首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In river channel beds composed of a wide range of grain sizes, the bed material is often arranged in discrete patches discernable by relative texture. These bed material patches are the primary source of entrainable coarse sediment within the channel system and their composition and size have been found to influence the composition and rate of sediment transport. Twelve coarse (gravel–cobble) sediment patches distributed throughout the channel network within a 4.53 ha watershed in southeastern Arizona were monitored for 2 years. Changes in patch area and grain size were measured and painted patch grains were monitored to confirm that patch grains were mobilized during flow. Individual coarse bed material patches exhibited variable persistence during flows with return frequencies ranging from approximately 1 year to 4.6 years. While no patch fully dispersed during the study period, two new patches formed. Most coarse patches remained relatively stable in area and grain-size distribution despite the entrainment of patch grains as lost grains were sufficiently replaced with sediment from upstream. Because of the grain replacement process and the effect of other sediment supply dynamics, the changes in patch area and grain-size distribution display a complex relationship with the magnitude of predicted grain mobilization within each patch. Results indicate that relative stability varies from patch to patch, influenced by the balance of patch grains transported out of the patch and the deposition of new grains into the patch. Predictive models of coarse sediment transport and yield that assume the channel bed is a fixed source of sediment supply may not adequately capture the sediment dynamics within patchy channel beds and should be used with caution when applied to these environments due to the possibility of patch instability as documented in this study.  相似文献   

2.
The scale of spatial heterogeneity in soil nitrogen (N) concentrations varies considerably in grazed systems, because grazers vary in the volume of urine they excrete. This could affect how urine-N is processed, and subsequently how much N is lost from the system, as diffusion and plant effects on soil nutrient concentrations can be scale-dependent. Two field experiments were performed; one measured the impact of urine patch size (small, medium or large) on soil inorganic N pools and fluxes over time, and the other assessed whether urine patch size affected plant responses and system N retention even if the same total amount of urine was applied. Soil from inside small urine patches retained inorganic N for shorter amounts of time, resulting in lower plant biomass and N uptake than that inside larger patches. Although system nitrogen retention was not affected by patch size, it appeared that larger patches had a greater potential to lose N due to the longer period over which soil inorganic N concentrations remained high. This suggests that systems grazed by larger organisms are more prone to lose N through patch size effects than those grazed by smaller ones.  相似文献   

3.
The unambiguous recognition of a species’ habitat is a matter of debate. For terrestrial species, habitat is often defined as physical patches of a certain vegetation type in a matrix of non-habitat. Ecological resources that make up the habitat of a species may, however, only cover subsets of vegetation types or can be spatially dispersed in a complex way over different vegetation types. Here we present and test a procedure to recognize and delineate habitat according to a resource-based approach instead of a vegetation-based approach. We used the green hairstreak butterfly (Callophrys rubi) in a heathland landscape as a study case. Our resource-based habitat approach selects those zones that comprise essential resources and conditions within an appropriate spatial window. Variables that were retained in a logistic regression model were used to calculate larval, adult and combined habitat indices in a GIS, taking into account thermal constraints on resource-use, as this is a key habitat aspect for this heliothermous insect. To group different (and sometimes scattered) ecological resources into functional habitat zones, we derived a measure of space-use from mark-release-recapture data. By least-cost modelling this spatial window was adapted to the nature of the vegetation between sets of resources. The habitat zones that were delineated using this approach matched the observed distribution of butterflies significantly better than did a classic approach based on vegetation types with host plants only. Our approach provides concrete output for conservation purposes, like recognizing zones with the highest potential for habitat restoration.  相似文献   

