) and leaf folder (Cnaphalocrocis medinalis Guenec) are three lepidopteran pests that cause severe damage to rice in many areas of the world. In this study, novel insect‐resistant transgenic rice was developed in which Bt protein expression was nearly absent in the endosperm. The resistant gene, cry1C*, driven by the rice rbcS promoter (small subunit of ribulose‐1,5‐bisphosphate carboxylase/oxygenase), was introduced into Zhonghua 11 (Oryza sativa L. ssp. japonica) by Agrobacterium‐mediated transformation. RESULTS: A total of 83 independent transformants were obtained, 19 of which were characterised as single‐copy foreign gene insertion. After preliminary screening of the T1 families of these 19 transformants in the field, six highly insect‐resistant homozygous lines were selected. These six homozygous transgenic lines were field tested for resistance to leaf folders and stem borers, and for their agronomic performance. The Cry1C* protein levels in leaves and endosperm were measured by ELISA. Subsequently, the elite transgenic line RJ5 was selected; this line not only possessed high resistance to leaf folders and stem borers, normal agronomic performance, but also Cry1C* expression was only 2.6 ng g?1 in the endosperm. CONCLUSION: These results indicated that RJ5 has the potential for widespread utility in rice production. Copyright © 2009 Society of Chemical Industry  相似文献   

13.
A simple bioassay is described in which the increase of in vivo chlorophyll fluorescence of unialgal continuous, cultures is related to the concentration of photosynthetic inhibitors by a hyperbolic function. Concentrations of the herbicide terbutryne detected by the bioassay in an aquarium microcosm were generally within 2 μg 1?1 of estimates by gas chromatography. A multispecies bioassay approach is proposed, which combines high sensitivity with a wide operating range of concentrations.  相似文献   

14.
Weeds are considered as a major threat to the production of oilseed Brassica crops. The use of herbicides that are safe for crops and effective in controlling weeds is crucial for the agronomists and farmers. Propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino)benzoate (ZJ0273), a derivative of 2-pyrimidinyloxy-N-aryl benzoate, is a new herbicide used in the rapeseed field. To evaluate the tolerance of Brassica species against this new herbicide, two cultivars of rapeseed Brassica napus cv. ZS 758 and Brassica rapa cv. Xiaoyoucai were tested by a foliar spray of ZJ0273 at the rate of 100, 500 and 1000 mg/L and a currently used ALS (acetolactate synthase)-inhibiting herbicide bispyribac-sodium (BS) at the rate of 100 mg/L. The results showed that both the cultivars of Brassica were less affected by ZJ0273 as compared to BS. Increasing level of ZJ0273 herbicide from 100 to 1000 mg/L increased the stress for the plants of both the cultivars as indicated by enhanced accumulation of malondialdehyde content. The activities of ALS and antioxidant enzymes (superoxide dismutase and peroxidase), soluble protein and sugar contents, photosynthetic system (SPAD value, photosynthetic rate and chlorophyll fluorescence) as well as the agronomic characters also declined consistently with each successive increase in ZJ0273 concentration. In general, the plants treated with 100 mg/L ZJ0273 recovered from the herbicide stress after 28 days. B. napus showed more tolerance than B. rapa to the new herbicide. Nevertheless, BS application at 100 mg/L did not allow the plants of both the cultivars to recover from the herbicidal stress.  相似文献   

