首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The earth's mantle is degassed along mid-ocean ridges, while rehydration and possibly recarbonaton occurs at subduction zones. These processes and the speciation of C-H-O fluids in the mantle are related to the oxidation state of mantle peridotite. Peridotite xenoliths from continental localities exhibit an oxygen fugacity (fo(2)) range from -1.5 to +1.5 log units relative to the FMQ (fayalite-magnetite-quartz) buffer. The lowest values are from zones of continental extension. Highly oxidized xenoliths (fo(2) greater than FMQ) come from regions of recent or acive subduction (for example, Ichinomegata, Japan), are commonly amphibole-bearing, and show trace element and isotopic evidence of fluid-rock interaction. Peridotites from ocean ridges are reduced and have an averae fo(2) of about -0.9 log units relative to FMQ, virtually coincident with values obtained from mid-ocean ridge basalt (MORB) glasses. These data are further evidence of the genetic link between MORB liquids and residual peridotite and indicate that the asthenosphere, although reducing, has CO(2) and H(2)O as its major fluid species. Incorporation of oxidized material from subduction zones into the continental lithosphere produces xenoliths that have both asthenospheric and subduction signatures. Fluids in the lithosphere are also dominated by CO(2) and H(2)O, and native C is generally unstable. Although the occurrence of native C (diamond) in deep-seated garnetiferous xenoliths and kimberlites does not require reducing conditions, calculations indicate that high Fe(3+) contents are stabilized in the garnet structure and that fo(2) deareases with increasing depth.  相似文献   

2.
Mineral inclusions encapsulated in diamonds are the oldest, deepest, and most pristine samples of Earth's mantle. They provide age and chemical information over a period of 3.5 billion years--a span that includes continental crustal growth, atmospheric evolution, and the initiation of plate tectonics. We compiled isotopic and bulk chemical data of silicate and sulfide inclusions and found that a compositional change occurred 3.0 billion years ago (Ga). Before 3.2 Ga, only diamonds with peridotitic compositions formed, whereas after 3.0 Ga, eclogitic diamonds became prevalent. We suggest that this resulted from the capture of eclogite and diamond-forming fluids in subcontinental mantle via subduction and continental collision, marking the onset of the Wilson cycle of plate tectonics.  相似文献   

3.
Compatibility of rhenium in garnet during mantle melting and magma genesis   总被引:2,自引:0,他引:2  
Measurements of the partitioning of rhenium (Re) between garnet and silicate liquid from 1.5 to 2.0 gigapascals and 1250 degrees to 1350 degreesC show that Re is compatible in garnet. Oceanic island basalts (OIBs) have lower Re contents than mid-ocean ridge basalt, because garnet-bearing residues of deeper OIB melting will retain Re. Deep-mantle garnetite or eclogite may harbor the missing Re identified in crust-mantle mass balance calculations. Oceanic crust recycled into the upper mantle at subduction zones will retain high Re/Os (osmium) ratios and become enriched in radiogenic 187Os. Recycled eclogite in a mantle source should be easily traced using Re abundances and Os isotopes.  相似文献   

4.
Subduction is a major process of plate tectonics; however, its initiation is not understood. We used high-resolution (less than 1 kilometer) finite-element models based on rheological data of the lithosphere to investigate the role played by water on initiating subduction. A solid-fluid thermomechanical instability is needed to drive a cold, stiff, and negatively buoyant lithosphere into the mantle. This instability can be triggered slowly by sedimentary loading over a time span of 100 million years. Our results indicate that subduction can proceed by a double feedback mechanism (thermoelastic and thermal-rheological) promoted by lubrication due to water.  相似文献   

5.
Mantle peridotites drilled from the Izu-Bonin-Mariana forearc have unradiogenic 187Os/188Os ratios (0.1193 to 0.1273), which give Proterozoic model ages of 820 to 1230 million years ago. If these peridotites are residues from magmatism during the initiation of subduction 40 to 48 million years ago, then the mantle that melted was much more depleted in incompatible elements than the source of mid-ocean ridge basalts (MORB). This result indicates that osmium isotopes record information about ancient melting events in the convecting upper mantle not recorded by incompatible lithophile isotope tracers. Subduction zones may be a graveyard for ancient depleted mantle material, and portions of the convecting upper mantle may be less radiogenic in osmium isotopes than previously recognized.  相似文献   

6.
Radar observations of comet Hyakutake (C/1996 B2) made at the Goldstone Deep Space Communications Complex in California have detected echoes from the nucleus and from large grains in the inner coma. The nucleus of this bright comet was estimated to be only 2 to 3 kilometers in diameter. Models of the coma echo indicate backscatter from porous, centimeter-size grains ejected anisotropically at velocities of tens of meters per second. The radar observations suggest that a comet's activity may be a poor indicator of its size and provide evidence that large grains constitute an important component of the mass loss from a typical active comet.  相似文献   