4.
Habitat colonization and abandonment affects the distribution of a species in space and time, ultimately influencing the duration of time habitat is used and the total area of habitat occupied in any given year. Both aspects have important implications to long-term conservation planning. The importance of patch isolation and area to colonization-extinction events is well studied, but little information exists on how changing regional landscape structure and population dynamics influences the variability in the timing of patch colonization and abandonment events. We used 26 years of Kirtland’s Warbler (Dendroica kirtlandii) population data taken during a habitat restoration program (1979-2004) across its historical breeding range to examine the influence of patch attributes and temporal large-scale processes, specifically the rate of habitat turnover and fraction of occupied patches, on the year-to-year timing of patch colonization and abandonment since patch origin. We found the timing of patch colonization and abandonment was influenced by patch and large-scale regional factors. In this system, larger patches were typically colonized earlier (i.e., at a younger age) and abandoned later than smaller patches. Isolated patches (i.e., patches farther from another occupied patch) were generally colonized later and abandoned earlier. Patch habitat type affected colonization and abandonment; colonization occurred at similar patch ages between plantation and wildfire areas (9 and 8.5 years, respectively), but plantations were abandoned at earlier ages (13.9 years) than wildfire areas (16.4 years) resulting in shorter use. As the fraction of occupied patches increased, patches were colonized and abandoned at earlier ages. Patches were abandoned at older ages when the influx of new habitat patches was at low and high rates. Our results provide empirical support for the temporal influence of patch dynamics (i.e., patch destruction, creation, and succession) on local colonization and extinction processes that help explain large-scale patterns of habitat occupancy. Results highlight the need for practitioners to consider the timing of habitat restoration as well as total amount and spatial arrangement of habitat to sustain populations.  相似文献   

5.
Most studies of faunal habitat fragmentation are based on a human perspective of the landscape in which landscape elements are classified as habitat and non-habitat. Moreover, many landscape models that define “habitat patches” assume that the same set of patches will be suitable for all taxa or a broad range of taxa. McIntyre and Hobbs [Conservation Biology 13 (1999) 1282] recently proposed a model in which landscapes can be classified according to the amount of habitat remaining and in which the remaining habitat can correspond to a continuum or gradient of modification. The perception of a landscape as being intact, variegated, fragmented or relictual [sensu Conservation Biology 13 (1999)] will depend on the capacity of individual species to utilise modified habitat. We suggest that although the continuum concept of habitat use is reasonably well established for plants, faunal studies have often ignored the notion of a gradient of habitat use and have classified landscape areas simplistically and inappropriately as either habitat or non-habitat. Data on birds in southeastern Australia are used to illustrate how the binary view of habitat can be incorrect. Birds were sampled in landscapes that ranged from intact to relictual as defined from an anthropocentric perspective. Our data: (1) illustrated a wide range of bird responses to habitat modification including many that might have been overlooked using a simple binomial approach to habitat classification, and (2) highlighted the fact that the way in which humans perceive landscapes may not correspond to how some elements of the biota perceive the same landscape. Viewing landscapes as a species-specific gradient of states of remaining habitat and condition has important implications for undertaking studies of human impacts on biodiversity and also integrating conservation considerations in production environments. It also challenges the effectiveness of “quick fixes” such as species-based biodiversity surrogates schemes and the uncritical use of generic landscape indices to save “habitat” because the assumption that all species will conform to the same landscape pattern will not hold.  相似文献   

