首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accumulation of Chemical Elements in Texas Shrimp Pond Soils   总被引:2,自引:0,他引:2  
Abstract— This study evaluated changes in chemistry of shrimp pond soils over one production cycle. Several soil nutrients, pH, organic matter, and total soluble salts were analyzed in the upper 10 cm of pond-bottom soil on two Texas shrimp farms in two consecutive years. Soil concentrations of S, P, Ca, Mg, K, Na, Mn, and Zn increased from one year to the next, S increased by 400 ppm. Organic matter did not accumulate. The pH decreased in all pond soils, owing perhaps to the oxidation of organic matter and/or inorganic compounds. There was no statistical difference in shrimp yield between the two consecutive years. These results indicated that the accumulation of S and soluble salts derived from seawater and feed should be monitored and evaluated to prevent excessive chemical element loading of pond soil and discharge water.  相似文献   

2.
Several nutrients, pH, organic matter, and total soluble salts of surface soil from 81 ponds on two Texas shrimp farms were measured. The relationship between shrimp yield and soil characteristics was analyzed statistically. Shrimp yield was negatively correlated with soil concentrations of S, P, NO3-, B, Ca, Mg, K, Na, Cu, and total water-soluble salts. Shrimp yield was directly correlated with soil concentrations of Fe, Mn, and organic matter. Stepwise multiple regression analysis indicated that Ca and S concentrations explained 54% of the variation in shrimp yield.  相似文献   

3.
Ionic Supplementation of Pond Waters for Inland Culture of Marine Shrimp   总被引:1,自引:0,他引:1  
Saline well water used to fill ponds for inland culture of marine shrimp in Alabama often have low concentrations of potassium and magnesium. In 2002, pond waters on a shrimp farm were treated with enough muriate of potash and potassium-magnesium sulfate (K-Mag) to increase potassium concentration from 6.2 mg/L to about 40 mg/L and magnesium concentrations from 4.6 mg/L to about 20 mg/L. Salinity in ponds averaged 2.6 ppt at the time of mineral salt additions. The concentrations of potassium and magnesium remained fairly constant throughout the growing season without further applications of salts, and salinity increased to about 4 ppt mainly as a result of concentration through evaporation. Survival and production on the farm averaged 19% and 595 kg/ha, respectively, in 2001. In 2002, average survival improved to 67% and average production was 4,068 kg/ha. Ponds were stocked at similar rates and managed by similar procedures both years. Magnesium concentration was very low related to the concentration expected in normal seawater diluted to the same salinity as the pond water, while potassium was near the expected concentration. Thus, increased potassium concentration is thought to have influenced production much more than did the increase in magnesium concentration. K-Mag does not dissolve as readily as muriate of potash. Thus, K-Mag should not be dumped in shallow water areas of ponds to dissolve as can be done with muriate of potash. It should be broadcast over the pond surface, predissolved and splashed over the pond surface, or placed in porous bags suspended in front of aerators. Although a single application of mineral salts was effective, 2002 was a dry year. On a wet year, ions may be diluted or flushed out in overflow and more than one treatment with mineral salts might be necessary during the growing season.  相似文献   

4.
Analyses of bottom soils from three recently-established (newer) and three older ponds on each of two, semi-intensive shrimp farms near Choluteca, Honduras, revealed that the 0 to 2.5 cm layer had greater concentrations of most variables than deeper layers. Concentrations of total carbon, nitrogen, sulphur, phosphorus, calcium, iron, manganese, and zinc were greater in older than in newer ponds on one or the other of the farms. After 8–11 y of continuous production, total carbon concentrations varied over pond bottoms, and concentrations usually were greatest (1.5–2.5%) in inlet sections. Nitrogen concentrations were about 20% those of carbon and changes in nitrogen concentration closely followed those of carbon. Precipitation of iron pyrite (FeS2) in anaerobic soil layers was the apparent cause of sulphur accumulation in older ponds. Phosphorus accumulated in older ponds on the farm where heavy doses of fertilizer were applied. Soils of both older and newer ponds on both farms had large accumulations of major cations, a large portion of which were water-soluble salts. There was no evidence of development of adverse soil quality in older ponds.  相似文献   

