首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
多花黑麦草对污水中汞的净化研究   总被引:2,自引:0,他引:2  
通过多花黑麦草对污水中汞的净化研究得出:多花黑麦草对污水中的汞具有明显的吸收、净化效果;净化效率与污水中汞的起始浓度、pH值、气温、净化时间有直接关系;多花黑麦草是生物净化污水的优良品种之一。  相似文献   

2.
HE Jin-Lin  TAN Hong 《土壤圈》1995,5(4):379-381
There is abundance of Mercury mine resurces in the Fanjinshan Mountain,Mining mercury has a long history there,The concentration of geseous Hg produced in smelting He reaches 20-50mg/m^3 in the tail gas.Because mercury element is an easily transferring microelement,the paper talks about the effect of mercury in Hg mining in Guizhou Province on alpine soil,analyses Hg content in alpine soil at 2000 m of relative elevation in the Hg mining area,and explores for causes of the Hg pollution.  相似文献   

3.
A grass(Italian rye grass)experiment with complete desing of three factos(Hg,grass and exposure)and two levels(with and withou the factor tested)was carried out in Goeteborg,Sweden from May to September,1995,toward understanding the effect of mercury deposition on plant Hg content and its distribution.It has been found that besides the two general pathways of Hg absorption,i.e.root uptake and foliar absorption,mercury deposition can aslo signifcantly incease Hg content and total load in grass.Such effects seem to be confined only within the above-ground parts of grass plant.Estimate has been made to make clear of the contributions of different pathways to Hg Content and total Hg load in the upper part of grass.Results showed that the contribution of Hg deposition accounted for 27%-32%,of Hg content in the above-ground parts of grass plant without adding Hg to the soil.decreasing with the increase of soil and/or air Hg concentrations.The increment of Hg load in the upper part of grass plant caused by Hg deposition during an interval of two weeks varied between 0.01-0.07μg pt^-1,contributing to 17%-48% of the total Hg load in grass plant exposed.  相似文献   

4.
近年来,晋祠泉域内的污水排放量逐年增加,致使地表水、浅层地下水、岩溶水的水环境日趋恶化,尤其是古交市重点水源保护区,被污染的地表水和浅层孔隙水直接入渗补给岩溶水,造成了地下水不同程度的污染,严重威胁到太原市西部边山地区城乡居民的饮水安全.通过对泉域内污水排放的调查,研究了污水排放对地下水的影响,制定出了泉域地下水环境管理保护方案,可为加强管理提供决策依据.  相似文献   

5.
红壤对汞的吸附特性研究   总被引:10,自引:0,他引:10  
  相似文献   

6.
土壤中汞生物有效性的研究   总被引:17,自引:0,他引:17  
小麦思苗实验表明,小麦幼苗根主要吸收土壤中小分子有机质结合的汞(FA结合态汞),并在根部累积,其他开矿汞可以结合为FA结合态,表现为间接作用,残渣态汞是植物根吸收的库源。在实验条件下,小麦幼苗叶片可以很快吸收土壤中挥发出来的汞,并在茎叶中积累,土壤汞植物利用率氏,可被带出土主汞量有限。  相似文献   

7.
以冬小麦为试验对象,采用盆栽试验,研究了不同有机肥、不同外源汞施用量对土壤和小麦的汞污染、迁移和累积的影响。结果表明,随着汞施入量的增加,土壤全汞和有效汞含量逐渐增加,使小麦吸收汞增加。在小麦整个生育期,土壤有效汞与小麦根、茎叶、籽粒吸收的汞之间呈极显著正相关性。随着有机肥施用量的增加,土壤有效态汞含量逐渐减少,继而降低小麦对汞的吸收。相关分析表明,有机肥施用量与土壤有效汞呈显著负相关。有机肥对土壤有效汞的抑制效果以低汞高有机肥处理效果最为显著,苗期达到58.94%,收获期达到62.29%。有机肥施用量与苗期低汞处理下小麦茎叶和根部汞含量呈显著负相关,与收获期的所有汞处理下小麦茎叶、根部和籽粒汞含量呈极显著或显著负相关,在低汞处理,施用有机肥完全抑制了土壤中汞向籽粒中转移。所有处理小麦各器官汞含量的分布规律为根〉茎叶〉籽粒。  相似文献   

