首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cupric oxide (CuO) photocatalytic reduction of chromium(VI) [Cr(VI)] by organic acids including tartaric acid, citric acid, malic acid, lactic acid, and succinic acid was investigated at pH 3 and 25 °C through batch experiments. The results demonstrate that the removal of Cr(VI) by organic acids assisted with CuO could markedly be improved under the irradiation of simulated solar light. The removal rates of Cr(VI) were in the order: tartaric acid (with two α-OH groups and two -COOH groups) > citric acid (with one α-OH group and three -COOH groups) > malic acid (with one α-OH group and two -COOH groups) > lactic acid (with one α-OH group and one -COOH group) > succinic acid (with no α-OH group and two -COOH groups), suggesting that the reductive efficiency of Cr(VI) strongly depends on the number of α-OH groups in organic acids. A possible mechanism of CuO photocatalytic reduction of Cr(VI) by organic acids is proposed. CuO is firstly dissolved to release Cu(II), and then form Cu(II)-organic acid complexes. Furthermore, Cu(I) and active intermediates are produced through a ligand-to-metal charge-transfer pathway under irradiation, responsible for the rapid reduction of Cr(VI). In addition, the impact factors for CuO photocatalytic reduction of Cr(VI) by tartaric acid were further examined. High CuO loading and tartaric acid concentration, and low pH in the reaction system were conducive to the reduction of Cr(VI), and the removal of Cr(VI) obeyed to a pseudo zero-order kinetic model.  相似文献   

2.
The release of heavy metals in aquatic systems due to the discharge of industrial wastewaters is a matter of environmental concern. Heat-inactivated cells of a flocculent strain of Saccharomyces cerevisiae were used in the bioremediation, in a batch mode, of a real electroplating effluent containing Cu, Ni, and Cr. In this approach, no previous reduction of Cr(VI) to Cr(III) was required. Cr(VI) was selectively removed (98%) by yeast biomass at pH 2.3. At this pH, Cr(VI) is mainly in the form of HCrO 4 ? and yeast surface is surrounded by H+ ions, which enhance the Cr(VI) interaction with biomass binding sites by electrostatic forces. Subsequently, pH of the effluent was raised up to 6.0; this pH maximizes the efficiency of cations removal since at this pH the main binding groups of yeast cells are totally or partially deprotonated. The passage of effluent through a series of sequential batches, at pH 6.0, allowed, after the third batch, the removal of Cu(II), Ni (II), Cr total, and Cr(VI) in the effluent to values below the legal limit of discharge. The strategy proposed in the present work can be used in plants for the treatment of heavy metals rich industrial effluents containing simultaneously Cr(VI) and Cr(III).  相似文献   

3.
Extensive use of chromium in industry has caused environmental contamination. Chromium-resistant bacteria are capable of reducing toxic Cr (VI) to less toxic Cr (III). Eight isolates, which can grow on LB agar containing 500 mg/L of Cr (VI), were isolated from soil samples of iron mineral area. The bacterial isolates were identified as Bacillus sp. by the 16S rRNA gene sequences. Phylogenetic tree analysis indicates the isolates can be divided into two groups. The bacterial isolates can be resistant to other heavy metals and reduce Cr (VI) at different levels. One bacterial isolate (MDS05), which can tolerate 2500 mg/L Cr (VI) and was able to reduce almost 100% of Cr (VI) at the concentration of 10 mg/L in 24 h, was selected to study the effects of some environmental factors such as pH, temperature, and time on Cr (VI) reduction and growth. The cell growth of MDS05 was affected by the presence of Cr (VI), especially at the concentration of 100 mg/L. It reduced more amount of Cr (VI) under a wide range of concentrations from 5 to 50 mg/L, and reduction was optimum at 37 °C and pH 8. MDS05 showed great promise for use in Cr (VI) detoxification under a wide range of environmental conditions.  相似文献   

