首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil water potential (Psi(s)) is often estimated by measuring leaf water potential before dawn (Psi(pd)), based on the assumption that the plant water status has come into equilibrium with that of the soil. However, it has been documented for a number of plant species that stomata do not close completely at night, allowing for nocturnal transpiration and thus preventing nocturnal soil-plant water potential equilibration. The potential for nighttime transpiration necessitates testing the assumption of nocturnal equilibration before accepting Psi(pd) as a valid estimate of Psi(s). We determined the magnitude of disequilibrium between Psi(pd) and Psi(s) in four temperate conifer species across three height classes through a replicated study in northern Idaho. Based on both stomatal conductance and sap flux measurements, we confirmed that the combination of open stomata and high nocturnal atmospheric vapor pressure deficit (D) resulted in nocturnal transpiration in all four species. Nocturnal stomatal conductance (g(s-noc)) averaged about 33% of mid-morning conductance values. We used species-specific estimates of g(s-noc) and leaf specific conductance to correct Psi(pd) values for nocturnal transpiration at the time the samples were collected. Compared with the unadjusted values, corrected values reflected a significantly higher Psi(pd) (when D > 0.12 kPa). These results demonstrate that comparisons of Psi(pd) among species, canopy height classes and sites, and across growing seasons can be influenced by differential amounts of nocturnal transpiration, leading to flawed results. Consequently, it is important to account for the presence of nocturnal transpiration, either through a properly parameterized model or by making Psi(pd) measurements when D is sufficiently low that it cannot drive nocturnal transpiration. Violating these conditions will likely result in underestimation of Psi(s).  相似文献   

2.
We compared seedling water relations of three Mediterranean Quercus species (the evergreen shrub Q. coccifera L., the evergreen tree Q. ilex L. subsp. ballota (Desf.) Samp. and the deciduous or marcescent tree Q. faginea L.). We also explored seedling potential for acclimation to contrasting growing conditions. In March, 1-year-old seedlings of the three species were planted in pots and grown outdoors in a factorial combination of two irrigation regimes (daily (HW) and alternate day watering (LW)) and two irradiances (43 and 100% of full sunlight). At the end of July, predawn and midday water potentials (Psi(pd), Psi(md)) were measured, and pressure-volume (P-V) curves were obtained for mature current-year shoots. Species exhibited similar Psi(pd) and Psi(md) values, but differed in leaf morphology and water relations. The evergreens possessed larger leaf mass per area (LMA) and were able to maintain positive turgor pressure at lower water potentials than the deciduous species because of their lower osmotic potential at full turgor. However, the three species had similar relative water contents at the turgor loss point because Q. faginea compensated for its higher osmotic potential with greater cell wall elasticity. Values of Psi(pd) had a mean of -1.12 MPa in LW and -0.63 MPa in HW, and Psi(md) had a mean of -1.13 MPa in full sunlight and -1.64 MPa in shade, where seedlings exhibited lower LMA. However, the P-V curve traits were unaffected by the treatments. Our results suggest that Q. faginea seedlings combine the water-use characteristics of mesic deciduous oak and the drought-tolerance of xeric evergreen oak. The ability of Q. coccifera to colonize drier sites than Q. ilex was not a result of higher drought tolerance, but rather may be associated with other dehydration postponement mechanisms including drought-induced leaf shedding. The lack of treatment effects may reflect a relatively low contrast between treatment regimes, or a low inherent responsiveness of these traits in the study species, or both.  相似文献   