5.
Chemical and Physical Properties of Shrimp Pond Bottom Soils in Ecuador   总被引:1,自引:0,他引:1  
Chemical and physical analyses were conducted on bottom soil samples from 74 brackish-water ponds representing 40 shrimp farms in Ecuador. Most ponds had soils with pH > 6 and total carbon concentrations < 2.5%. Carbon was mostly in organic form, for the average concentration of carbonate carbon was 0.06%. The C: N ratio was 8 to 10 in soils with < 2.5% carbon. In ponds built in former mangrove areas, soil carbon was > 2.5% and C: N ratios were 25 to 30. Ponds soils in former mangrove areas also tended to be high in total sulfur and low in pH. Lack of correlation between carbon and sulfur in mangrove soils suggested that most of the sulfur was inorganic and presumably in sulfides. Soils containing above 0.4% free carbonate (as equivalent CaCO3) had pH values > 7. Although carbonate concentration was a major factor controlling soil pH, calcium hardness of pond waters was strongly influenced by salinity (and calcium) in the water supply. Total phosphorus concentrations averaged 898 mg/kg, and dilute acid extractable phosphorus usually accounted for 25–35% of the total. Concentrations of major cations and minor elements varied greatly in soils and exhibited ranges of up to three orders of magnitude. Contrary to opinions of shrimp producers, many pond soils in Ecuador are not acidic and few soils have a high organic matter content. Proper use of soil and water testing could greatly improve the efficiency of liming and other soil management practices.  相似文献   

6.
Low‐salinity waters of inland shrimp ponds in Nakhon Nayok, Chachoengsao, Prachin Buri, and Samut Sakhon Provinces of Thailand often had concentrations of potassium and magnesium below those expected for normal seawater diluted to the same salinity. However, in Samut Sakhon Province – where the sampling area was nearer the coast – ponds typically had higher concentrations of these two cations than did ponds in the other three provinces. Studies of inland, shrimp ponds at Banglane in Nakhon Pathom Province revealed that magnesium additions to maintain a target concentration near 100 mg/L resulted in greater (P < 0.05) shrimp survival, size, and production than obtained in control ponds. Although potassium additions to ponds (75 mg/L target concentration) did not improve shrimp survival or production, the control ponds had potassium concentration higher than those previously reported for ponds in Alabama where potassium treatment was highly beneficial to shrimp survival and production. A study conducted using laboratory, soil‐water systems with soil from one site did not remove potassium and magnesium from the water, while soil from two other sites removed potassium and magnesium from water – but at different rates.  相似文献   

7.
Plankton community establishment and shrimp production in a prototype biosecure pond were compared to three control ponds. The biosecure pond was enclosed and intake water was disinfected, while control ponds were neither enclosed nor disinfected. All ponds were managed with no water exchange and stocked with 100 postlarvae/m2, Litopenaeus vannamei . Residual oxidant concentrations in the biosecure pond dropped rapidly after cessation of chlorinated water addition. This was followed by a sharp increase in water column bacterial abundance, after which the pond was fertilized and inoculated with cultured Chaetocerous gracilis . After crash of the initial C. gracilis bloom in the biosecure pond, this species was not observed again. Following initial large fluctuations in biosecure pond bacterial abundance, phytoplankton biomass, oxygen consumption and nitrification rates, these parameters appeared to stabilize at levels similar to the control ponds. Early season compositional differences in phytoplankton, zooplankton, and bacterial communities were observed. No differences were seen in late-season phytoplankton and bacteria; however, zooplankton biomass tended to be lower in the biosecure pond than in the control ponds throughout the season. Shrimp production in all ponds was greater than 9,000 kg/ha. Production in the single biosecure pond was not a significant outlier compared to production in the triplicate control ponds.  相似文献   