4.
The kinetics of Cr(Ⅵ) reduction by sulfide in soil suspensions with various pHs, soil compositions, and Fe(Ⅱ) concentrations was examined using batch anaeroblc experimental systems at constant temperature. The results showed that the reaction rate of Cr(Ⅵ) reduction was in the order of red soil 〈 yellow-brown soil 〈 chernozem and was proportional to the concentration of HCl-extractable iron in the soils. Dissolved and adsorbed iron in soil suspensions played an important role in accelerating Cr(Ⅵ) reduction. The reaction involved in the Cr(Ⅵ) reduction by Fe(Ⅱ) to produce Fe(ⅡI), which was reduced to Fe(Ⅱ) again by sulfide, could represent the catalytic pathway until about 70% of the initially present Cr(Ⅵ) was reduced. The catalysis occurred because the one-step reduction of Cr(Ⅵ) by sulfide was slower than the two-step process consisting of rapid Cr(Ⅵ) reduction by Fe(Ⅱ) followed by Fe(Ⅲ) reduction by sulfide. In essence, Fe(Ⅱ)/Fe(Ⅲ) species shuttle electrons from sulfide to Cr(Ⅵ), facilitating the reaction. The effect of iron, however, could be completely blocked by adding a strong Fe(Ⅱ)-complexing ligand, 1,10-phenanthroline, to the soil suspensions. In all the experiments, initial sulfide concentration was much higher than initial Cr(Ⅵ) concentration. The plots of In e[Cr(Ⅵ)] versus reaction time were linear up to approximately 70% of Cr(Ⅵ) reduction, suggesting a first-order reaction kinetics with respect to Cr(Ⅵ). Elemental sulfur, the product of sulfide oxidation, was found to accelerate Cr(Ⅵ) reduction at a later stage of the reaction, resulting in deviation from linearity for the In c[Cr(Ⅵ)] versus time plots.  相似文献   

5.
Methylibium petroleiphilum PM1, which is capable of degrading of methyl tert-butyl ether (MTBE), was immobilized in calcium alginate gel beads. Various applications were explored to increase the mechanical strength of these gel beads. The introduction of 0.3 mol/L calcium chloride into the crosslinking solution, 0.002 mol/L calcium chloride into the growth medium, and 0.2% polyethyleneimine (PEI) as chemical crosslinking agent increased the stability of the Ca-alginate gel beads under the operation conditions of the bioreactor. The degradation rates of MTBE by the immobilized cells in the bioreactor system operated in batch and continuous mode , respectively, were compared. A MTBE biodegradation rate of 5.79 mg/L·h was reached for over 400 h (50 batches), and the immobilized cells in the bioreactor removed >96% MTBE during 50 days of operation. Molecular analysis of the PM1 cells revealed that microbial growth occurred predominantly as microcolonies in the outer area of the beads during the first 20 days of operation. The results of this study show that a continuous-mode, fixed-bed bioreactor reactor coupled with PM1-immobilized cells is a promising technology for remediating MTBE-contaminated groundwater.  相似文献   

6.
Chromium (Cr)-contaminated soils pose a great environmental risk, with high solubility and persistent leaching of Cr(VI). In this study, hydroxysulfate green rust (GRSO4), with the general formula Fe(II)4Fe(III)2(OH)12SO4·8H2O, was evaluated for its efficiency in Cr(VI) stabilization via Cr(VI) reduction to Cr(III) in four representative Cr(VI)-spiked soils. The initial concentrations of phosphate buffer-extractable Cr(VI) (Cr(VI)b) in soils 1, 2, 3, and 4 were 382.4, 575.9, 551.3, and 483.7 mg kg-1, respectively. Reduction of Cr(VI) to Cr(III) by structural Fe(II) (Fe(II)s) in GRSO4 in all studied soils was fast, wherein the application of GRSO4 markedly decreased the amount of Cr(VI)b at the Cr(VI)b/Fe(II)s stoichiometric mole ratio of 0.33. The kinetics of Cr(VI) reduction by GRSO4 could not be determined as this reaction coincided with the release of Cr(VI) from soil during the experiment. The concentration of Cr(VI)b decreased, as the Cr(VI)b/Fe(II)s ratio decreased from 0.46 to 0.20, generally to below 10 mg kg-1. Back-transformation of the generated Cr(III) was examined in the presence of manganese oxide birnessite at the birnessite/initial Cr(III) mole ratio of 4.5. The results of batch tests showed that only 5.2% of the initial Cr(III) was converted to Cr(VI) after two months, while under field capacity moisture conditions, less than 0.05% of the initial Cr(III) was oxidized to Cr(VI) after six months. The results illustrated that remediation of Cr(VI)-contaminated soils would be fast, successful, and irreversible with an appropriate quantity of fresh GRSO4.  相似文献   

