首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective  To validate intraocular pressure (IOP) readings obtained in cats with the TonoVet® tonometer. Animals studied  IOP readings obtained with the TonoVet® were compared to IOP readings determined by manometry and by the Tono‐Pen XL? in 1 normal cat and two glaucomatous cats. TonoVet® and Tono‐Pen XL? readings were also compared in a further six normal and nine glaucomatous cats. Procedures  The anterior chambers of both eyes of three anesthetized cats were cannulated and IOP was varied manometrically, first increasing from 5 to 70 mmHg in 5 mmHg increments, then decreasing from 70 to 10 mmHg in 10 mmHg decrements. At each point, two observers obtained three readings each from both eyes, with both the TonoVet® and Tono‐Pen XL?. IOP was measured weekly for 8 weeks with both tonometers in six normal and nine glaucomatous unsedated cats. Data were analyzed by linear regression. Comparisons between tonometers and observers were made by paired student t‐test. Results  The TonoVet® was significantly more accurate than the Tono‐Pen XL? (P = 0.001), correlating much more strongly with manometric IOP. In the clinical setting, the Tono‐Pen XL? underestimated IOP when compared with the TonoVet®. Conclusions  Both the TonoVet® and Tono‐Pen XL? provide reproducible IOP measurements in cats; however, the TonoVet® provides readings much closer to the true IOP than the Tono‐Pen XL?. The TonoVet® is superior in accuracy to the Tono‐Pen XL? for the detection of ocular hypertension and/or glaucoma in cats in a clinical setting.  相似文献   

2.
Objective To report ophthalmic findings in the Screech owl (Megascops asio). Sample population Twenty‐three, apparently healthy adult captive Screech owls in Maryland. Procedures OU of all owls underwent complete ophthalmic examination. One randomly assigned eye of each bird was measured by phenol red thread tear test (PRT), and the other eye by Schirmer tear test (STT). TonoVet® rebound tonometry and TonoPen‐XL® applanation tonometry were performed in each eye to measure IOP. Conjunctival swabs were cultured from one eye of 10 birds, corneal diameter was measured in OU of eight birds, and streak retinoscopy was performed on OU of seven birds. Ten birds were anesthetized, and A‐scan ultrasonography using a 15‐MHz probe was performed to obtain axial intraocular measurements. Results Ophthalmic abnormalities were noted in 24/46 (52%) of eyes. Median STT result was ≤ 2 mm/min, ranging ≤ 2–6 mm/min, and mean ± SD PRT was 15 ± 4.3 mm/15 s. Mean ± SD IOP were 9 ± 1.8 mmHg TonoVet®‐P, 14 ± 2.4 mmHg TonoVet®‐D, and 11 ± 1.9 mmHg TonoPen‐XL®. Coagulase negative staphylococcal organisms were cultured from all conjunctival swabs. Mean ± SD corneal dimensions were 14.5 ± 0.5 mm vertically and 15.25 ± 0.5 mm horizontally. All refracted birds were within one diopter of emmetropia. Mean ± SD axial distance from the cornea to the anterior lens capsule was 4.03 ± 0.3 mm, from cornea to the posterior lens capsule was 10.8 ± 0.5 mm, and from cornea to sclera was 20.33 ± 0.6 mm. Conclusions This study reports ophthalmic examination findings in Screech owls, and provide means and ranges for various ocular measurements. This is the first report of rebound tonometry and PRT in owls.  相似文献   