8.
9.
土壤中汞的存在形态及过量汞对生物的不良影响   总被引:11,自引:0,他引:11  
随着汞在工业、农业、医药等方面的广泛应用,由汞及其化合物所造成的环境污染问题日益严重,汞对环境和人类带来的危害愈来愈引起普遍的关注。本文着重介绍汞在自然环境和土壤中的各种存在形态,阐述不同形态汞对植物进而对人类健康的危害,以及汞不同形态情况下人体的中毒症状和中毒机理,并对减少汞污染的治理提出一定的建议。  相似文献   

10.
水芹菜对污水净化的研究   总被引:27,自引:2,他引:27  
通过静态实验研究了水芹菜对污水的净化能力,结果表明,水芹菜对污水中的N、P、COD具有明显的去除效果,能明显改善污水水质。  相似文献   

11.
A 3-year field experiment on a calcareous Fluventic Xerochrept planted with corn (Zea mays L.) was carried out to evaluate the effects of amending the soil with high and low rates of composted municipal waste on soil enzyme activities (alkaline phosphomonoesterase, phosphodiesterase, arylsulphatase, dehydrogenase, and l-asparaginase). These enzyme activities all increased when compost was added at rates of up to 90 t ha-1, and the phosphatases continued to show a linear increase with compost rates of up to 270 t ha-1. The addition of mineral fertilizer increased enzyme activities in unamended soil, and masked the stimulating effect of compost on the amended soils. Heavy metals did not affect soil enzyme activities up to a compost addition of at least three times the amount specified by Italian law.  相似文献   

12.
温室盆栽试验研究城市固体废弃物堆肥与化肥对不同土壤黑麦草生长的影响,结果表明,堆肥和化肥可明显增加黑麦草干物质产量,阳春和大安2种土壤处理C50干物质产量分别比对照增加39.53%和109.38%,而NPK处理则分别增产267.44%和406.25%。堆肥与化肥配施处理(NPK C25对阳春和NPK C50对大安)产量最高。堆肥处理明显增加土壤pH、有机碳、土壤有效态磷、钾、铁、锰、锌和铜含量。  相似文献   

13.
Abstract

A study was conducted in the Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, India, to transform the normal compost into bioactive compost, which has multiple benefits to the crop system. The key players in this transformation process were Azotobacter sp., Pseudomonas sp., Phosphobacteria sp. and the waste materials like poultry litter and spent wash. This enrichment process increases both the quality and nutrient content of the municipal solid waste compost significantly. A study was carried out to evaluate the effect of application of different levels of enriched municipal solid waste compost on the availability of the macronutrient content to the rice field soil. The effect of enriched compost on soil available nutrients was significant. The soil ammonium nitrogen and soil nitrate nitrogen content was found to be high in the plots where the enriched compost was applied along with inorganic fertilizer with the values of 38.87 mg kg?1 and 32.87 mg kg?1, respectively. In addition, the availability decreased towards crop growth. The soil available P and K were also increased with enriched compost application to about 22.46 kg ha?1 and 647 kg ha?1 compared with control values of 19.44 kg ha?1 and 518 kg ha?1, respectively. Both phosphorus and potassium content decreased towards advancement of crop growth.  相似文献   

14.
How composting affects heavy metal content is largely unknown. Accordingly, we investigate the total content of six heavy metals, Cd/Zn ratio and the Zn-equiv, the relative availability and fractionation study to assess the suitability of compost derived out of those for environmental concerns. During composting, total metal content increased but their RA decreased. As a result of composting bioavailable form of metals also decreased. High significant correlations between different forms of heavy metals content and degree of humification were found for all the elements. Composting increases humic acid content than fulvic acid. This transformation is mainly responsible to serve as binding agent for metal thereby moderating the rapid metal mobilization.  相似文献   