7.
Chromium(Cr) may cause losses in the yield of field plant, which is one of the favorite habitats of Bacillus thuringiensis(Bt). The purposes of our study were to assess the Cr(VI)-resistance and Cr(VI)-reducing abilities of an indigenous soil isolate of Bt and to determine the factors governing Cr(VI) reduction. Towards this end a novel dichromate-reducing Bt BRC-ZYR2, characterized with insecticidal crystal proteins(ICPs), was isolated from a uranium deposit. Minimum inhibitory concentrations(MICs) of Cr(VI) were determined by broth dilution method and the concentrations of Cr(VI) and total Cr in the supernatant were quantified colorimetrically using 1,5-diphenylcarbazide(DPC) reagent and a mixture of sulfuric-nitric acids, respectively. The isolate contained five ICP genes(cry1Ba, cry1 Bb, cry1Be/cry1 Bf, cry9 Ca and cry9Da) and exhibited a high level of Cr(VI) resistance with MICs of 150 mg L-1at pH 7.0 and 30?C, and 500 mg L-1under optimal conditions(pH 9.0 and 40?C). The total Cr concentration was similar to initial concentration of Cr(VI) under the optimal condition, suggesting that the essential removal of the Cr(VI) was dependent on Bt reduction. Under optimal conditions, the initial Cr(VI) concentrations from 25 to 75 mg L-1significantly decreased in 24 h after incubation. Addition of Mn2+, Co2+, Mo2+and Cu2+activated Bt-mediated Cr(VI) reduction, while Zn2+, Ni2+and glucose were found to inhibit the reduction. Our results indicated that this isolate could be a promising biopesticide with the potential for both insect biocontrol and Cr bioremediation in the field.  相似文献   

8.
The present study explained the effect of pretreatments on the biosorption of Cr (III) and Cr (VI) by Cassia fistula biomass from aqueous solutions. For this purpose Cassia fistula biomass was pretreated physically by heating, autoclaving, boiling and chemically with sodium hydroxide, formaldehyde, gluteraldehyde, acetic acid, hydrogen peroxide, commercial laundry detergent, orthophosphoric, sulphuric acid, nitric acid, and hydrochloric acid. The adsorption capacity of biomass for Cr (III) and Cr (VI) was found to be significantly improved by the treatments of gluteraldehyde (95.41 and 96.21 mg/g) and benzene (85.71 and 90.81 mg/g) respectively. The adsorption capacity was found to depend on pH, initial metal concentration, dose, size, kinetics, and temperature. Maximum adsorption of both the Cr (III) and Cr (VI) was observed at pH 5 and 2. When Freundlich and Langmuir isotherms were tested, the latter had a better fit with the experimental data. The kinetic studies showed that the sorption rates could be described better by a second order expression than by a more commonly applied Lagergren equation.  相似文献   

9.
The main purpose of this work was to conduct a kinetic study on cell growth and hexavalent chromium [Cr(VI)] removal by Candida sp. FGSFEP in a concentric draft-tube airlift bioreactor. The yeast was batch-cultivated in a 5.2-l airlift bioreactor containing culture medium with an initial Cr(VI) concentration of 1.5 mM. The maximum specific growth rate of Candida sp. FGSFEP in the airlift bioreactor was 0.0244 h?1, which was 71.83% higher than that obtained in flasks. The yeast strain was capable of reducing 1.5 mM Cr(VI) completely and exhibited a high volumetric rate [1.64 mg Cr(VI) l?1 h?1], specific rate [0.95 mg Cr(VI) g?1 biomass h?1] and capacity [44.38 mg Cr(VI) g?1 biomass] of Cr(VI) reduction in the airlift bioreactor, with values higher than those obtained in flasks. Therefore, culture of Candida sp. FGSFEP in a concentric draft-tube airlift bioreactor could be a promising technological alternative for the aerobic treatment of Cr(VI)-contaminated industrial effluents.  相似文献   