8.
ABSTRACT:   The effectiveness on water quality, population density of bacteria, and shrimp production in ponds treated with commercial probiotics was tested in Penaeus vannamei ponds in Hai-yan, China. Six ponds with replicates for treatment and control were used. Results showed that the probiotics could improve the population density of beneficial bacterial flora, reduce concentrations of nitrogen and phosphorus, and increase yields of shrimp. The average counts of Bacillus sp., ammonifying bacteria, and protein mineralizing bacteria were found to be significantly higher in treated ponds compared to control ponds ( P  < 0.05). In control ponds, an increase in presumptive vibrios was observed and the average density was up to 2.09 × 103 cfu/mL, whereas that was only 4.37 × 102 cfu/mL in treated ponds ( P  < 0.05). The use of probiotics also significantly increased dissolved oxygen ( P  < 0.05) and reduced dissolved reactive-phosphorus, total inorganic nitrogen and chemical oxygen demand ( P  < 0.05). An average of 8215 ± 265 kg shrimp/ha was obtained in treated ponds with a feed conversion ratio (FCR) of 1.13 ± 0.05 and survival rate of 81.00 ± 6.25% compared with 4985 ± 503 kg shrimp/ha, 1.35 ± 0.12 and 48.67 ± 3.51%, respectively, in control ponds. This indicates that the addition of the commercial probiotics had a noticeable influence on water quality of shrimp ponds and shrimp production.  相似文献   

9.
Techniques for head starting or nursing postlarvae (PL) has received considerable attention with regards to nursery protocols, yet there is little data pertaining to the effects of nursery period on the final growout of shrimp to marketable size. This study was performed to investigate the influence of nursery duration on survival and growth of Litopenaeus vannamei during subsequent pond culture. For this research, a single population of high health PL were received from a commercial hatchery and held in a tank for acclimation, quantification, and distribution to nursery tanks or ponds. Treatments included direct stocking of 10-d-old postlarvae (PL10) into production ponds as well as the nursing of PL in a covered greenhouse nursery system for an additional 10 or 20 d. After nursing, the PL were harvested, quantified, and transferred to growout ponds. All ponds were stocked at a density of 35 PL/m2 and maintained under standardized conditions. Shrimp were fed with a 35% protein shrimp feed, twice daily during the 112-d growth trial. Ponds were aerated as needed using a maximum of 19 hp/ha to maintain adequate dissolved oxygen (DO > 3.0). No statistical differences (P >0.05) were found in survival, yield, or growth between treatments. At harvest, survivals during growout were generally higher in ponds with nursed shrimp (77% for PL20 and 79% for PL30) than in ponds receiving PL10 shrimp (67%). Yields were similar between treatments, ranging from 3,525 for direct stocked shrimp to 3,747 kg/ha for those that were nursed for 10 d. Although growth rates of PL under pond conditions will be faster than that of a nursery system, results suggest that a nursery period of at least 10 d helps improve survival during pond production and promotes better size uniformity. Shrimp nursed for 20 d showed little improvement in survival over shrimp nursed for 10 d but did result in a more uniform size of shrimp at harvest.  相似文献   

10.
Common water quality variables in nine, inland low‐salinity shrimp ponds in Alabama exhibited wide variation in concentrations among ponds and over time. Shrimp performance also varied considerably among ponds in 2008 as follows: survival, 16–128%; production, 928–5950 kg/ha; feed conversion ratio (FCR), 1.18–2.89. Measured water quality variables were not at concentrations high enough to be lethal to shrimp; but water temperature, dissolved oxygen, carbon dioxide, total ammonia nitrogen, calcium, and magnesium were occasionally outside optimum ranges for shrimp production and may have stressed shrimp. Survival and production both were positively correlated (P < 0.05) with increasing concentrations of methyl orange alkalinity, total alkalinity, and calcium hardness. Negative correlations (P < 0.05) between production and higher pH and water temperature may have resulted from lower water temperature and pH during final days of the crop in ponds harvested in October rather than from an actual effect of temperature and pH on growth. Nevertheless, those variables that were outside optimal ranges or correlated with shrimp survival or growth should be further investigated to ascertain whether or not excursions outside optimum ranges are harmful and to determine if observed correlations are causal.  相似文献   