3.
Objective To compare intraocular pressure (IOP) measurements made on healthy adult rabbits without the effect of tranquilizers using the new applanation tonometer, Tono‐Pen Avia®, and the rebound tonometer Tonovet®. Methods Intraocular pressure was measured throughout the day (6:00, 9:00, 12:00, 15:00, and 18:00 h) in 38 adult New Zealand White rabbits (76 eyes). The animals were 20 males and 18 females, with a mean weight of 3.5 kg and an average age of 6 months. A complete ocular exam (including Schirmer tear test, fluorescein staining, slit‐lamp biomicroscopy, and direct ophthalmoscopy) was performed on all animals at the beginning of the trial. Rebound tonometry was performed, and after 10 min, anesthetic drops were instilled and applanation tonometry was carried out. IOP values obtained using the two techniques were analyzed statistically. Results The mean IOP was 9.51 ± 2.62 mmHg with Tonovet®, and 15.44 ± 2.16 mmHg with the Tono‐Pen Avia®. Significant differences between measurements with the two tonometers were observed (P < 0.001). The linear regression equation describing the relationship between the two tonometers was y = 0.4923x + 10.754 (y = Tonovet® and x = Tono‐Pen Avia®). High IOPs were recorded in the early measurements (6:00), but the average IOPs from both devices were statistically similar throughout the day (P = 0.086). The correlation coefficient was r2 = 0.357. No significant difference in IOP regarding gender was observed. Conclusion The Tono‐Pen Avia® recorded higher levels of IOP compared with the Tonovet®. Early in the day, the IOP of rabbits was higher than later in the day, regardless of the tonometer used.  相似文献   

4.
Objective To evaluate the effect of central corneal thickness (CCT) on the measurement of intraocular pressure (IOP) with the rebound (TonoVet®) and applanation (TonoPen XL®) tonometers in beagle dogs. Animal studied Both eyes of 60 clinically normal dogs were used. Procedures The IOP was measured by the TonoVet®, followed by the TonoPen XL® in half of the dogs, while the other half was measured in the reverse order. All CCT measurements were performed 10 min after the use of the second tonometer. Results The mean IOP value measured by the TonoVet® (16.9 ± 3.7 mmHg) was significantly higher than the TonoPen XL® (11.6 ± 2.7 mmHg; P < 0.001). The IOP values obtained by both tonometers were correlated in the regression analysis (γ2 = 0.4393, P < 0.001). Bland–Altman analysis showed that the lower and upper limits of agreement between the two devices were ?0.1 and +10.8 mmHg, respectively. The mean CCT was 549.7 ± 51.0 μm. There was a correlation between the IOP values obtained by the two tonometers and CCT readings in the regression analysis (TonoVet® : P = 0.002, TonoPen XL® : P = 0.035). The regression equation demonstrated that for every 100 μm increase in CCT, there was an elevation of 1 and 2 mmHg in IOP measured by the TonoPen XL® and TonoVet®, respectively. Conclusions The IOP obtained by the TonoVet® and TonoPen XL® would be affected by variations in the CCT. Therefore, the CCT should be considered when interpreting IOP values measured by tonometers in dogs.  相似文献   

5.
Objective The present study was undertaken to establish reference values for Schirmer tear test (STT) and intraocular pressure (IOP) in the long‐eared hedgehog (Hemiechinus auritus). Animals Fourteen healthy long‐eared hedgehogs (H. auritus) of either sex were studied. Procedures The hedgehogs were individually immobilized with an intramuscular injection of combined Ketamine (20 mg/kg) and Diazepam (0.5 mg/kg), and each animal underwent ophthalmic examinations including: STT, tonometry, biomicroscopy, and indirect ophthalmoscopy. Results No significant effects of animal gender, weight, side (right vs. left eye) were found in this study. Mean (SD) STT values for all eyes (n = 28) were 1.7 ± 1.2 mm/1 min with a range of 0–4 mm/1 min. Mean STT in male animals was 2.2 ± 1.2. Mean STT in female Hedgehogs was 1.3 ± 1.1. Mean (SD) IOP values by applanation tonometry were 20.1 ± 4.0 mmHg (range 11.5–26.5 mmHg). Mean (SD) IOP values by applanation tonometry were 18.2 ± 4.0 and 22.0 ± 3.2 mmHg for males and females, respectively. Conclusions This study reports STT and IOP findings in long‐eared hedgehogs (H. auritus).  相似文献   