10.
Chemical remediation of soil and groundwater containing hexavalent chromium (Cr(VI)) was carried out under batch and semi-batch conditions using different iron species: (Fe(II) (sulphate solution); Fe0 G (granulated elemental iron); ZVIne (non-stabilized zerovalent iron) and ZVIcol (colloidal zerovalent iron). ZVIcol was synthesized using different experimental conditions with carboxymethyl cellulose (CMC) and ultra-sound. Chemical analysis revealed that the contaminated soil (frank clay sandy texture) presented an average Cr(VI) concentration of 456?±?35 mg kg?1. Remediation studies carried out under batch conditions indicated that 1.00 g of ZVIcol leads to a chemical reduction of ~280 mg of Cr(VI). Considering the fractions of Cr(VI) present in soil (labile, exchangeable and insoluble), it was noted that after treatment with ZVIcol (semi-batch conditions and pH 5) only 2.5% of these species were not reduced. A comparative study using iron species was carried out in order to evaluate the reduction potentialities exhibited by ZVIcol. Results obtained under batch and semi-batch conditions indicate that application of ZVIcol for the “in situ” remediation of soil and groundwater containing Cr(VI) constitutes a promising technology.  相似文献   

11.
The purpose of this study is to evaluate the combined Cr(VI) removal capacities of nonliving (untreated rubber wood sawdust, URWS) and living biomass (URWS-immobilized Acinetobacter haemolyticus) in a continuous laboratory scale downward-flow two column system. Synthetic solutions of Cr(VI) between 237 and 320 mg L?1 were mixed with 1 g L?1 brown sugar in a nonsterile condition. Final Cr(VI) of between 0 and 1.6 mg L?1 indicate a Cr(VI) removal capacity of 99.8–100%. The bacterial Cr(VI) reduction capacity increased with column length. This study shows the feasibility of using the two column system consisting of living (bacteria) and nonliving biomass (URWS) as a useful alternative treatment for Cr(VI) contamination in the aqueous system.  相似文献   

12.
Immobilized microbial cells for the biological treatment have the potential to degrade toxic chemicals faster than conventional wastewater treatment systems. In the present study, suitability of immobilized Pseudomonas fluorescens SM1 strain in calcium alginate beads for remediation of the major toxicants in Indian water bodies was tested by means of GC/HPLC and AAS techniques. Roughly 80% reduction in the concentration of phenols was observed by immobilized SM1 cells compared with 60% by the free cells. Also, in the case of the bioremediation of heavy metals, immobilized SM1 cells were found to be more efficient compared with the free cells. Suspension of P. fluorescens SM1 cells in the test model water for 24 h brought down the concentrations of Cu++, Cd++, Ni++, and Pb++ by more than 75% under free cell state and 7?C9% better efficiency under the immobilized conditions. However, Cr(VI) could show only 44% removal by the cell immobilized system, whereas a mere 35% reduction in the Cr(VI) levels was shown in the test model water by the free SM1 cells under the same conditions. Moreover, a model water containing 2,000 ppb of BHC, 1,248 ppb mancozeb, and 312 ppb 2,4-D passed through the cell immobilized column resulted in the decline in their concentrations up to 362 ppb, 750 ppb, and 126 ppb, respectively. Generally, AAS, HPLC, and GC analyses of treated test model waters with the free and immobilized SM1 cells exhibited high potential of immobilized SM1 in detoxification of test water. From the results, we conclude that immobilized cells of P. fluorescens SM1 strain were quite effective in bioremediation of major toxicants present in Indian water bodies, and we also recommend the use of immobilized bacterial cells rather than the free cells for the bioremediation/detoxification process.  相似文献   

13.
The shell of a gastropod (Achatina Achatina) was used as a precursor for the synthesis of nano calcium oxide (NC) via the sol–gel technique. The NC was characterized and the performance evaluation in chromium (Cr) (VI) abstraction was assessed in a fixed bed. The operating characteristics of the NC-Cr (VI) system were analysed with the mass transfer model and the mass transfer zone parameters were found to fluctuate with changes in the initial Cr (VI) concentration. The evaluation of the equilibrium data, generated from the fixed bed studies, showed that the sorption of Cr (VI) occurred via monolayer adsorption mechanism, and the monolayer sorption capacity was 833.33 mg/g. Different kinetic models (i.e., Adams–Bohart, Thomas, Wolborska, and Yoon–Nelson models) were applied to experimental data to predict the breakthrough curves and to determine the parameters of the column useful for process design. The kinetic analysis showed that the Yoon and Nelson model had the best fitting of the experimental data. The data obtained for Cr (VI) removal, when the NC bed height was optimized, were well described by bed depth service time model.  相似文献   