15.
Changes in the concentrations of [14C]carbonyl-isoproturon and its degradation products in a clay-loam soil and in soil solution during incubation at 11°C and 18°C for 6 weeks, were measured following solvent extraction and soil solution sampling with glass microfibre filters. During herbicide degradation, 14CO2 was released (up to 20%) and unextractable radioactivity increased (up to 30%). Monomethyl isoproturon was the main metabolite in soil followed by metabolite X5 (possibly hydroxy di-des-methyl isoproturon). Isoproturon and monomethyl isoproturon were mainly adsorbed by soil whereas metabolite X5 was found mainly in the soil solution. Isoproturon concentrations declined in both soil and soil solution, but the percentage of the residual herbicide dissolved in the soil solution decreased from 26 to 15%. At low temperature, herbicide degradation occurred more slowly, and the degradation products were generally less abundant. However metabolite X5 was present at unexpectedly high levels, particularly in the soil solution. Evolution de l'isoproturon et de ses produits dégradation dans le sol et la solution du sol pendant l'incubation de Vherbicide a deux temperatures. L'évolution de l'isoproturon (marqué au 14C sur le carbonyle) et de ses produits de dégradation dans un sol argilo-limoneux et dans la solution du sol est suivie pendant 6 sêmaines d'incubation de l'herbicide à 11 et 18°C. Pour ce faire, la solution du sol est échantillonnée au moyen de filtres en fibres de verre et les composés sont extraits du sol par des solvants. Au cours de la dégradation, du 14CO2 est libéré (jusqu'à 20%) et la radioactivité non extraite s'accroit (jusqu'à 30%). L'isoproturon monométhyle est le principal métabolite dans le sol suivi du metabolite X5 (probablement le dérivé hydroxy didéméthylé). L'isoproturon et son dérivé monométhyle sont surtout adsorbés par le sol alors que le métabolite X5 est surtout en solution. La quantite d'iso-proturon diminue simultanemént dans le sol et la solution du sol mais la fraction dissoute de l'herbicide residuel décroit de 26 à 15%. A basse température, la dégradation de l'herbicide est plus lente et les produits de dégradation sont généralement moins abondants à l'exception notable du métabolite X5 qui est présent a un niveau élevé, en particulier dans la solution du sol. Veränderung der Konzentration von Isoproturon und seiner Abbauprodukte im Boden und in der Bodenlösung bei Inkubation Veränderung der Konzentration von [14C]-Car-bonyl-Isoproturon und seiner Abbauprodukte in einem Lehmboden und in der Bodenlösung wurden nach 6 Wochen Inkubation bei 11 und 18°C und Extraktion bzw. Probennahme durch Glasmikrofaserfilter gemessen. Während des Herbizidabbaus wurden bis zu 20 % der Radioaktivität als 14CO2 freigesetzt, und die nichtextrahierbare Radioaktivität nahm zu (bis zu 30 %). Monomethyl-Isoproturon war der Hauptmetabolit, gefolgt vom Metabolit X5 (möglicherweise Hydroxy-didesmethyl-Isoproturon). Isoproturon und Monomethyl-Isoproturon waren weitgehend an Bodenpartikeln adsorbiert, während der Metabolit X5 vorwiegend in der Bodenlösung gefunden wurde. Die Isoproturon-Konzentrationen nahmen sowohl im Boden als auch in der Bodenlösung ab, aber der Anteil des Herbizidrückstands in der Bodenlösung ging von 26 auf 15 % zurück. Bei der niedrigen Temperatur wurde das Herbizid langsamer abgebaut, und die Menge der Abbauprodukte war allgemein geringer. Der Metabolit X5 lag jedoch in unerwartet hoher Menge vor, besonders in der Bodenlösung.  相似文献   

16.
To assess its response to the herbicide, tribenuron‐methyl, samples of Nasturtium officinale were exposed to 0, 0.01, 0.05, 0.1, and 0.5 mg L?1 of tribenuron‐methyl for 1, 2, 4 and 7 days. The influence of this herbicide on the relative growth rate, electrolyte leakage, lipid peroxidation, photosynthetic pigmentation, protein content, and performance of anti‐oxidant enzymes, such as superoxide dismutase (SOD), catalase, and ascorbate peroxidase (APX), was examined. The results indicated that tribenuron‐methyl, applied at 0.5 mg L?1, affected plant growth negatively. It also was determined that chlorophyll a is the most responsive photosynthetic pigment to tribenuron–methyl exposure. Under stress conditions, the anti‐oxidant enzymes were up‐regulated compared to the control. The SOD activity was significantly stimulated, while the activity of APX was inhibited. A significant correlation was found between lipid peroxidation and SOD activity. The exposure period and herbicide concentration had significant effects on the biological responses against tribenuron‐methyl stress. These results may be useful for clarifying the effect of herbicides on non‐target aquatic plants.  相似文献   

17.
RH‐1965 is a new bleaching herbicide which causes newly developing leaf tissue to emerge devoid of photosynthetic pigments. Mode‐of‐action studies revealed that RH‐1965 inhibited the accumulation of both total chlorophyll and β‐carotene. Concomitantly, it induced the accumulation of the β‐carotene precursors, phytoene, phytofluene and, in particular, ξ‐carotene. Inhibition of chlorophyll accumulation by RH‐1965 is attributed to the photo‐oxidative destruction of chlorophyll in the absence of β‐carotene because RH‐1965 blocked chlorophyll accumulation to a greater extent under high light (50–330 µE m−2 s−1) than under low light (0.8 µE m−2 s−1) conditions. Radish (Raphanus sativus L) and barnyardgrass (Echinochloa crus‐galli (L) Beauv) were very senstive to RH‐1965. Under high light (330 µE m−2 s−1), the I50 values for inhibition of chlorophyll accumulation were 0.10 and 0.15 µM , respectively. Wheat (Triticum aestivus L), on the other hand, was much less sensitive to RH‐1965 (I50 = 1.4 µM ). It is concluded that the mode of action of RH‐1965 involves the inhibition of ξ‐carotene desaturation. © 2000 Society of Chemical Industry  相似文献   