6.
Objective To examine the accuracy and reproducibility of intraocular pressure (IOP) measurements obtained by the TonoVet® rebound tonometer. Animals studied Freshly enucleated healthy eyes of 44 free‐ranging birds of prey out of the species Haliaeetus albicilla, Accipiter gentilis, Accipiter nisus, Buteo buteo, Falco tinnunculus, Strix aluco, Asio otus and Tyto alba euthanized because of unrelated health problems. Procedures IOP readings from the TonoVet® were compared with a manometric device, with IOP being set from 5 to 100 mmHg in steps of 5 mmHg by adjusting the height of a NaCl solution reservoir connected to the eye. Reproducibility of the TonoVet® readings was determined by repeated measurements. Results TonoVet® and manometer values showed a strong linear correlation. In the Accipitridae, the TonoVet® tended to increasingly overestimate IOP with increasing pressure, while in the other families, it increasingly underestimated it. In the Sparrowhawk, the values almost represent the ideal line. Reproducibility of TonoVet® values decreases with increasing pressure in the clinically important range from 5 to 60 mmHg. Conclusion IOP values measured with the TonoVet® demonstrated species specific deviation from the manometric measurements. These differences should be considered when interpreting IOP values. Using the regression formulae presented, corrected IOP values could be calculated in a clinical setting.  相似文献   

7.
Objective  To determine the accuracy of and to establish reference values for a rebound tonometer (Tonovet®) in normal feline eyes, to compare it with an applanation tonometer (Tonopen Vet®) and to evaluate the effect of topical anesthesia on rebound tonometry.
Procedures  Six enucleated eyes were used to compare both tonometers with direct manometry. Intraocular pressure (IOP) was measured in 100 cats to establish reference values for rebound tonometry. Of these, 22 cats were used to compare rebound tonometry with and without topical anesthesia and 33 cats to compare the rebound and applanation tonometers. All evaluated eyes were free of ocular disease.
Results  Both tonometers correlated well with direct manometry. The best agreement with the rebound tonometer was achieved between 25–50 mmHg. The applanation tonometer was accurate at pressures between 0 and 30 mmHg. The mean IOP in clinically normal cats was 20.74 mmHg with the rebound tonometer and 18.4 mmHg with the applanation tonometer. Topical anesthesia did not significantly affect rebound tonometry.
Conclusions  As the rebound tonometer correlated well with direct manometry in the clinically important pressure range and was well tolerated by cats, it appears suitable for glaucoma diagnosis. The mean IOP obtained with the rebound tonometer was 2–3 mmHg higher than that measured with the applanation tonometer. This difference is within clinically acceptable limits, but indicates that the same type of tonometer should be used in follow-up examinations in a given cat.  相似文献   

8.
Purpose To perform selected ophthalmic diagnostic tests in healthy capuchin monkeys (Cebus apella) with the aim of establishing normal physiological reference values for this species. Methods A total of 15 healthy, capuchin monkeys were used to test most of the parameters in this investigation. Five of the 15 monkeys were used for the evaluation of normal conjunctival flora. Ages varied from 6 to 20 years of age. Selected diagnostic ocular tests were performed including Schirmer tear test (STT), tonometry using an applanation tonometer (Tonopen®), central corneal thickness (CCT) using an ultrasonic pachymeter (Sonomed, Micropach®, Model 200P+) and culture of the normal conjunctival bacterial flora. Results and discussion Results for selected ocular diagnostic tests investigated here for the capuchin monkey eye were as follows: IOP: 18.4 ± 3.8 mmHg; STT: 14.9 ± 5.1 mm/min; CCT: 0.46 ± 0.03 mm. No statistically significant differences between ages or genders were found for any of the results. Streptococcus sp. and Corynebacterium sp. were isolated from healthy conjunctival and eyelid margins, suggesting they are normal constituents of the conjunctival flora of the capuchin monkey. The data obtained in this investigation will help veterinary ophthalmologists and laboratory animal medicine specialists to more accurately diagnose ocular diseases in the capuchin monkey. These ophthalmic reference values will be particularly useful to diagnose discrete or unusual pathological changes of the capuchin monkey eye.  相似文献   