6.
The results are described of comparisons between actual values for patch occupancy for two species of Australian small mammals (Bush Rat Rattus fuscipes and Agile Antechinus Antechinus agilis) determined from field sampling and predictions of patch occupancy made using VORTEX, a generic simulation model for Population Viability Analysis (PVA). The work focussed on a fragmented forest in south-eastern Australia comprised of a network of 39 patches of native eucalypt forest surrounded by extensive stands of exotic softwood Radiata Pine (Pinus radiata) plantation. A range of modelling scenarios were completed in which four broad factors were varied: (1) inter-patch variation in habitat quality; (2) the pattern of inter-patch dispersal; (3) the rate of inter-patch dispersal; and (4) the population sink effects of the Radiata Pine matrix that surrounded the eucalypt patches. Model predictions were made for the total number of animals, the distribution of animal density among patches, the total number of occupied patches, and the probability of patch occupancy. Predictions were then compared with observed values for these same measures based on extensive field surveys of small mammals in the patch system. For most models for the Bush Rat, the predicted relative density of animals per patch correlated well with the values estimated from field surveys. Predictions of patch occupancy were not significantly different from the actual value for the number of occupied patches in half the models tested. The better models explained 10-16% of the log-likelihood of the probability of patch occupancy. While some of the models gave reasonable forecasts of the number of occupied patches, even in these cases, they had only moderate ability to predict which patches were occupied. Field surveys revealed there was no relationship between patch area and population density for the Agile Antechinus—an outcome correctly predicted by only a few models. Five of the 18 scenarios completed for the Agile Antechinus gave predicted numbers of occupied patches not significantly different from the observed number. In each of these five cases, large standard deviations around the mean predicted value meant uncertainty generated by the simulation model limited the predictive power of the PVA. Some of the models gave reasonable predictions for the number of occupied patches, but those models were unable to predict which ones were actually occupied. The results of our study suggest that key processes influencing which specific patches would be occupied were not modelled appropriately. High levels of variability and fecundity drive the population dynamics of the Bush Rat and Agile Antechinus, making the patch system unpredictable and difficult to model accurately. Despite the fact that both the Bush Rat and the Agile Antechinus are two of the most studied mammals in Australia, there are attributes of their biology that are presently poorly understood (which were not included in the VORTEX model), but which could strongly influence patch occupancy. For example, local landscape features may be important determinants of inter-patch movement and habitat utilisation in the patch system. Further empirical studies are needed to explore this aspect of small mammal biology.  相似文献   

7.
Most existing reserve selection algorithms are static in that they assume that a reserve network is designed and patches are selected by decision-makers at a single point in time. In reality, however, selection processes are often dynamic and patches are selected one by one or in several groups because for example there are insufficient funds at the beginning of the process to put all the patches under protection. Finding an optimal dynamic selection strategy is tricky since due to the complementarity principle the value of a particular patch depends on the presence of other patches in the network - including those that have not yet been selected. As unprotected patches may be lost, e.g., through development, the long-term value of selecting a particular patch is uncertain. Existing dynamic selection algorithms are either ‘myopic’ and consider only those patches that have already been protected, totally ignoring future uncertainty, or they are based on stochastic dynamic programming, which delivers the optimal strategy taking uncertainty into account but is numerically too complex to be employed in actual selection problems. In this paper, a ‘foresighted’ selection strategy as well as a number of variants are developed using probability theory. The different strategies are compared for a large number of selection problems. All variants outperform the myopic strategy and perform close to the optimal strategy. However, the performances of all strategies, including the optimal and the myopic one, are not dramatic.  相似文献   

8.
[目的]研究斑块中优势种的生活史策略及对养分限制的响应,以及优势种生态化学计量学特征随季节变化的响应规律,为植物种群演替及变化过程研究提供科学依据。[方法]确定3类典型斑块:斑块A(短花针茅)、斑块B(短花针茅+草木樨状黄耆)、斑块C(猪毛蒿+苦豆子+老瓜头),测定优势种的全碳、全氮、全磷含量,计算C∶N, C∶P, N∶P并进行方差分析。采用线性回归分析法对不同斑块C,N,P化学计量进行逐步回归分析。[结果]各斑块优势种的C, N, P及其计量比特征在生长季内的变化规律不同,且各指标季节间的变化特征在不同斑块之间也存在差异;植物C含量在不同优势种和不同斑块间的差异均不显著;短花针茅N含量显著小于其他优势种,导致斑块A的N含量总体显著小于另外两个斑块;植物P含量在斑块A中随着季节的变化表现为增长的趋势,而在斑块C中表现为先减小后增大的变化过程;斑块A植物的C∶N值无显著的季节变化,C∶P和N∶P值在春季显著高于夏秋季;斑块B和斑块C不同优势种的C∶N, C∶P和N∶P值均表现出显著的差异性,但随季节变化过程不同,斑块B除C∶N值外均表现出下降的趋势,而斑块C各比值均表现出先增大后减小的变化规律。[结论] 3种斑块C,N,P含量表现出不同的相关性;斑块A表现为防御性策略,斑块B表现为竞争性策略,而斑块C表现为竞争性和防御性策略共存。  相似文献   