18.
采用盆栽试验,以持绿性品系高粱B35和非持绿性高粱品系三尺三为试验材料,设置两个施氮处理(每盆0和6 g尿素),在灌浆期干旱-复水条件下测定光合特性及抗氧化代谢指标。结果表明,氮素显著提升B35和三尺三在干旱胁迫下净光合速率(Pn)、胞间CO2浓度(Ci)和蒸腾速率(Tr),提高了光系统II(PSII)反应中心活性;干旱胁迫下,施氮显著提高磷酸烯醇式丙酮酸羧化酶(PEPCase)活性,施氮使B35和三尺三PEP羧化酶分别提高了29.17%和25.66%, 而二磷酸核酮糖羧化酶(RuBPCase)活性对氮素不敏感。与三尺三相比,氮素对B35的光合能力的促进作用更加明显。干旱胁迫下氮素显著提升了超氧化物歧化酶(SOD)和过氧化物酶(POD)活性,B35和三尺三的SOD活性分别提高了25.56%和17.07%,POD活性分别提高了48.97%和76.62%。B35抗氧化酶的活性均高于三尺三。同时,氮素降低了B35和三尺三丙二醛(MDA)含量。复水后,氮素显著提升B35和三尺三Pn、Tr和PEP羧化酶活性,Pn升高幅度分别为33.66%和60.01%,Tr升高幅度分别为36.59%和41.57%,PEP羧化酶活性升高幅度分别为23.47%和18.64%,同时显著降低了初始荧光值(Fo),Fo降低幅度分别为18.50%、10.98%。施氮有利于提高复水后的B35和三尺三抗氧化酶活性,降低细胞膜脂过氧化程度。复水后,与三尺三相比,B35的光合特性和抗氧化酶活性较高。两个施氮处理的B35产量均高于三尺三,氮素使B35和三尺三生物产量分别增加9.73%和10.08%,籽粒产量分别增加24.47%和21.79%。氮素调节气孔导度及光系统Ⅱ活性,降低干旱对光合机构的损伤;复水后,氮素通过提高光系统Ⅱ活性,提高光合酶活性,光合性能提升。干旱及复水条件下,施氮提升抗氧化酶活性,减轻膜脂过氧化的损伤。氮素有利于干旱及复水条件下B35和三尺三光合特性及抗氧化酶系统能力的提升。  相似文献   

19.
Wild oat (Avena fatua L.) plants sprayed at the 2-or 3-leaf stages of growth with diclotop-methyl developed chlorosis over the entire leaf blade of all leaves. The leaves became necfrotic 7days after spraying Shool growth was inhibited. In wheat (Triticum aesicum L cv.Waldron) discrete chlorotic areas developed only where the herbicide convicted the 2nd or 3rd leaf with no visible injury so new growth uf'ter treutment. Growth inhibition of susceptible oat (Avena sativa L. cv. Garry) was sensitive to placement of diclutop-methyl near the upica and meristematic sites of the plant. Chlorosis and necrosis were independent of herbicide placement. Selective herbicide placement induced chlorosis only or both chlorosis and growth inhibition Root growth in wild oat and barley (Hordeum rulgare L. cv. Dickson) was strongly inhibited by 1–0 μM diclofop-methyl. Wild oat shoots were killed when seedlings were root-treated with 10 μM diclofop-melhyl. The 100 μM rool treatment killed barley shoots but only stunted the growth of wheat shoots by approximately 50%. In root-ireated wheat plants the shoots were turgid and developed a light purple colour, whereas in foliar-treated plants the shoots developed discrete chlorotic areas.  相似文献   

20.
The effects of a range of herbicide doses on crop:weed competition were investigated by measuring crop yield and weed seed production. Weed competitivity of wheat was greater in cv. Spark than in cv. Avalon, and decreased with increasing herbicide dose, being well described by the standard dose–response curve. A combined model was then developed by incorporating the standard dose–response curve into the rectangular hyperbola competition model to describe the effects of plant density of a model weed, Brassica napus L., and a herbicide, metsulfuron‐methyl, on crop yield and weed seed production. The model developed in this study was used to describe crop yield and weed seed production, and to estimate the herbicide dose required to restrict crop yield loss caused by weeds and weed seed production to an acceptable level. At the acceptable yield loss of 5% and the weed density of 200 B. napus plants m–2, the model recommends 0.9 g a.i. metsulfuron‐methyl ha–1 in Avalon and 2.0 g a.i. in Spark.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号