9.
Objective To determine intraocular pressure (IOP) in adult yellow‐footed tortoises using applanation tonometry. Animals Fifteen healthy adult captive yellow‐footed tortoises (eight males and seven females). Procedures Intraocular pressures were estimated for tortoises by using an applanation tonometer after topical anesthesia. Body length, measured from nuchal to anal scutes, ranged from 27.5 to 57.2 cm. Five measurements from each eye were obtained by a single observer in an ambient temperature of approximately 30 °C. Results Mean ± SEM IOP of 30 eyes of 15 yellow‐footed tortoises was 14.2 ± 1.2 mmHg. Range of IOP was 6–30 mmHg for tortoises. Significant differences were detected neither between right and left eyes (P = 0.357) of individual tortoises, nor between males and females (P = 0.524). Observer's readability was good (intraclass coefficient = 0.65), and IOP did not change over the ordered five measurements. Conclusions There was no significant difference in IOP between males and females in this specie. Tonometry values for normal eyes may represent a useful diagnostic methodology for recognition and treatment of ocular diseases in reptiles.  相似文献   

10.
Objective To establish reference values for the Schirmer tear test I (STT I), the phenol red thread tear test (PRTT), the intraocular pressure (IOP) with rebound tonometry, to determine the corneal sensitivity for healthy chinchillas, and to describe clinical aspects of normal chinchilla eyes. Animals One hundred and twenty‐two eyes of 61 healthy pet chinchillas of different age and gender were investigated. Procedures A full ophthalmic exam including slit lamp biomicroscopy, ophthalmoscopy, measurement of STT I, PRTT, determination of the corneal touch threshold (CTT), and the measurement of the IOP (TonoVet®) was performed. The normal appearance of the lid, the iris, the lens, the fundus, and the optic nerve disc was evaluated. Results The results of the STT I were very low and not reliable, and the measurement was discontinued. The median value of PRTT was 14.0 mm wetting/15 s (mean 14.6 ± 3.5 mm wetting/15 s). The median CTT was 32.5 mm (mean 31.2 ± 7.0 mm) respectively 1.2 g/mm2 (mean 1.5 ± 0.9 g/mm2). The median IOP was 3.0 mmHg (mean 2.9 ± 1.8 mmHg). The predominating iris color was brown. The fundus pigmentation varied. Few lens alteration were seen in otherwise healthy chinchilla eyes. Most chinchillas had myelinated discs. Optic nerve cupping was present in 62% of the animals. Conclusion Because of the small amount of tears, the PRT test is recommended for tear measurements in chinchillas. The IOP in chinchillas seems to be quiet is low in comparison to other rodents.  相似文献   

11.
The purpose of this study was to establish normal physiologic reference values for intraocular pressure (IOP) and Schirmer tear test (STT) results in clinically normal ostriches (Struthio camelus). Twenty ostriches of both sexes, 10 juveniles (1.5-2 yr of age) and 10 adults, were included in this study. Complete ophthalmic examination was performed prior to this investigation. STT was performed by inserting a standard sterile STT strip over the ventral lid margin into the ventral conjunctival sac for 60 sec. Following the STT, IOP was measured using applanation tonometry with the Tono-Pen Vet tonometer after topical instillation of one drop of 0.5% proparacaine ophthalmic solution. The mean +/- SD and range of Tono-Pen readings of IOP for all birds was 18.8 +/- 3.5, with a range of 12-24. Mean IOP in juvenile ostriches was 19.7 +/- 3.6. Mean IOP in adult ostriches was 16.9 +/- 2.9. There was no statistically significant difference between young and adult birds (P = 0.07). The mean STT values in the present study were 16.3 +/- 2.5 mm/1 min when measurements from both eyes were averaged. Mean STT in juvenile and adult ostriches was 15.4 +/- 1.8 and 17.2 +/- 2.9 mm/1 min, respectively. There was no statistically significant difference between young and adult birds (P = 0.11). No statistically significant differences between genders were found for any of the results (P > or = 0.41). In conclusion, this study provides normal reference range values for STT and IOP in clinically healthy ostriches.  相似文献   