3.
Water relations of bare-root jack pine (Pinus banksiana Lamb.) and white spruce (Picea glauca (Moench) Voss) planted in a greenhouse and on a boreal cut-over site were examined during the first growing season. In field-planted trees, maximum stomatal conductances (g(wv)) were initially low (< 0.10 cm s(-1)). Base and minimum xylem pressure potentials (Psi(x(base)) and Psi(x(min))) were less than -1.5 and -1.7 MPa for jack pine and -2.0 and -2.6 MPa for white spruce, respectively. During the growing season, maximum g(wv) increased in both species to around 0.2 cm s(-1). Base and minimum xylem pressure potentials also increased in both species to around -0.5 and -1.0 MPa in jack pine and -1.0 and -1.5 MPa in white spruce, respectively. Minimum xylem pressure potentials in white spruce fell below the turgor loss point during the first half of the growing season. Osmotic potential at the turgor loss point Psi(pi(TLP)) decreased after field planting to around -2.7 and -2.3 MPa in jack pine and white spruce, respectively. In the greenhouse, minimum values of Psi(pi(TLP)) were -2.2 and -2.3 MPa in jack pine and white spruce, respectively. Maximum bulk modulus of elasticity was greater in white spruce and underwent greater seasonal change than in jack pine. Relative water content (RWC) at turgor loss ranged between 71 and 74% in jack pine and 80 and 87% in white spruce. Available turgor (T(avail)), defined as the integral of turgor over the range of RWC between Psi(x(base)) and xylem pressure potential at the turgor loss point, was similar in jack pine and white spruce just after field planting. For the rest of the growing season, however, T(avail) in jack pine was two to three times that in white spruce. Diurnal turgor (T(diurnal)), defined as the integral of turgor over the range of RWC between Psi(x(base)) and Psi(x(min)), as a percent of T(avail) was higher in field-planted white spruce than jack pine until the end of the season. Dynamics of tissue water potential components are discussed in relation to plantation establishment.  相似文献   

4.
Sap flux density in branches, leaf transpiration, stomatal conductance and leaf water potentials were measured in 16-year-old Quercus suber L. trees growing in a plantation in southern Portugal to understand how evergreen Mediterranean trees regulate water loss during summer drought. Leaf specific hydraulic conductance and leaf gas exchange were monitored during the progressive summer drought to establish how changes along the hydraulic pathway influence shoot responses. As soil water became limiting, leaf water potential, stomatal conductance and leaf transpiration declined significantly. Predawn leaf water potential reflected soil water potential measured at 1-m depth in the rhizospheres of most trees. The lowest predawn leaf water potential recorded during this period was -1.8 MPa. Mean maximum stomatal conductance declined from 300 to 50 mmol m(-2) s(-1), reducing transpiration from 6 to 2 mmol m(-2) s(-1). Changes in leaf gas exchange were attributed to reduced soil water availability, increased resistances along the hydraulic pathway and, hence, reduced leaf water supply. There was a strong coupling between changes in soil water content and stomatal conductance as well as between stomatal conductance and leaf specific hydraulic conductance. Despite significant seasonal differences among trees in predawn leaf water potential, stomatal conductance, leaf transpiration and leaf specific hydraulic conductance, there were no differences in midday leaf water potentials. The strong regulation of changes in leaf water potential in Q. suber both diurnally and seasonally is achieved through stomatal closure, which is sensitive to changes in both liquid and vapor phase conductance. This sensitivity allows for optimization of carbon and water resource use without compromising the root-shoot hydraulic link.  相似文献   

5.
In 1986, four allopatric Eucalyptus species (E. camaldulensis Dehnh, E. saligna Smith, E. leucoxylon F. Muell and E. platypus Hook.) were planted together in a 480-mm rainfall zone, in 8-m wide contour belts as part of a plan to minimize waterlogging and secondary salinization. Throughout 1997, 1998 and 1999, there was significant inter-specific variation in predawn leaf water potential (Psi(pd)); however, maximum stomatal conductance (g(sm)) only differed significantly between species in mid to late summer. Relationships between g(sm) and Psi(pd) were significant and showed that stomata of E. camaldulensis were significantly more sensitive to Psi(pd), and presumably soil water potential, than stomata of E. leucoxylon or E. platypus. When applied to the Psi(pd) data, these relationships predicted that g(sm), and by inference transpiration, varied much less between species than Psi(pd). Diurnal measurements throughout the season confirmed this prediction, and showed that E. camaldulensis and E. saligna avoided drought by gaining access to deeper water, whereas E. leucoxylon and E. platypus maintained greater g(sm) at a given water stress than E. camaldulensis or E. saligna. Osmotic potentials measured after rehydration and water release curves of the leaves indicated that different mechanisms accounted for the apparent drought tolerance of E. leucoxylon and E. platypus. In summer, E. leucoxylon reduced osmotic potential at full and zero turgor by similar amounts compared with winter. In summer, E. platypus had a significantly lower bulk elastic modulus and relative water content at turgor loss point than E. camaldulensis, E. saligna or E. leucoxylon. This elastic adjustment resulted in a larger difference between osmotic potential at full and zero turgor in summer than in winter. The inherently low osmotic potential in E. leucoxylon and elastic adjustment in E. platypus resulted in turgor loss at a similar and significantly lower water potential than in E. camaldulensis or E. saligna. These results have implications for species selection for planting to manage groundwater recharge in areas prone to waterlogging and secondary salinization.  相似文献   