14.
The pulp left after the extraction of juice from Citrus reticulate (kinnow), is a waste material, which was used as a potential sorbent for Cr(III) and Cr(VI) in the present study. The effect of experimental parameters such as pH, biosorbent dosage, biosorbent particle size, initial metal concentrations, temperature, shaking speed and sorption time on the Cr removal is apparent from the obtained results. The Freundlich isotherm and pseudo second order kinetic models fitted well to the data of Cr(III) and Cr(VI) biosorption by Citrus reticulata waste biomass. Effect of several pretreatments such as gases, natural coagulant and many other chemicals on Cr(III) and Cr(VI) sorption capacity of Citrus reticulata waste biomass was first time analyzed in the present study. The metal sorption capacity of Citrus reticulata waste biomass after a specific pretreatment was not only related to the nature of chemical but also strongly dependent on the oxidation state of the metal.  相似文献   

15.
The efficiencies of free and immobilized bacterial cultures of petroleum hydrocarbon degraders were evaluated and compared in this study.Hydrocarbon-degrading microbial communities with high tolerance to and high degrading ability of crude oil were obtained from the soil contaminated with crude oil in the Yellow River Delta.Then,the microbial cells were immobilized in sodium alginate(SA)beads and sodium alginate-diatomite(SAD)beads.The biodegradation of crude oil in soil by immobilized cells was compared with that by free cells at three inoculation concentrations,1×104 colony forming units(cfu)kg-1(low concentration,L),5×104 cfu kg-1(medium concentration,M),and 1×105 cfu kg-1(high concentration,H).At 20 d after inoculation,the maximum degradation rate in the immobilized systems reached 29.8%(SAD-M),significantly higher(P<0.05)than that of the free cells(21.1%),and the SAD beads showed greater degradation than the SA beads.Moreover,both microbial populations and total microbial activity reached significantly higher level(P<0.05)in the immobilized systems than free cell systems at a same initial inoculation amount.The scanning effectronic microscope(SEM)images also confirmed the advantages of the immobilized microstructure of SAD beads.The enhanced degradation and bacterial growth in the SAD beads indicated the high potential of SAD beads as an effective option for bioremediation of crude oil-contaminated soils in the Yellow River Delta.  相似文献   

16.
The potential application of commercial coffee as a source of electron donors for detoxifying hexavalent chromium [Cr(VI)]-contaminated water was investigated. Various amounts of coffee were reacted with 50 mg/L of artificially prepared Cr(VI)-contaminated water, and the Cr(VI) concentration was monitored as a function of the reaction time using the diphenylcarbazide colorimetric method with an Aquamate 8000 UV-Vis spectrophotometer at a 540-nm wavelength. When the ratio of the coffee mass applied to the volume of Cr(VI) solution was 75 g/L, more than 80% of the initial Cr(VI) disappeared within 5 min of reaction time, and the Cr(VI) concentration became lower than the detection limit of 1 mg/L within 20 min. More Cr(VI) disappeared as more coffee was introduced. In general, smaller particles of coffee were more effective at Cr(VI) reduction, but the advantage that particle size conferred disappeared once the coffee particle size was smaller than 125 μm. As a result, the reduction of the Cr(VI) in the solution was not considered to result from the surface catalytic reduction but by the electron transfer from the electron donors released from the applied coffee.  相似文献   