11.
Two pond experiments were conducted at the Waddell Mariculture Center to compare production characteristics of the native Penaeus setiferus and Pacific P. vannamei white shrimp in South Carolina. In 1985, 7–9 day old postlarval P. setiferus were stocked in one 0.1 and one 0.25 ha ponds, while P. vannamei of the same age were stocked in one 0.1 and one 0.25 ha ponds, while P. vannamei of the same age were stocked in one 0.1, one 0.25, and one 0.5 ha ponds. Both species were stocked at 12 shrimp/m2. The shrimp were fed a 25% protein commercial food and harvested by draining after 147 d. Sarvival in all ponds was > go%, but growth and production of the P. setiferus were considerably lower than values obtained for P. vannamei: 12.8 g and 1,555 kg/ha/crop for P. satiferus versus 19.7 g and 2,477 kg/ha/crop for P. vannamei. In 1989, duplicate 0.1 ha ponds were stocked with P. setiferus and P. vannamei at 60 shrimp/m2, and two additional 0.1 ha ponds were stocked with P. setiferus at 40/m2. The P. setiferus postlarvae were produced at the Waddell Center from captive-reared and wild South Carolina brood stock. Rearing procedures involved paddlewheel aeration (10 hp/ha), regular water exchange (averaging 16–21%/d in all ponds), and use of a 40% protein feed. Due to the availability of postlarvae, the various treatments were stocked at different times. Both P. setiferus treatments were reared for 145 d, while the P. vannamei were reared for 165 d. P. setiferus at the 40/m2 density attained mean size, survival, and standing crop biomass at harvest of 13.5 g, 97.5% and 5,259 kg/ha/crop, respectively. The 60/m2P. setiferus treatment was stocked 2 wk earlier and yielded 15.2 g mean weight, 87.5% survival, and 7,995 kg/ha/crop at harvest. The P. vannamei 60/m2 treatment, which was stocked 3 wk earlier than any of the P. setiferus, produced mean size, survival and standing crop biomass at harvest of 17.1 g, 69.5% and 7,187 kg/ha/crop. Both survival and production levels would have been higher had not one replicate experienced a partial mortality due to a feeding accident. The 1989 study yielded what is thought to be the highest production levels yet achieved with P. setiferus in pond culture. These results suggest that P. setiferus may be a viable alternative to P. vannamei for intensive cultivation in the continental U.S. when P. vannamei are unavailable. Further evaluation of this potential is needed.  相似文献   

12.
Most shrimp farmers in Chantaburi Province, Thailand, use water jets to dislodge sediment from empty pond bottoms, and wastewater is held for sedimentation before discharge into natural waters. Other pond bottom management practices used by a few farmers are sediment excavation, leave sediment but till entire pond bottom, and no mechanical treatment. All four methods of pond bottom treatment are followed by sun drying for 30 d. Soil organic carbon concentration in ponds following dry‐out seldom exceeded 2%. Although shrimp production in 24 ponds supplied by the same source of water was negatively correlated with increasing soil organic carbon concentration (r = ?0.582), this observation does not confirm a causative relationship. Moreover, in trials conducted at Burapha University, Chantaburi Campus, bottom soil organic matter concentration following dry‐out differed little irrespective of treatment method. Lower soil moisture concentration revealed that dry‐out was more complete with sediment removal than without, but better dry‐out resulted in lower soil pH. Removal of sediment by excavation or flushing is expensive, and natural dry‐out combined with liming and occasional sediment removal should be investigated as a less expensive and more environment‐friendly alternative to removing sediment after each crop.  相似文献   

13.
Abstract

The effects of renovation on the production of white river crayfish, Procambarus acutus acutus were evaluated in ten 0.1-ha earthen ponds. The bottoms and levees of five ponds were reshaped with heavy equipment prior to planting sorghum-Sudan grass forage during the de-watered phase of the culture cycle. Five non-renovated ponds served as a control. The mean total length (TL) of the crayfish harvested from renovated ponds was significantly larger than those crayfish harvested from non-renovated ponds. The renovated pond harvest contained an estimated 43.2% carryover crayfish (>95 mm TL) in comparison to 7.6% in the harvest from non-renovated ponds. By weight, carryover crayfish constituted an estimated 69.3% of the harvest from renovated ponds, compared to 21.0% from non-renovated ponds. No difference was observed in the harvest between treatments; however, the low proportion of young-of-the-year crayfish in the renovated pond harvest may adversely impact future production.  相似文献   