6.
Foster JR 《Tree physiology》1992,11(2):133-149
During summer, gas exchange and water relations were measured in mature boxelder (Acer negundo L.) trees growing on a floodplain in central Indiana, USA. A shallow (< 1.25-m deep) water table and repeated flooding kept the soil water potential above -0.5 MPa at all times. Net photosynthesis and stomatal conductance were influenced primarily by light and, to a lesser extent, by leaf temperature, but showed no relationships with leaf-to-air water vapor gradient or leaf water potential. Throughout the summer, there was no midday stomatal closure on any measurement day, and leaf water potential at dawn and minimum daily leaf water potential remained above -0.4 and -1.4 MPa, respectively. Nevertheless, there was a seasonal decline in leaf osmotic potentials at saturation and turgor-loss point. Seasonal changes in maximum daily net photosynthesis and stomatal conductance, minimum daily leaf water potential and soil-to-leaf hydraulic conductance were not related to seasonal changes in soil water potential, air or soil temperature, or water table depth. Seasonal responses of net photosynthesis to intercellular CO(2) indicated that net photosynthesis was controlled primarily by nonstomatal factors. High soil water and a shallow water table may have kept soil-to-leaf hydraulic conductance large (5-9 mmol m(-1) s(-1) MPa(-1)) throughout the summer, permitting the trees to keep their stomata open, yet maintain leaf turgor and high net photosynthesis during the hot, low-humidity afternoons. This could also account for the dominance of nonstomatal influences on net photosynthesis.  相似文献   

7.
Marsal J  Girona J 《Tree physiology》1997,17(5):327-333
Effects of water deficits on leaf turgor maintenance processes were analyzed for pear trees (Pyrus communis L. cv. "Barlett") grown in 120-liter containers. Four irrigation treatments were applied: a well-watered control treatment, a spring water stress cycle (Sp), a summer water stress cycle (Su), and a spring plus summer water stress cycle (Sp + Su). For the Sp treatment, water application was progressively reduced from 100 to 20% of the control dose over a period of 27 days in spring. For the Su treatment, water application was progressively reduced over 23 days in summer, from 100 to 20% of the control dose. The Sp + Su treatment comprised both the spring and summer drought stress cycles. Pressure-volume (P-V) curves were constructed and stomatal conductances were determined for pear leaves from each treatment during the spring and summer stress cycles. Leaf water potential (Psi(pi) (0)) and relative water content (R(0)) at the turgor loss point of control leaves tended to decrease from spring to summer. Changes in leaf osmotic water potential at full turgor (Psi(pi) (100)) and in symplast water fraction (R(s)) did not explain the seasonal decrease in Psi(pi) (0). The water stress treatments had no effect on Psi(pi) (100), but R(s) was reduced by the water stress treatments, particularly during the summer stress cycle of the Su and Sp + Su treatments. The decrease in R(s) was correlated with an increase in the slope of the linear region of the P-V curve. Such a coupled adjustment would lead to increased water uptake capacity of water-stressed trees only under non-turgor conditions. Furthermore, pear leaves did not actively accumulate solutes. We conclude, therefore, that changes in leaf tissue water relations as a result of leaf acclimation to water stress are unlikely to facilitate maintenance of fruit productivity under drought.  相似文献   