17.
Reduction of Cr(VI) by soil humic acids   总被引:1,自引:0,他引:1  
The rate of hexavalent chromium reduction by a soil humic acid (SHA) was investigated in aqueous solutions where concentrations of Cr(VI), H+, and SHA were independently varied. Rate experiments were done with a large excess of SHA over Cr(VI). Rates of reduction depend strongly on [H+], increasing with decreasing pH. Typical Cr(VI)-SHA reactions display a nonlinear reduction of Cr(VI) with time that cannot be modelled with simple first- or second-order rate equations. An empirical rate equation is developed for Cr(VI)-soil humic acid reactions over a range of experimental conditions. The model is in part based on a reactive continuum concept developed for soil fulvic acids. The rate equation describing Cr(VI) reduction by SHA is: R= -(k0+k[H+]1/2)[HCrO4?]1/2Xe?1, where k0 is (8·3 ± 1·2) × 10?12, s?1k is (2·04 ± 0·05) × 10?9 l1/2 mol?1/2 s?1, and Xe is the equivalent fraction of SHA oxidized. The rate equation adequately models Cr(VI) reduction in an experiment with [Cr(VI)]0 four times greater than the maximum concentration used in its derivation. Cr(VI) reduction at pH 3 by two other SHAs can also be modelled using the rate equation. The difference between the rate coefficients for the humic acid and the fulvic acid from the same soil was greater than the difference in the rate coefficients for humic acids from different soils.  相似文献   

18.
茶树废弃物引起的环境破坏和病虫害爆发问题日益突出,对其进行无害化和资源化利用具有重要意义。该研究以修剪的茶树枝叶提取液作为还原剂和封端剂,以提取后的残渣作为炭源,成功制备了一种可高效去除水中六价铬(Cr(Ⅵ))的生物炭负载纳米零价铁复合材料(nanoscale zero-valent iron embedded tea leaves,TLBC-nZVI)。分析了材料用量、溶液初始pH值和温度等对Cr(Ⅵ)去除效果的影响;利用扫描电子显微镜结合能量色散X射线光谱仪(SEMEDS)、傅立叶变换红外光谱仪(FTIR)、X射线粉晶衍射仪(XRD)和X射线光电子能谱仪(XPS)等对材料进行表征,结合吸附动力学、吸附等温线和吸附热力试验探讨了去除机制。结果表明酸性条件、高温、增加材料用量有利于TLBC-nZVI对Cr(Ⅵ)的去除。TLBC-nZVI吸附过程符合准二级动力学模型、颗粒内扩散模型和Freundlich吸附等温模型,该吸附是自发的化学吸热过程。TLBC-nZVI与Cr(Ⅵ)的反应机制为吸附在材料上的Cr(Ⅵ)被零价铁(Fe0)和还原性官能团还原为三价铬(Cr(Ⅲ))...  相似文献   

19.
Solution pH is among the most important parameters that influence heavy metal biosorption. This work presents a kinetic study of the effects of pH on chromium biosorption onto Cupressus lusitanica Mill bark from aqueous Cr(VI) or Cr(III) solutions and proposes a mechanism of adsorption. At all assayed contact times, the optimum pH for chromium biosorption from the Cr(III) solution was 5.0; in contrast, optimum pH for chromium biosorption from the Cr(VI) solution varied depending on contact time. The kinetic models that satisfactorily described the chromium biosorption processes from the Cr(III) and Cr(VI) solutions were the Elovich and pseudo second-order models, respectively. Diffuse reflectance infrared Fourier transform spectroscopy studies suggest that phenolic compounds present on C. lusitanica Mill bark play an important role in chromium biosorption from the Cr(III) solution. On the other hand, chromium biosorption from the Cr(VI) solution involved carboxyl groups produced on the bark by redox reactions between oxygen-containing groups and Cr(VI), and these were in turn responsible for the biosorption of Cr(III) produced by Cr(VI) reduction.  相似文献   

20.
A fungal strain possibly capable of removing hexavalent chromium was to be isolated from industrial effluent from a leather factory located in the city of Guadalajara, state of Jalisco, Mexico. The strain was identified as Trichoderma inhamatum by the D1/D2 domain sequence of the 28S rDNA gene. Batch cultures of T. inhamatum in media containing initial Cr(VI) concentrations from 0.83 to 2.43 mM Cr(VI) were prepared. Experimental results suggest that the fungus is capable of transforming hexavalent chromium to trivalent chromium; a transformation of a highly toxic contaminant to a low toxic form. The specific and volumetric rates of Cr(VI) reduction by T. inhamatum cultures decreased as the initial Cr(VI) concentration increased. The fungus exhibited a remarkable capacity to tolerate and completely reduce Cr(VI) concentrations up to 2.43 mM. These results indicate that the T. inhamatum fungal strain may have potential applications in bioremediation of Cr(VI)-contaminated wastewaters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号