14.
15.
To identify ways to improve water quality and shrimp production in closed systems, two parallel experiments (one in tanks and one in ponds) were conducted using Pacific white shrimp, Litopenaeus vannamei, cultures. In both experiments, the effects of inorganic (Nutrilake®) and organic (molasses) fertilization on physicochemical parameters, bacterial concentrations, and shrimp performance under zero water exchange were evaluated. Fertilization with both molasses and Nutrilake enhanced the feed conversion rate, as well as shrimp survival and production. In tanks, the shrimp survival and production rates were highest in the molasses treatment, but this effect was not observed in ponds. In ponds, fertilization with Nutrilake increased nitrogen and phosphorus concentrations more than did the controls and molasses treatments toward the end of the experiment. In tanks, fertilization with molasses reduced ammonia concentrations toward the end of the experiment, but the same effect was not observed in ponds. In ponds, fertilization reduced the proportion of Vibrio spp. bacteria, which most likely reduced the incidence of disease from these potentially pathogenic organisms. In both culture systems, fertilization increased the proportion of Bacillus spp., which most likely enhanced food availability.  相似文献   

16.
Three intensive growout trials using Penaeus vunnumei were conducted in round ponds in Hawaii in 1987. A 337 m2 experimental pond was stocked at 100 shrimp/m2 for two trials; a 2,000 m2 commercial prototype pond was stocked at 75/m2 for one trial. In the experimental pond trials, shrimp survival averaged 88 ± 10% (SE) and feed conversion averaged 2.2 ± 0.2. Growth averaged 1.5 ± 0.3 g/week, yielding 18.2 ± 1.7 gram shrimp in 80 ± 5.5 days. Combined production in the experimental trials was 32,272 kg/ha in 174 days (from stocking of trial 1 to harvest of trial 2). Comparing these results to 1986 results (Wyban and Sweeney 1988), it was concluded that shrimp growth is not affected and production is doubled by increasing stocking density from 45/m2 to 100/m2. Pooling data from 1986 and 1987, a significant linear regression was obtained when weekly growth of shrimp above four grams individual size was regressed on mean weekly pond temperature: growth = 0.37 * temperature - 8.44, (r2= 0.41; P < 0.01). Multiple regression to examine effects of shrimp size, pond biomass, and shrimp age on the temperature-growth relationship was not significant. In the commercial prototype pond trial, survival was 67% and feed conversion was 2.0. Growth averaged 1.4 g/week, yielding 18.1 gram shrimp in 88 days. Production was 9,120 kg/ha. Individual shrimp size distribution at harvest in the commercial pond was similar to experimental pond results, indicating that shrimp growth in the two systems was comparable. Financial characteristics of a hypothetical 24 pond shrimp farm using these results were determined using an electronic spreadsheet model (hung and Rowland 1987). Feed costs were 40% of total operating costs while postlarvae and labor were 14% and 16% of total operating costs, respectively. Breakeven price (BEP) was far more sensitive to changes in revenuedetermining inputs such as survival and growth than to comparable changes in costdetermining inputs such as feed and postlarvae costs. Together these results suggest that commercial scale round pond production mimics experimental scale production and that round pond technology has commercial potential.  相似文献   

17.
Soil physicochemical properties of the growout ponds of black tiger shrimp (Penaeus monodon) were examined in relation to shrimp yields for one production cycle. The culture ponds were old (>5 years) and new (newly constructed) types. Soil texture was silty clay with low sand content and high proportion of clay for both the pond types with alkaline soil pH (7.87–9.71). Organic matter (OM) concentration was higher (7.48 ± 0.01%) in old ponds and positively related (r = 0.58, P < 0.05) with total nitrogen (TN). The major cations (Ca, Mg, and Na) were higher in the soil of old ponds and did not fluctuate significantly during culture. The majority of trace elements, i.e., Fe (349.22 ± 35.7 ppm), Mn (56.19 ± 30.2 ppm), Zn (88.56 ± 8.09 ppm), Al (454.3 ± 200.6), Pb (1.3 ± 0.96 ppm), Co (3.4 ± 0.2), V (6.56 ± 1.79 ppm), Cr (19.32 ± 0.63 ppm), Ti (82.78 ± 54.3 ppm), As (5.60 ± 0.28 ppm), Ag (0.38 ± 0.5 ppm), and Sb (3.89 ± 0.48 ppm) were found to be higher in new pond soils than the old ponds. Except for soil manganese, no major fluctuations in trace elements were observed during the culture period. Shrimp growth was not significantly different in the two types of ponds, and no distinct correlation between shrimp growth and element content of soils could be drawn. The results indicate that shrimp pond age may not affect production of shrimp if soils are properly managed pre- and postculture. The differences in production in different ponds might be the result of management practice such as quality of shrimp post larvae, pond preparation, water and feed quality, and available live feed in the pond bottom or other environmental factors like water nutrients and physicochemical parameters.  相似文献   