8.
Field measurements were made of leaf photosynthesis (A), stomatal conductance (g) and leaf water relations for sugar maple (Acer saccharum Marsh.) seedlings growing in a forest understory, small gap or large clearing habitat in southwestern Wisconsin, USA. Predawn water status, leaf gas exchange and plasticity in field and laboratory water relations characteristics were compared among contrasting light environments in a wet year (1987) and a dry year (1988) to evaluate possible interactions between light and water availability in these habitats. Leaf water potentials (Psi(leaf)) at predawn and midday were lower for clearing than gap or understory seedlings. Acclimation of tissue osmotic potentials to light environment was observed among habitats but did not occur within any of the habitats in response to prolonged drought. During a summer drought in 1988, decreases in daily maximum g (g(max)) and maximum A (A(max)) in clearing seedlings were correlated with predawn Psi(leaf), which reached a seasonal minimum of -2.0 MPa. Under well-watered conditions, diurnal fluctuations in Psi(leaf) of up to 2.0 MPa in clearing seedlings occurred along with large midday depressions of A and g. In a wet year, strong stomatal responses to leaf-to-air vapor pressure difference (VPD) in sunny habitats were observed over nine diurnal courses of gas exchange measurements on seedlings in a gap and a clearing. Increasing stomatal limitations to photosynthesis appeared to be responsible for the reduction in A at high VPD for clearing seedlings. In understory seedlings, however, low water-use efficiency and development of leaf water deficits in sunflecks was related to reduced stomatal limitations to photosynthesis relative to seedlings in sunny habitats. Predawn Psi(leaf) and VPD appear to be important factors limiting carbon assimilation in sugar maple seedlings in light-saturating irradiances, primarily through stomatal closure. The overall results are consistent with the idea that sugar maple seedlings exhibit "conservative" water use patterns and have low drought tolerance. Leaf water relations and patterns of water use should be considered in studies of acclimation and species photosynthetic performance in contrasting light environments.  相似文献   

9.
Responses of net photosynthesis (A), leaf conductance to water vapor (g(wv)) and instantaneous water use efficiency (WUE) to decreasing leaf and soil water potentials (Psi(l), Psi(s)) were studied in three-month-old white oak (Quercus alba L.), post oak (Q. stellata Wangenh.), sugar maple (Acer saccharum Marsh.), and black walnut (Juglans nigra L.) seedlings. Quercus seedlings had the highest A and g(wv) when plants were well watered. As the soil was allowed to dry, both A and g(wv) decreased; however, trace amounts of A were observed at a Psi(l) as low as -2.9 MPa in Q. stellata and -2.6 MPa in Q. alba and A. saccharum. Photosynthesis was not measurable at Psi(l) lower than -2.2 MPa in J. nigra and water stress-induced leaflet senescence was observed in this species. Within each species, g(wv) showed a similar relationship to soil and leaf Psi, but the response to Psi(l) was shifted to more negative values by 1.2 to 1.6 MPa. As Psi(s) declined below -1 MPa, the difference between soil and leaf Psi diminished because of the suppression of transpiration. There was no indication that Psi(s) had a more direct influence on g(wv) than did Psi(l). Water use efficiency showed an initial increase as the soil dried, followed by a decline under severe water stress. Water use efficiency was highest in J. nigra, intermediate in Quercus species and lowest in A. saccharum. There was an evident relationship between gas exchange characteristics and natural distribution in these species, with the more xeric species showing higher A and g(wv) under both well-watered and water-stressed conditions. There was no trend toward increased efficiency of water use in the more xeric species.  相似文献   