15.
A sterilized, but undecomposed, organic by-product of municipal waste processing was incubated in sandy soils to compare C and N mineralization with mature municipal waste compost. Waste products were added to two soils at rates of 17.9, 35.8, 71.6, and dry weight and incubated at for 90 d. Every 30 d, nitrate and ammonium concentrations were analyzed and C mineralization was measured as total CO2-C evolved and added total organic C. Carbon mineralization of the undecomposed waste decreased over time, was directly related to application rate and soil nutrient status, and was significantly higher than C mineralization of the compost, in which C evolution was relatively unaffected across time, soils, and application rates. Carbon mineralization, measured as percentage C added by the wastes, also indicated no differences between composted waste treatments. However, mineralization as a percentage of C added in the undecomposed waste treatments was inversely related to application rate in the more productive soil, and no rate differences were observed in the highly degraded soil. Total inorganic N concentrations were much higher in the compost- and un-amended soils than in undecomposed waste treatments. Significant N immobilization occurred in all undecomposed waste treatments. Because C mineralization of the undecomposed waste was dependant on soil nutrient status and led to significant immobilization of N, this material appears to be best suited for highly degraded soils low in organic matter where restoration of vegetation adapted to nutrient poor soils is desired.  相似文献   

16.
Municipal solid waste (MSW) composts have been used to maintain the long-term productivity of agroecosystems and to protect the soil environment from overcropping, changes in climatic conditions and inadequate management; they also have the additional benefit of reducing waste disposal costs. Since MSW may contain heavy metals and other toxic compounds, amendments cannot only influence soil fertility, but may also affect the composition and activity of soil microorganisms. The effects of MSW compost and mineral N amendments in a 6-year field trial on some physical-chemical properties, enzyme activities and bacterial genetic diversity of cropped plots (Beta vulgaris-Triticum turgidum rotation) and uncropped plots were investigated. The compost was added at the recommended and twice the recommended dosage (12, 24 t ha−1). Amendments of cropped plots with MSW compost increased the contents of organic C from 13.3 to 15.0 g kg−1 soil and total N from 1.55 to 1.65 g kg−1 soil. There were significant increases in dehydrogenase (9.6%), β-glucosidase (13.5%), urease (15.4%), nitrate reductase (21.4%) and phosphatase (9.7%) activities. A significant reduction in protease activity (from 3.6 to 2.8 U g−1 soil) was measured when a double dose of compost was added to the cropped plots. No dosage effect was detected for the other enzymes. Changes in the microbial community, as a consequence of MSW amendment, were minimal as determined using denaturing gradient gel electrophoresis, rDNA internal spacer analysis and amplified ribosomal DNA restriction analysis of bacteria, archaea, actinomycetes, and ammonia oxidizers. This indicates that there was no significant variation in the overall bacterial communities nor in selected taxonomic groups deemed to be essential for soil fertility.  相似文献   

17.
We present the results of a plot experiment in which the changes in physical, chemical and physico-chemical properties of a sandy soil were examined after amending the soil with two different composts produced from municipal solid wastes. Triticale (X Triticosecale), cultivated in a 3-y monoculture, was used as a test plant. Both composts differed in their concentrations of heavy metals. Composts were applied non-recurrently in the spring before sowing, at the rates of 18, 36, and 72 t dry matter ha−1. The plots without fertilization, and those fertilized annually with mineral nitrogen (N), phosphorous (P), and potassium (K) were used as controls. Soil samples were collected 1 month after compost application, as well as each year after harvesting. Application of both composts improved soil physical properties, associated with increasing content of organic carbon (OC). Statistically significant increases of total porosity, field water capacity and amounts of plant-available water were found only in the short time after compost application. Despite the fact that soil OC content decreased with time, a C:N ratio clearly increased in the third year after compost application, which was explained by a depletion of N reserve. Both composts caused a large increase of plant-available P, K, and magnesium (Mg), which was observed during the entire period of the experiment. Beneficial changes were also observed in soil humic substances composition. These were confirmed by increased humic acids content and humic/fulvic acid ratios. Soil cation exchange capacity and base saturation increased in all plots amended with composts. This effect was still observed 1 year after compost application, while in the third year it remained significant only at the highest compost rates. Compost originating from industrial areas, even if applied in low amounts, caused a significant increase in total concentration of soil heavy metals. This fact did not result, however, in any substantial changes in soil quality with regard to heavy metals content.  相似文献   