9.
The combined effects of rapid habitat loss, fragmentation and disturbance on tropical forest avifaunas have not been examined to date. The southern Amazonian ‘arc of deforestation’ marks the boundary of the most aggressive agricultural frontier in tropical forests worldwide. We sampled 21 disturbed and undisturbed primary forest patches, ranging in size from 1.2 to 14,476 ha, to elucidate the synergistic effects of both forest disturbance and fragmentation on bird community structure, and pinpoint which species were the “winners” and “losers” from this process. A number of forest patch metrics, derived from an independent remote sensing approach, explained much of the resulting presence/absence matrix. The bird community exhibited a highly nested structure, with small patches being most dissimilar from one another. Bird species differed in their response to both forest patch size and forest canopy perforation according to their dependence on closed-canopy primary forest. Forest patch geometry, which clearly modulated the shape of species-area relationships accounted for 83-96% of the variation in species richness, but forest habitat quality resulting from logging and surface-fire disturbance was also a significant predictor of species richness for the most forest-dependent taxa.  相似文献   

10.
In the Monte Austral Neuquino, Argentina, vegetation is arranged in patches. Understanding the mechanisms involved in their distribution is critical for preventing desertification. The working hypothesis was that vegetation patches reduce environmental stress on the plants. Plant patches were classified into four microenvironments: windward; below the dominant shrubs (subcanopy); vegetation at the patch periphery (canopy edge) and bare patch interspaces (open). We determined seedling survival of the dominant species in each microenvironment, using a marking method of seedlings established from sown seeds. In addition, we measured the environmental characteristics in the four microenvironments, and associated them with seedling survival. Study species were the perennial grasses Leymus erianthus (Phil.) Dubcovsky, Stipa neaei Nees ex Steudel and Poa ligularis Nees ex Steudel, and the shrubs Larrea divaricata Cav. and Atriplex lampa Gill ex Moquin. Results supported the hyphothesis only for L. erianthus and S. neaei (but not for the other three species that showed higher seedling survival in the subcanopy than in the patch interspaces after 1 year from sowing). This study determined that (1) reduced environmental stress does not guarantee seed germination and seedling survival of a given species in the plant community and (2) seedling establishment will not be possible for any species of the plant community in the patch interspaces under the study conditions in the region. This is mostly because soil temperatures can reach up to 50°C in the patch interspaces in years of scanty precipitation during late spring and summer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Although forest fragmentation can greatly affect biodiversity, responses to landscape-scale measures of woodland configuration in Europe have been examined for only a limited range of taxa. Almost all European bat species utilise woodland, however little is known about how they are affected by the spatial arrangement of woodland patches. Here we quantify landscape structure surrounding 1129 roosts of six bat species and a corresponding number of control locations across the UK, to examine associations between roost location and landscape composition, woodland proximity and the size of the nearest broadleaved woodland patch. Analyses are performed at two spatial scales: within 1 km of the roost and within a radius equivalent to the colony home-range (3–7 km). For four species, models at the 1 km scale were better able to predict roost occurrence than those at the home-range scale, although this difference was only significant for Pipistrellus pipistrellus. For all species roost location was positively associated with either the extent or proximity of broadleaved woodland, with the greatest effect of increasing woodland extent seen between 0% and 20% woodland cover. P. pipistrellus, Pipistrellus pygmaeus, Rhinolophus hipposideros, Eptesicus serotinus and Myotis nattereri all selected roosts closer to broadleaved woodland than expected by chance, with 90% of roosts located within 440 m of broadleaved woodland. Roost location was not affected by the size of the nearest broadleaved patch (patches ranged from 0.06–2798 ha ± 126 SD). These findings suggest that the bat species assessed here will benefit from the creation of an extensive network of woodland patches, including small patches, in landscapes with little existing woodland cover.  相似文献   