10.
The branch bag method was used to monitor photosynthesis and transpiration of trembling aspen (Populus tremuloides Michx.) and hazelnut (Corylus cornuta Marsh.) over a 42-day midsummer period in 1996, as part of the Boreal Ecosystem-Atmosphere Study (BOREAS). During the same period, daytime measurements of stomatal conductance (g(s)) and leaf water potential (Psi(leaf)) were made on these species, and sap flow was monitored in aspen stems by the heat pulse method. Weather conditions during the study period were similar to the long-term average. Despite moist soils, both species showed an inverse relationship between daytime g(s) and vapor pressure deficit (D) when D was > 0.5 kPa. Daytime Psi(leaf) was below -2 MPa in aspen and near -1.5 MPa in hazelnut, except on rainy days. These results are consistent with the hypothesis that stomatal responses are constrained by hydraulic resistance from root to leaf, and by the need to maintain Psi(leaf) above a minimum threshold value. Reductions in g(s) on sunny afternoons with elevated ambient D (maximum 2.3 kPa) were associated with a significant decrease in photosynthetic rates. However, day-to-day variation in mean carbon assimilation rate was small in both species, and appeared to be governed more by solar radiation than D. These results may be generally applicable to healthy aspen stands under normal midsummer conditions in the southern boreal forest. However, strong reductions in carbon uptake may be expected at the more extreme values of D (> 4 kPa) that occur during periods of regional drought, even if soil water is not locally limiting.  相似文献   

11.
Rieger M 《Tree physiology》1995,15(6):379-385
Root hydraulic conductivity (L(p)) and leaf osmotic potential at full turgor (Psi(pi,o)) were measured in young, drought-stressed and nonstressed peach (Prunus persica (L.) Batsch), olive (Olea europaea L.), citrumelo (Poncirus trifoliata Raf. x Citrus paradisi Macf.) and pistachio (Pistachia integerrima L.). Drought stress caused a 2.5- to 4.2-fold reduction in L(p), depending on species, but Psi(pi,o) was reduced only in citrumelo and olive leaves by 0.34 and 1.4 MPa, respectively. No differences existed in L(p) among species for nonstressed plants. A simple model linking L(p) to osmotic adjustment through leaf water potential (Psi) quantified the offsetting effects of reduced L(p) and osmotic adjustment on the hypothetical turgor pressure difference between drought-stressed and nonstressed plants (DeltaPsi(p)). For olive, the 2.5-fold reduction in L(p) caused a linear decrease in DeltaPsi(p) such that the effect of osmotic adjustment was totally negated at Psi = -3.2 MPa. Thus, no stomatal closure would be required to maintain higher turgor in drought-stressed olive plants than in nonstressed plants over their typical diurnal range of Psi (-0.6 to -2.0 MPa). For citrumelo, osmotic adjustment was offset by reduced L(p) at Psi approximately -0.9 MPa. Unlike olive, stomatal closure would be necessary to maintain higher turgor in drought-stressed citrumelo plants than in nonstressed plants over their typical diurnal range of Psi (0 to -1.5 MPa). Regardless of species or the magnitude of osmotic adjustment, my analysis suggests that a drought-induced reduction in L(p) reduces or eliminates turgor maintenance through osmotic adjustment.  相似文献   

12.
In nut tree orchards in California, irrigation is typically withheld during the harvest period to reduce the likelihood of bark damage during mechanical shaking of the trees. The ensuing water stress, however, may result in premature defoliation and subsequent yield declines. Our objective was to establish and quantify the water stress resulting from irrigation deprivation and determine its impact on leaf function and persistence in mature almond trees (Prunus dulcis (Mill.) D.A. Webb cv. Nonpareil) during a 3-year field experiment. The severity of the water stress was characterized by measurements of predawn leaf (Psi(pd)) and midday stem (Psi(ms)) water potentials, stomatal conductance (gs), net CO2 assimilation rate (A) and leaf abscission. During 1995, Psi(ms) of fully irrigated (FI) trees was maintained above -1.0 MPa. In trees in the moderate- (MS) and severe-stress (SS) treatments, Psi(ms) was reduced to -1.4 to -2.0 MPa and -2.0 to -2.6 MPa, respectively. After 18 days of irrigation deprivation, A was reduced by 32 and 58% at midday and early afternoon, respectively, compared with morning values. A significant decrease in morning values of A only occurred after 30 days of irrigation deprivation. Water-use efficiency and A declined as evaporative demand increased from morning to afternoon. Assimilation also declined seasonally as leaves aged. Midday stem water potential was highly correlated with A, but less so with gs. The coefficient of determination between Psi(ms) and gs improved considerably when vapor pressure deficit and wind were multiply regressed with Psi(ms). Although A recovered rapidly when MS trees were irrigated, recovery in SS trees was slower and incomplete. Integrating the MS and SS effects for an extended period during 1995 resulted in 14 and 30% declines in A, and 6 and 20% declines in gs, respectively. The apparent Psi(ms) threshold for leaf abscission was -1.8 MPa. Daily canopy light interception declined with decreasing Psi(ms) as a result of premature defoliation (and perhaps altered leaf angles) from 67.9% in FI trees to 61.4 and 60.7% in MS and SS trees, respectively.  相似文献   