18.
Ecuadorian Penaeus vannamei were cultured in eight 200-m2 dirt ponds at four stocking densities (5, 10, 15 and 20 shrimp/m2). No commercial feed was given to the shrimp. The only input to the ponds was about 36 kg of feedlot cattle manure per pond per week (1800 kg manure ha−1 week−1).Shrimp growth was not correlated with variations in water quality among treatments (e.g., temperature, pH, DO, secchi visibility). Water-column nutrient levels were less than or equal to nutrients in incoming water and did not increase with addition of cattle manure. Water ATP concentrations were correlated with shrimp stocking density while numerous other biochemical parameters were not. No coliform bacteria were detected in any pond water samples during the study period. Phytoplankton densities and species composition were not different among treatments but varied over time. Two diatoms were the dominant species throughout the study.There was a negative correlation between stocking density and growth. Mean (±SD) weekly shrimp growth across treatments was 0.68±0.00, 1.06±0.02, 1.72±0.2 g individual−1 week−1 for densities of 20, 15, 10, and 5 shrimp/m2, respectively. Survival averaged 70.8±6.3% for all ponds and was not different among treatments. Shrimp production was 19.3±0.1, 23.0±0.4, 22.8±1.2, 12.3±1.1 kg ha−1 day−1 for densities 20, 15, 10, and 5 shrimp/m2, respectively. Shrimp production and carrying capacity were not significantly different among the three higher stocking densities.  相似文献   

19.
Rural shrimp farmers in Thailand are being encouraged to adopt practices that will reduce the quantity and improve the quality of their effluent. A simple and cheap option for small-scale shrimp farmers is to use settlement ponds to store and remediate discharge water before being re-used. We undertook a detailed study of the settlement ponds in a small-scale commercial black tiger shrimp farm typical of rural Thailand. We found that over a 9-week period, following the harvest of one of the two farm production ponds, total nitrogen (TN) concentrations in the water column were reduced by 30%, with the greatest removal (56%) occurring during the fifth week. There was a 10% increase in dissolved organic nitrogen (DON) concentrations during the trial. Sediments were a source of total ammonia nitrogen (TAN), and the re-mineralisation rate was the highest in the first two settlement ponds. Coconut fronds added to two of the four settlement ponds to increase the surface area available for microbial activity were found to provide a site for microbial re-mineralisation of TAN, the photosynthetic uptake of TAN and oxidised nitrogen (NO x ) and nitrification. The water column was a net assimilator of TAN through autotrophic uptake. This study has shown that settlement ponds are capable of reducing water column N concentrations; however, sediment must be managed to reduce re-mineralisation during successive cropping cycles. In addition, coconut fronds were shown to improve N removal, although they should be periodically removed to maintain efficiency.  相似文献   

20.
The effect of promoted biota on the production parameters, water quality, nutritional and immunological condition of Litopenaeus vannamei was assessed in semi‐intensive ponds. Earthen ponds were used as experimental units: three with formulated + natural promoted feed + shrimp (T1), three with formulated feed + shrimp (T2), and three with promoted natural feed without shrimp (Control). The dissolved oxygen (DO) levels were optimal for all treatments (≥6 mg L?1) as well as the pH (8.4–8.6). Total ammonia nitrogen was greater in T2 (0.10 mg L?1) than T1 (0.07 mg L?1) and the Control (0.06 mg L?1). Phytoplankton, zooplankton and benthos were more abundant in T1 and the Control. The promotion of natural feed had a positive effect on all the production parameters of shrimp with an increase of 19.0%, 3.5% and 23.9% in weight gain, survival, and final biomass, respectively; also it was observed a decrease of 13.9% in feed conversion ratio. No differences in haemolymph parameters were observed for nutritional indicators (glucose, cholesterol, proteins, and triglycerides) nor for immunological response (phenoloxidase and prophenoloxidase). The results indicate that the promotion of biotic communities enhances the production parameters of farmed shrimp, without affecting the nutritional and immunological status. Also the water quality was improved by the presence of biota.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号