12.
Tonometry was performed to estimate intraocular pressure (IOP) in 12 Nubian ibexes ( Capra ibex nubiana ), 10 Grant zebras ( Equus burchelli  ) and five Arabian oryxes ( Oryx leucoryx ), using both applanation (Tono-Pen) and/or indentation (Schiotz) tonometers. Animals were anesthetized with a mixture of etorphine hydrochloride and acepromazine maleate. Mean (± SD) IOP in the ibex was 17.95 ± 4.78 mmHg (24 eyes, indentation tonometry). In the zebra, indentation tonometry (20 eyes) yielded a mean IOP of 25.30 ± 3.06 mmHg, and applanation tonometry (six eyes) yielded a mean IOP of 29.47 ± 3.43 mmHg. In the oryx, indentation tonometry (five eyes) yielded a mean IOP of 22.68 ± 8.15 mmHg, and applanation tonometry (10 eyes) yielded a mean IOP of 11.76 ± 3.43 mmHg. There were no significant effects of gender, age, weight, side or reading number on the IOP measured in any of the three species. No significant differences were found between the IOP of the three species, nor between the readings of the two instruments, although some of the P -values were close to the significance level.  相似文献   

13.
Intraocular pressure (IOP) was measured in normal dairy cows by applanation tonometry. In the first study of 15 Holstein and 17 Jersey cows the mean IOP by Mackay-Marg tonometry was 27.5 ± 4.8 mmHg (range 16–39 mmHg); no significant differences ( P < 0.92) were observed between the Holstein and Jersey breeds. In the second study of 15 Holstein and 12 Jersey cows, the mean IOPs by Mackay-Marg and TonoPen-XL tonometry were 28.2 ± 4.6 mmHg (range 19–39 mmHg) and 26.9 ± 6.7 mmHg (range 16–42 mmHg), respectively. Comparisons of the Mackay-Marg and TonoPen tonometers indicated no significant differences ( P < 0.16). The mean and range of IOP in normal dairy cows within 2 SD (95% of the population) is 27 mmHg with a range of 16–36 mmHg.  相似文献   

14.
The objective of this study was to evaluate and validate the accuracy of the Perkins handheld applanation tonometer for measuring intraocular pressure (IOP) in horses and cattle. Both eyes of 10 adult horses and cattle were evaluated in a postmortem study. The eyes from 10 clinically normal adult horses and cattle were also examined after bilateral auriculopalpebral nerve block and topical anesthesia for an in vivo study. IOP was measured postmortem using direct manometry (measured with an aneroid manometer) and tonometry (measured with a Perkins handheld applanation tonometer). The correlation coefficients (r2) for the data from the postmortem manometry and Perkins tonometer study were 0.866 for horses and 0.864 for cattle. In the in vivo study, IOP in horses was 25.1 ± 2.9 mmHg (range 19.0~30.0 mmHg) as measured by manometry and 23.4 ± 3.2 mmHg (range 18.6~28.4 mmHg) according to tonometry. In cattle, IOP was found to be 19.7 ± 1.2 mmHg (range 18.0~22.0 mmHg) by manometry and 18.8 ± 1.7 mmHg (range 15.9~20.8 mmHg) by tonometry. There was a strong correlation between the IOP values obtained by direct ocular manometry and the tonometer in both horses and cattle. Our results demonstrate that the Perkins handheld tonometer could be an additional tool for accurately measuring IOP in equine and bovine eyes.  相似文献   

15.
Distribution of intraocular pressure in dogs   总被引:2,自引:0,他引:2  
Intraocular pressure (IOP) was measured by four different applanation tonometers in normal dogs. By MacKay-Marg tonometry in 391 dogs (772 eyes) the mean ± SD IOP was 18.8 ± 5.5 mmHg (range 8–52 mmHg). Using Tono-Pen XL tonometry in 421 dogs (823 eyes) the mean IOP was 19.2 ± 5.9 mmHg, and the range was 4.42 mmHg. With MMAC-II tonometry in 80 dogs (158 eyes), the mean IOP was 15.7 ± 2.8 mmHg with a range of 10–30 mmHg. By pneumatonograph tonometry in 135 dogs (255 eyes), the mean IOP was 22.9 ± 6.1 mmHg and the range was 10–47 mmHg. In this study 53 breeds were represented. Of those breeds with six animals or more, no significant differences were detected in IOP between breeds ( P > 0.353) or sex ( P > 0.270). There was a significant decline of 2–4 mmHg ( P > 0.0001) in IOP as age increased from less than 2 years to greater than 6 years of age. This trend was present with all of the four tonometers. There were no significant differences between the MacKay-Marg and TonoPen-XL tonometers ( P > 0.198), but significant differences with the MMAC-II ( P > 0.001) and pneumatonograph ( P > 0.001) tonometers existed compared to the first two instruments. Based on this study and the literature, the mean IOP for the normal dog is 19.0 mmHg with a range of 11 (5%) and 29 (95%) mmHg.  相似文献   