13.
Midday stomatal closure is mediated by the availability of water in the soil, leaf and atmosphere, but the response to these environmental and internal variables is highly species specific. We tested the hypothesis that species differences in stomatal response to humidity and soil water availability can be explained by two parameters: leaf-specific hydraulic conductance (K(L)) and a threshold leaf water potential (Psi(threshold)). We used a combination of original and published data to estimate characteristic values of K(L) and Psi(threshold) for four common tree species that have distinctly different stomatal behaviors: black cottonwood (Populus trichocarpa Torr. & Gray.), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), red alder (Alnus rubra Bong.) and western hemlock (Tsuga heterophylla (Raf.) Sarg.). We used the values to parameterize a simple, nonelastic model that predicts stomatal conductance by linking hydraulic flux to transpirational flux and maintaining Psi(leaf) above Psi(threshold). The model successfully predicted fundamental features of stomatal behavior that have been reported in the literature for these species. We conclude that much of the variation among the species in stomatal response to soil and atmospheric water deficits can be explained by K(L) and Psi(threshold). The relationship between Psi(threshold) and xylem vulnerability to cavitation differed among these species.  相似文献   

14.
Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values.  相似文献   

15.
Ladjal M  Huc R  Ducrey M 《Tree physiology》2005,25(9):1109-1117
We studied hydraulic traits of young plants of the Mediterranean cedar species Cedrus atlantica (Endl.) G. Manetti ex Carrière (Luberon, France), C. brevifolia (Hook. f.) Henry (Cyprus), C. libani A. Rich (Hadeth El Jebbe, Lebanon) and C. libani (Armut Alani, Turkey). With an optimum water supply, no major differences were observed among species or provenances in either stem hydraulic conductivity (Ks) or leaf specific conductivity (Kl) measured on the main shoot. A moderate soil drought applied for 10 weeks induced marked acclimation through a reduction in Ks, particularly in the Lebanese provenance of C. libani, and a decrease in tracheid lumen size in all species. Cedrus atlantica, which had the smallest tracheids, was the species most vulnerable to embolism: a 50% loss in hydraulic conductivity (PsiPLC50) occurred at a water potential of -4.4 MPa in the well-watered treatment, and at -6.0 MPa in the moderate drought treatment. In the other species, PsiPLC50 was unaffected by moderate soil drought, and only declined sharply at water potentials between -6.4 and -7.5 MPa in both irrigation treatments. During severe drought, Ks of twigs and stomatal conductance (g(s)) were measured simultaneously as leaf water potential declined. For all species, lower vulnerability to embolism based on loss of Ks was recorded on current-year twigs. The threshold for stomatal closure (10% of maximum g(s)) was reached at a predawn water potential (Psi(pd)) of -2.5 MPa in C. atlantica (Luberon) and at -3.1 MPa in C. libani (Lebanon), whereas the other provenance and species had intermediate Psi(pd) values. Cedrus brevifolia, with a Psi(pd) (-3.0 MPa) close to that of C. libani (Lebanon), had the highest stomatal conductance of the study species. The importance of a margin of safety between water potential causing stomatal closure and that causing xylem embolism induction is discussed.  相似文献   