12.
Functional connectivity is a measure of the interaction of landscape structure and a species’ dispersal ability to determine the degree to which a landscape facilitates movement among patches. Dispersal through an inhospitable matrix requires that a species is willing to enter the matrix and can successfully colonize another habitat patch. Many connectivity indices have been developed which incorporate various attributes of the landscape, but little empirical evidence of the accuracy of these indices is available. We studied the ability of white-footed mice (Peromyscus leucopus), eastern chipmunks (Tamias striatus), and southern flying squirrels (Glaucomys volans) to move through agricultural fields in west-central Indiana. Radio-collared animals were translocated into corridors that either were connected to or unconnected from an associated forest patch to determine their willingness to enter the matrix. Animals also were translocated into fields to determine how motivation to find resources influences movement through the matrix. All species demonstrated a strong motivation to find the forest. Animals were capable of moving through the matrix successfully, however, we were unable to determine whether they would do so willingly. Initial bearing was an important predictor for successfully reaching a forest patch, which has implications for modeling dispersal. Additionally, abiotic variables, such as temperature and precipitation, had a strong effect on latency to move from the release site. Although weather often correlates with seasonal migration, our study emphasizes the importance of weather in influencing short-term decisions on timing of movement.  相似文献   

13.
Chinese village fengshui forests (VFF) are small remnant forest patches that coexist with natural villages. The indigenous residents protect the forest patches under traditional Chinese geomancy beliefs (namely fengshui). However, the VFF community features and conservation values and relationships with the indigenous people remain poorly understood. In this study, we evaluated tree species diversity conservation of regional VFF patches by sampling a 1200 m2 transect within each patch. We also tested our hypothesis that patch size did not significantly impact interior forest community features of well-protected VFF patches. Thirty-two well-protected VFF patches in the Pearl River Delta, China were investigated. The average coefficient of similarity between transects (CS) was employed to evaluate community heterogeneity. Five forest community parameters (tree species richness per 1200 m2, tree stem density, tree basal area density, Shannon–Wiener diversity index (SWI), and Simpson diversity index (SI)) were measured and compared with regional well-developed evergreen broadleaved, coniferous and coniferous-broadleaved mixed forests. The relationships between the five parameters versus patch size and elevation were analyzed. A total of 266 tree species comprised of 57 families were recorded in 32 transects, of which 258 (97%) species were indigenous and eight (3%) were exotic. Ten tree species were endangered, rare or nationally protected by the Chinese government, and 57 species were endemic to China. The average CS was 0.38; and the average five forest community parameter values were as follows: 46.8 for tree species richness; 3403 plants/ha for stem density, 49.1 m2/ha for basal area, 4.04 for SWI and 0.90 for SI. These values were consistent with well-developed evergreen broadleaved forests and greater than coniferous and coniferous-broadleaved forests. No significant correlation was detected between the five community parameters and patch area or elevation. We conclude that VFF patches preserve abundant tree species and heterogeneous habitats, which are important for maintaining regional biodiversity. The interior community features of VFF patches were not significantly affected by patch size. We recommend protection of both large and small VFF patches, which can be substantially enhanced by the preservation of associated traditional relic village cultures.  相似文献   

14.
Determination of which aspects of habitat quality and habitat spatial arrangement best account for variation in a species’ distribution can guide management for organisms such as the Karner blue butterfly (Lycaeides melissa samuelis), a federally endangered subspecies inhabiting savannas of Midwest and Eastern United States. We examined the extent to which three sets of predictors, (1) larval host plant (Lupinus perennis, wild lupine) availability, (2) characteristics of the matrix surrounding host plant patches, and (3) factors affecting a patch’s thermal environment, accounted for variation in lupine patch use by Karner blues at Indiana Dunes National Lakeshore, Indiana and Fort McCoy, Wisconsin, USA. Each predictor set accounted for 7-13% of variation in patch occupancy by Karner blues at both sites and in larval feeding activity among patches at Indiana Dunes. Patch area, an indicator of host plant availability, was an exception, accounting for 30% of variation in patch occupancy at Indiana Dunes. Spatially structured patterns of patch use across the landscape accounted for 9-16% of variation in patch use and explained more variation in larval feeding activity than did spatial autocorrelation between neighboring patches. Because of this broader spatial trend across sites, a given management action may be more effective in promoting patch use in some portions of the landscape than in others. Spatial trend, resource availability, matrix quality, and microclimate, in general, accounted for similar amounts of variation in patch use and each should be incorporated into habitat management planning for the Karner blue butterfly.  相似文献   