16.
OBJECTIVE: To compare intraocular pressure (IOP) measurements obtained by recently introduced rebound tonometer (ICare) and the well-known applanation tonometer Tonopen XL in normal canine eyes. METHODS: In a prospective, randomized, single-center study, IOP measurements by ICare and Tonopen XL tonometers were compared in 160 nonpathologic canine eyes (80 dogs). Complete slit-lamp biomicroscopy and indirect ophthalmoscopy were performed on each dog. Rebound tonometry was performed first and immediately after topical anesthetic drops were instilled in both eyes. One minute after the application of the topical anesthetic, applanation tonometry was performed in both eyes. The intraocular pressures obtained by use of both techniques were compared by statistical analysis. RESULTS: The mean IOP readings were 9.158 mmHg (SD 3.471 mmHg) for the ICare tonometer (x) and 11.053 mmHg (SD 3.451 mmHg) for the Tonopen XL readings (y). The mean difference in intraocular pressures (-1.905 mmHg) was within clinically acceptable limits. The correlation coefficient (r2) of the relationship within both tonometers was r2=0.7477. The corresponding linear regression between the tonometers readings was y=0.6662x+4.942. CONCLUSIONS: Intraocular pressures obtained with the ICare rebound tonometer were concordant with the IOP readings obtained by applanation Tonopen XL, but ICare values were significantly (P<0.0001) lower. Rebound tonometry could be an appropriate tonometry method for routine clinical use after its calibration for canine eyes.  相似文献   

17.
OBJECTIVE: To examine the feasibility and accuracy of a handheld rebound tonometer, TonoVet, and to compare the intraocular pressure (IOP) readings of the TonoVet with those of an applanation tonometer, TonoPen XL, in normal Eurasian Eagle owls. ANIMALS STUDIED: Ten clinically normal Eurasian Eagle owls (20 eyes). PROCEDURES: Complete ocular examinations, using slit-lamp biomicroscopy and indirect ophthalmoscopy, were conducted on each raptor. The IOP was measured bilaterally using a rebound tonometer followed by a topical anesthetic agent after 1 min. The TonoPen XL tonometer was applied in both eyes 30 s following topical anesthesia. RESULTS: The mean +/- SD IOP obtained by rebound tonometer was 10.45 +/- 1.64 mmHg (range 7-14 mmHg), and by applanation tonometer was 9.35 +/- 1.81 mmHg (range 6-12 mmHg). There was a significant difference (P = 0.001) in the IOP obtained from both tonometers. The linear regression equation describing the relationship between both devices was y = 0.669x + 4.194 (x = TonoPen XL and y = TonoVet). The determination coefficient (r(2)) was r(2) = 0.550. CONCLUSIONS: The results suggest that readings from the rebound tonometer significantly overestimated those from the applanation tonometer and that the rebound tonometer was tolerated well because of the rapid and minimal stress-inducing method of tonometry in the Eurasian Eagle owls, even without topical anesthesia. Further studies comparing TonoVet with manometric measurements may be necessary to employ rebound tonometer for routine clinical use in Eurasian Eagle owls.  相似文献   