16.
We investigated seasonal patterns of water relations in current-year leaves of three evergreen broad-leaved trees (Ilex pedunculosa Miq., Ligustrum japonicum Thunb., and Eurya japonica Thunb.) with delayed greening in a warm-temperate forest in Japan. We used the pressure-volume method to: (1) assess the extent to which seasonal variation in leaf water relations is attributable to leaf development processes in delayed greening leaves versus seasonal variation in environmental variables; and (2) investigate variation in leaf water relations during the transition from the sapling to the adult tree stage. Leaf mass per unit leaf area was generally lowest just after completion of leaf expansion in May (late spring), and increased gradually throughout the year. Osmotic potential at full turgor (Psi(o) (ft)) and leaf water potential at the turgor loss point (Psi(w) (tlp)) were highest in May, and lowest in midwinter in all species. In response to decreasing air temperature, Psi(o) (ft) dropped at the rate of 0.037 MPa degrees C(-1). Dry-mass-based water content of leaves and the symplastic water fraction of total leaf water content gradually decreased throughout the year in all species. These results indicate that reductions in the symplastic water fraction during leaf development contributed to the passive concentration of solutes in cells and the resulting drop in winter Psi(o) (ft). The ratio of solutes to water volume increased in winter in current-year leaves of L. japonicum and E. japonica, indicating that osmotic adjustment (active accumulation of solutes) also contributed to the drop in winter in Psi(o) (ft). Bulk modulus of elasticity in cell walls fluctuated seasonally, but no general trend was found across species. Over the growing season, Psi(o) (ft) and Psi(w) (tlp) were lower in adult trees than in saplings especially in the case of I. pedunculosa, suggesting that adult-tree leaves are more drought and cold tolerant than sapling leaves. The ontogenetic increase in the stress resistance of I. pedunculosa may be related to its characteristic life form because I. pedunculosa grows taller than the other species studied.  相似文献   

17.
Red oak (Quercus rubra), a mesic species, and chestnut oak (Quercus prinus), a xeric species, were grown in a greenhouse with and without fertilizer (F+ and F-, respectively) and subjected to a 10-week drydown (W-) or kept well watered (W+). In both species, fertilized seedlings exhibited greater reductions in mean net photosynthesis (A), leaf conductance (g(wv)), leaf water potential (Psi(leaf)) and water use efficiency (WUE) during the drydown than unfertilized seedlings. In the W- treatments, red oak showed greater reductions in A, g(wv) and Psi(leaf) than chestnut oak. Differential fertilization of the seedlings of both species had a greater effect on tissue water relations than differential watering. During the latter weeks of the drydown, there was no osmotic adjustment in red oak, but chestnut oak in the F+/W- treatment had significantly lower osmotic potentials at full and zero turgor than seedlings in any of the other treatments. The results indicate that high nutrient availability does not improve the drought tolerance of these two oak species.  相似文献   

18.
Gas exchange, tissue water relations, and leaf/root dry weight ratios were compared among young, container-grown plants of five temperate-zone, deciduous tree species (Acer negundo L., Betula papyrifera Marsh, Malus baccata Borkh, Robinia pseudoacacia L., and Ulmus parvifolia Jacq.) under well-watered and water-stressed conditions. There was a small decrease (mean reduction of 0.22 MPa across species) in the water potential at which turgor was lost (Psi(tlp)) in response to water stress. The Psi(tlp) for water-stressed plants was -1.18, -1.34, -1.61, -1.70, and -2.12 MPa for B. papyrifera, A. negundo, U. parvifolia, R. pseudoacacia, and M. baccata, respectively. Variation in Psi(tlp) resulted primarily from differences in tissue osmotic potential and not tissue elasticity. Rates of net photosynthesis declined in response to water stress. However, despite differences in Psi(tlp), there were no differences in net photosynthesis among water-stressed plants under the conditions of water stress imposed. In A. negundo and M. baccata, water use efficiency (net photosynthesis/transpiration) increased significantly in response to water stress. Comparisons among water-stressed plants showed that water use efficiency for M. baccata was greater than for B. papyrifera or U. parvifolia. There were no significant differences in water use efficiency among B. papyrifera, U. parvifolia, A. negundo, and R. pseudoacacia. Under water-stressed conditions, leaf/root dry weight ratios (an index of transpiration to absorptive capacity) ranged from 0.77 in R. pseudoacacia to 1.05 in B. papyrifera.  相似文献   