15.
Fertilization produces many nutrient patches that have been confirmed to affect root growth. However, it is not clear how nutrient transformation and microbial community composition are affected in an inorganic nutrient patch. In this experiment, a nitrogen enrichment patch was formed by the diffusion of a urea fertilizer layer in a specially-designed container. Responses of nitrogen transformation and microbial community composition to the nitrogen enrichment patch were investigated at different incubation times. Results showed that nitrogen status and microbial community composition were slightly affected in the control patch (CK patch). In the nitrogen enrichment patch, however, soil pH was significantly increased in most soil layers close to the urea fertilizer layer; NO2?–N was the predominant form of mineral N, and its transformation to NO3?–N was delayed. Microbial community composition shifted significantly, especially before day 28 of incubation. Principal components analysis (PCA) of phospholipid fatty acids (PLFAs) patterns showed that the microbial community presented different sensitivity to high nitrogen concentration. Fungi (18:2ω6,9) showed the least sensitivity to high concentrations of NO2?–N and NO3?–N. Gram-positive bacteria showed the most sensitivity to NO2?–N. Gram-negative bacteria (cy17:0, cy19:0, 18:1ω9, and 18:1ω7) and actinomycetes (10Me17:0 and 10Me18:0) presented similar responses to NO2?–N and NO3?–N. Results of this study indicate that changes in nitrogen transformation and microbial community composition are likely to occur in nitrogen enrichment patches, but the extent of those changes depend on the microbial species and the distance of soil layers from the urea layer.  相似文献   

16.
黄河中下游典型河岸缓冲带植被景观连接度及其网络构建   总被引:2,自引:0,他引:2  
植被作为河岸缓冲带生态系统服务形成与维持的基础,在维持生物多样性方面,能为多种物种提供栖息地和迁移廊道。因此,本文以黄河中下游典型河岸缓冲带植被为对象,采用遥感解译、景观连接度指标、斑块重要性评价和廊道网络分析相结合的方法,分析2003年、2009年和2015年研究区的植被景观连接度和斑块重要值变化,并构建河岸缓冲带植被廊道网络,以期为黄河中下游河岸缓冲带生物多样性保护提供支持。结果表明,研究区植被斑块的连接度在2003—2015年呈增加趋势,且随距离阈值的增大而增大;不同距离阈值下,斑块重要值随斑块面积增大而增大,且随距离阈值增大的而增大;小型斑块(0~5 hm~2)重要值呈增加趋势,中型斑块(5~10 hm~2)重要值呈先增加后降低趋势,而大型斑块(10 hm~2)重要值呈降低趋势。植被廊道网络分析表明,基于重要生态节点同时考虑沟渠和道路廊道可作为研究区植被廊道网络构建的重要参考。  相似文献   

17.
Based on several years of data from two populations of the endangered Apollo butterfly (Parnassius apollo, L. 1758), we study how the amount and spatial location of patches of larval (host-plant) and adult (nectar plant) resources affects the distribution of females and their larval offspring in the following year. In the coastal population (nectar-plant and host-plant patches spatially segregated), females moved frequently between patches to aggregate on larger host-plant patches close to nectar-plant patches. In the archipelago population (where nectar-plants and host-plants co-occur), the abundance of females increased with higher proximity to other host-plant patches and with more nectar-plants on the patch. Next year’s larval abundance correlated with the abundance of females in the previous season in both populations. A model of the population dynamics in the two populations in relation to the spatial configuration of nectar and host-plant patches showed that the spatial configuration of larval and adult resources had population-dynamical consequences. In many organisms, different life-history stages use different resources. Incorporation of information on the location and abundance of adult resources can provide additional insight for the suitability of a particular landscape in harbouring a population.  相似文献   