18.
A field experiment was conducted in Southern Italy to evaluate the effects of different water quality and fertilizers on yield performance of tomato crop. In mineral nitrogen (N) fertilizer and irrigation with fresh water (Electrical Conductivity, EC, = 0.9 dS m?1) (FWF); mineral N fertilizer and irrigation with saline water (EC = 6.0 dS m?1) (SWF); municipal solid waste (MSW) compost and irrigation with fresh water (EC = 0.9 dS m?1) (FWC); MSW compost and irrigation with saline water (EC = 6.0 dS m?1) (SWC). At harvest, weight and number of fruits and refractometric index (°Brix) were measured, total and marketable yield and dry matter of fruit were calculated. The results indicated that MSW compost, applied as amendment, could substitute the mineral fertilizer. In fact, in the treatments based on compost application, the tomato average marketable yield increased by 9% compared with treatments with mineral fertilizer. The marketable yield in the SWF and SWC treatments (with an average soil EC in two years to about 3.5 dS m?1) decreased respectively of 20 and 10%, in respect to fresh water treatments. At the end of the experiment, application of compost significantly decreased the sodium absorption rate (SAR) of SWC treatment in respect of SWF (?29.9%). Significant differences were observed among the four treatments both on soil solution cations either exchangeable cations. In particular compost application increased the calcium (Ca) and potassium (K) contents in saturated soil paste respect to the SWF ones (31.4% and 59.5%, respectively). At the same time saturated soil paste sodium (Na) in SWC treatment recorded a decrease of 17.4% compared to SWF.  相似文献   

19.
为探求再生水灌溉对斥水和亲水土壤水力特性的影响,该文选用有代表性的斥水黏壤土和亲水黏壤土、斥水砂土和亲水砂土,测定其在自来水、再生水和其他4种生活污水条件下的土壤水分特征曲线,采用主成分分析法得到不同水质综合指标,分析水质综合指标对不同土壤水分特征曲线的影响,采用van Genuchten-Mualem模型对黏壤土土-水曲线的参数进行拟合,并分析水质综合指标对黏壤土累积当量孔径分布、比水容量和水分常数的影响。结果表明:在相同基质吸力情况下,黏壤土含水率随水质综合指标增加(水质变差)而减小,砂土的含水率随水质变化不大;在低吸力段,斥水和亲水黏壤土的比水容量随水质综合指标的增加而增加;土壤进气值与水质综合指标呈显著负线性相关关系(R~2分别为0.94和0.78);相同水质条件下,斥水土壤的进气值比亲水土壤小;随着水质综合指标的增加,斥水和亲水黏壤土的极微孔隙降低,而中等孔隙和大孔隙增加,小于某当量孔径的累积百分比增加;随着水质综合指标的增加,斥水和亲水黏壤土的田间持水率、凋萎系数、有效水和易利用水比例均减小,但再生水对田间持水率和易利用水比例降低作用不显著。研究结果可为大面积再生水灌溉及其管理提供一定的理论依据。  相似文献   

20.
To calculate the correct nitrogen fertilizer rate for crops and the possibility of using municipal solid waste (MSW) compost as an organic amendment, nitrogen mineralization rates were studied by laboratory incubation and field measurements in a soil in central Spain. Nitrogen mineralization rates were studied in a 250-day laboratory soil incubation with two treatments: with and without compost, incubated at 28°C and a moisture content of 70% of field capacity. Three phases are described: (1) no increase in the mineral nitrogen content, (2) a linear increase in the mineral N fraction and, finally, (3) a linear, parallel increase in both mineral N and easily mineralizable organic N fractions. Incubation data were fitted to three different equations. The exponential model proposed by Stanford and Smith (1972) was selected to predict field N mineralization rates. The field experiment was performed using a crop of maize with three treatments: compost applied in February (before sowing), compost applied during sowing and a control (without compost application): sampling was carried out over 14 months. Soil water content was measured periodically. Soil with compost applied in February showed 1.9 and 1.4 times more available nitrogen than soil without compost and compost at sowing, respectively, for the month of maximum accumulation. These results suggest that compost amendments must be applied before sowing. Compost applications were shown to supply the available nitrogen for spring crops. A simulation model showed satisfactory agreement with field data, after correction for soil temperature and water content. Received: 22 July 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号