19.
Components of dehydration tolerance, including osmotic potential at full turgor (Psi(pio)) and osmotic adjustment (lowering of Psi(pio)), of several deciduous species were investigated in a mature, upland oak forest in eastern Tennessee. Beginning July 1993, the trees were subjected to one of three throughfall precipitation treatments: ambient, ambient minus 33% (dry treatment), and ambient plus 33% (wet treatment). During the dry 1995 growing season, leaf water potentials of all species declined to between -2.5 and -3.1 MPa in the dry treatment. There was considerable variation in Psi(pio) among species (-1.0 to -2.0 MPa). Based on Psi(pio) values, American beech (Fagus grandifolia Ehrh.), dogwood (Cornus florida L.), and sugar maple (Acer saccharum Marsh.) were least dehydration tolerant, red maple (A. rubrum L.) was intermediate in tolerance, and white oak (Quercus alba L.) and chestnut oak (Quercus prinus L.) were most tolerant. During severe drought, overstory chestnut oak and understory dogwood, red maple and chestnut oak displayed osmotic adjustment (-0.12 to -0.20 MPa) in the dry treatment relative to the wet treatment. (No osmotic adjustment was evident in understory red maple and chestnut oak during the previous wet year.) Osmotic potential at full turgor was generally correlated with leaf water potential, with both declining over the growing season, especially in species that displayed osmotic adjustment. However, osmotic adjustment was not restricted to species considered dehydration tolerant; for example, dogwood typically maintained high Psi(pio) and displayed osmotic adjustment to drought, but had the highest mortality rates of the species studied. Understory saplings tended to have higher Psi(pio) than overstory trees when water availability was high, but Psi(pio) of understory trees declined to values observed for overstory trees during severe drought. We conclude that Psi(pio) varies among deciduous hardwood species and is dependent on canopy position and soil water potential in the rooting zone.  相似文献   

20.
We investigated the effects of altered precipitation on leaf osmotic potential at full turgor (Psi(pio)) of several species in an upland oak forest during the 1994 growing season as part of a Throughfall Displacement Experiment at the Walker Branch Watershed near Oak Ridge, Tennessee. The main species sampled included overstory chestnut oak (Quercus prinus L.), white oak (Q. alba L.), red maple (Acer rubrum L.); intermediates sugar maple (A. saccharum L.) and blackgum (Nyssa sylvatica Marsh.); and understory dogwood (Cornus florida L.) and red maple. The precipitation treatments were: ambient precipitation; ambient minus 33% of throughfall (dry); and ambient plus 33% of throughfall (wet). Except in late September, midday leaf water potentials (Psi(l)) were generally high in all species in all treatments, ranging from -0.31 to -1.34 MPa for C. florida, -0.58 to -1.51 MPa for A. rubrum, and -0.78 to -1.86 MPa for Q. prinus. Both treatment and species differences in Psi(pio) were evident, with oak species generally exhibiting lower Psi(pio) than A. saccharum, A. rubrum, C. florida, and N. sylvatica. The Psi(pio) of C. florida saplings declined in the dry treatment, and Q. prinus, Q. alba, and A. saccharum all exhibited a declining trend of Psi(pio) in the dry treatment, although Psi(pio) of Q. prinus leaves increased in late August, corresponding to a recovery in soil water potential. Cornus florida exhibited osmotic adjustment with the largest adjustment coinciding with the period of lowest soil water potential in June. The only other species to exhibit osmotic adjustment was Q. prinus, which also maintained a lower baseline Psi(pio) than the other species. We conclude that a 33% reduction of throughfall is sufficient both to alter the water relations of some species in the upland oak forest and to enable the identification of those species capable of osmotic adjustment to a short-term drought during a wet year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号