18.
The ecological processes responsible for the spatial assemblages of breeding bird communities in urban landscapes are more and more investigated. Indeed, understanding these processes is imperative to plan relevant management policies. We investigated breeding bird communities on 67 patches in the suburbs of Paris, France. We examined the role of patch characteristics and geographic distance between patches in determining similarity between bird assemblages. To do this, we proposed a new SØrensen similarity index based on estimators of change in community composition taking into account the detection probability of species. The patch occupancy by sedentary and migratory species was also estimated to compare their sensitivity to urbanization. Patches close to each other supported more similar bird assemblages, suggesting an effect of the spatial distribution of patches on bird dispersal and a posteriori on local community composition. Accounting for spatial location of patches, bird assemblage similarity was related to the similarity of the surrounding level of urbanization but not to the similarity of patch size or to the similarity of patch vegetation. The mean estimated occupancy rate of sedentary species was higher than that of migratory species in the whole study area. While sedentary species occupied patches surrounded by both moderate and high levels of urbanization, migratory ones primarily occupied patches surrounded by moderate levels of urbanization. Human choices in degrees, styles, and extent of urbanization, including designation and design of patches within an urban matrix, affect the composition of local bird communities.  相似文献   

19.
Fertilization produces many nutrient patches that have been confirmed to affect root growth. However, it is not clear how nutrient transformation and microbial community composition are affected in an inorganic nutrient patch. In this experiment, a nitrogen enrichment patch was formed by the diffusion of a urea fertilizer layer in a specially-designed container. Responses of nitrogen transformation and microbial community composition to the nitrogen enrichment patch were investigated at different incubation times. Results showed that nitrogen status and microbial community composition were slightly affected in the control patch (CK patch). In the nitrogen enrichment patch, however, soil pH was significantly increased in most soil layers close to the urea fertilizer layer; NO2-N was the predominant form of mineral N, and its transformation to NO3-N was delayed. Microbial community composition shifted significantly, especially before day 28 of incubation. Principal components analysis (PCA) of phospholipid fatty acids (PLFAs) patterns showed that the microbial community presented different sensitivity to high nitrogen concentration. Fungi (18:2ω6,9) showed the least sensitivity to high concentrations of NO2-N and NO3-N. Gram-positive bacteria showed the most sensitivity to NO2-N. Gram-negative bacteria (cy17:0, cy19:0, 18:1ω9, and 18:1ω7) and actinomycetes (10Me17:0 and 10Me18:0) presented similar responses to NO2-N and NO3-N. Results of this study indicate that changes in nitrogen transformation and microbial community composition are likely to occur in nitrogen enrichment patches, but the extent of those changes depend on the microbial species and the distance of soil layers from the urea layer.  相似文献   

20.
The Lower Keys marsh rabbit (LKMR, Sylvilagus palustris hefneri), a marsh rabbit subspecies endemic to the Lower Keys, Florida was protected in 1990, however, populations continue to decline despite recovery efforts. We hypothesized on-going habitat loss and fragmentation due to succession and hardwood encroachment has lead to increased edge, reduced habitat quality, and increased activity by native raccoons (Procyon lotor). These factors reduce the suitability of patches in a later successional state, thus threatening LKMR recovery and metapopulation persistence. We surveyed 150 LKMR patches in 2008, tallying adult and juvenile rabbit pellets, estimating measures of habitat succession and quality (woody and herbaceous ground cover, distribution of herbaceous species) and recording raccoon activity (number of raccoon signs). We calculated patch edge (patch shape index) using ArcGIS. We evaluated the relationship between patch and habitat attributes and LKMR using regression analysis and model selection. We found both adult and juvenile LKMR pellet counts were lower in patches with higher shape indices and higher in patches with greater occurrence of bunchgrasses and forbs. We also found adult LKMR pellet counts were lower in patches with higher raccoon activity. Our results suggest patch edge, habitat succession and quality, and raccoons pose a threat to the persistence and recovery of LKMR populations. Recovery efforts should focus on reducing these trends through habitat management and raccoon removal implemented in carefully controlled experiments with proper monitoring. Measures of patch and habitat attributes important to LKMR should be incorporated into long-term metapopulation monitoring and used to evaluate recovery actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号