18.
OBJECTIVE: To compare intraocular pressure (IOP) measurements obtained with a rebound tonometer in dogs and horses with values obtained by means of applanation tonometry and direct manometry. DESIGN: Prospective study. ANIMALS: 100 dogs and 35 horses with clinically normal eyes, 10 enucleated eyes from 5 dogs, and 6 enucleated eyes from 3 horses. PROCEDURES: In the enucleated eyes, IOP measured by means of direct manometry was sequentially increased from 5 to 80 mm Hg, and IOP was measured with the rebound tonometer. In the dogs and horses, results of rebound tonometry were compared with results of applanation tonometry. RESULTS: For the enucleated dog and horse eyes, there was a strong (r2 = 0.99) linear relationship between pressures obtained by means of direct manometry and those obtained by means of rebound tonometry. Mean +/- SD IOPs obtained with the rebound tonometer were 10.8 +/- 3.1 mm Hg (range, 5 to 17 mm Hg) and 22.1 +/- 5.9 mm Hg (range, 10 to 34 mm Hg) for the dogs and horses, respectively. Mean IOPs obtained with the applanation tonometer were 12.9 +/- 2.7 mm Hg (range, 8 to 18 mm Hg) and 21.0 +/- 5.9 mm Hg (range, 9 to 33 mm Hg), respectively. Values obtained with the rebound tonometer were, on average, 2 mm Hg lower in the dogs and 1 mm Hg higher in the horses, compared with values obtained with the applanation tonometer. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that the rebound tonometer provides accurate estimates of IOP in clinically normal eyes in dogs and horses.  相似文献   

19.
Objective To estimate mean Schirmer tear test (STT) and intraocular pressure (IOP) values in healthy koalas both conscious and anesthetized. Methods Data were gathered from koalas in Victoria, Australia. Conscious examinations were performed on captive koalas. Free‐ranging (wild) koalas were examined under anesthesia. Anesthesia was induced using alfaxalone, and animals were maintained on oxygen and isoflurane if required. All animals were healthy and had no surface ocular pathology detectable during slit lamp biomicroscopy. STT I tests were performed using commercial STT test strips placed in the lower fornix for 1 min. IOP was measured using an applanation tonometer after topical anesthesia. The higher value of the two eyes for both STT and IOP was analyzed. STT was measured in 53 koalas (34 conscious, 19 anesthetized) and IOP was measured in 43 koalas (30 conscious, 13 anesthetized). A two‐sample t‐test was used to compare means. A P‐value <0.05 was regarded as significant. Mean ± SD is presented. Results The mean higher STT in conscious koalas was 10.3 ± 3.6 mm wetting/min and in anesthetized koalas it decreased to 3.8 ± 4.0 mm wetting/min (P < 0.0001). The mean higher IOP in conscious koalas was 15.3 ± 5.1 mmHg, and in anesthetized koalas it was 13.8 ± 3.4 mmHg (P = 0.32). There was no effect of sex on either STT or IOP. Conclusions The mean and SD of STT and IOP values for koalas both conscious and anesthetized were reported. The mean STT was significantly reduced by alfaxalone anesthesia.  相似文献   

20.
An Ahmed valve implantation with an Ologen® Collagen Matrix (Ologen® CM, Aeon Astron, Leiden, the Netherlands) was performed for the treatment of uncontrolled glaucoma in a cat. This cat was a 5‐year‐old castrated Russian Blue male with a 12‐week history of conjunctival hyperemia and mydriasis of the left eye. During the ophthalmic examination, the intraocular pressure (IOP) oculus sinister (OS) was 52 mmHg, and a narrow iridocorneal angle (ICA) was detected by gonioscopy. Medical treatment with Cosopt® (2% dorzolamide and 0.5% timolol) failed to decrease the IOP. The left eye still had vision, and an Ahmed valve implantation was performed. During the gonioimplantation, Ologen® CM was used to inhibit scar formation around the valve. Following the operation, the IOP was stable at an approximate average of 15 mmHg during the 7‐month follow‐up period, and vision in the left eye was retained without medication. An adequate subconjunctival filtering bleb was formed after 140 days. This is the first case report in which an Ahmed valve gonioimplant with an Ologen® CM has been used for the surgical treatment of glaucoma in a cat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号