7.
Metamorphic rocks on Santa Catalina Island, California, afford examination of fluid-related processes at depths of 15 to 45 kilometers in an Early Cretaceous subduction zone. A combination of field, stable isotope, and volatile content data for the Catalina Schist indicates kilometer-scale transport of large amounts of water-rich fluid with uniform oxygen and hydrogen isotope compositions. The fluids were liberated in devolatilizing, relatively low-temperature (400 degrees to 600 degrees C) parts of the subduction zone, primarily by chlorite-breakdown reactions. An evaluation of pertinent phase equilibria indicates that chlorite in mafic and sedimentary rocks and melange may stabilize a large volatile component to great depths (perhaps >100 kilometers), depending on the thermal structure of the subduction zone. This evidence for deep volatile subduction and large-scale flow of slab-derived, water-rich fluids lends credence to models that invoke fluid addition to sites of arc magma genesis.  相似文献   

8.
An x-ray examination of more than 150 specimens of fine-grained quartz varieties from around the world has revealed that more than 10% and as much as 80% of the silica in many samples is actually moganite, a little-known silica polymorph. Rietveld refinements of 50 powder x-ray diffraction patterns produced by fibrous quartz (agate, chalcedony) and nonfibrous quartz (chert, flint) indicate that the concentrations of moganite within each subgroup are widely distributed. The large amount of moganite (>30%) found in cherts from arid, alkaline environments may resurrect length-slow silica as an indicator of evaporitic regimes, and the absence of moganite in weathered and hydrothermally altered silica samples may be a useful measure of fluid-rock interaction.  相似文献   

9.
Noble gas isotopes were measured in three rocky grains from asteroid Itokawa to elucidate a history of irradiation from cosmic rays and solar wind on its surface. Large amounts of solar helium (He), neon (Ne), and argon (Ar) trapped in various depths in the grains were observed, which can be explained by multiple implantations of solar wind particles into the grains, combined with preferential He loss caused by frictional wear of space-weathered rims on the grains. Short residence time of less than 8 million years was implied for the grains by an estimate on cosmic-ray-produced (21)Ne. Our results suggest that Itokawa is continuously losing its surface materials into space at a rate of tens of centimeters per million years. The lifetime of Itokawa should be much shorter than the age of our solar system.  相似文献   

10.
Transects of the submersible Alvin across rock outcrops in the Oregon subduction zone have furnished information on the structural and stratigraphic framework of this accretionary complex. Communities of clams and tube worms, and authigenic carbonate mineral precipitates, are associated with venting sites of cool fluids located on a fault-bend anticline at a water depth of 2036 meters. The distribution of animals and carbonates suggests up-dip migration of fluids from both shallow and deep sources along permeable strata or fault zones within these clastic deposits. Methane is enriched in the water column over one vent site, and carbonate minerals and animal tissues are highly enriched in carbon-12. The animals use methane as an energy and food source in symbiosis with microorganisms. Oxidized methane is also the carbon source for the authigenic carbonates that cement the sediments of the accretionary complex. The animal communities and carbonates observed in the Oregon subduction zone occur in strata as old as 2.0 million years and provide criteria for identifying other localities where modern and ancient accreted deposits have vented methane, hydrocarbons, and other nutrient-bearing fluids.  相似文献   

11.
Fluid processes in subduction zones   总被引:10,自引:0,他引:10  
Fluids play a critical role in subduction zones and arc magmatism. At shallow levels in subduction zones (<40 kilometers depth), expulsion of large volumes of pore waters and CH(4)-H(2)O fluids produced by diagenetic and low-grade metamorphic reactions affect the thermal and rheological evolution of the accretionary prism and provide nutrients for deep-sea biological communities. At greater depths, H(2)O and CO(2) released by metamorphic reactions in the subducting oceanic crust may alter the bulk composition in the overlying mantle wedge and trigger partial melting reactions. The location and conse-quences of fluid production in subduction zones can be constrained by consideration of phase diagrams for relevant bulk compositions in conjunction with fluid and rock pressure-temperature-time paths predicted by numerical heat-transfer models. Partial melting of subducting, amphibole-bearing oceanic crust is predicted only within several tens of million years of the initiation of subduction in young oceanic lithosphere. In cooler subduction zones, partial melting appears to occur primarily in the overlying mantle wedge as a result of fluid infiltration.  相似文献   

12.
Peridotite xenoliths from the Cascade arc in the United States and in the Japan arc have neodymium and osmium isotopic compositions that are consistent with addition of 5 to 15 percent of subducted material to the present-day depleted mantle. These observations suggest that osmium can be partitioned into oxidized and chlorine-rich slab-derived fluids or melts. These results place new constraints on the behavior of osmium (and possibly other platinum group elements) during subduction of oceanic crust by showing that osmium can be transported into the mantle wedge.  相似文献   

13.
Widespread basaltic volcanism occurred in the region of the West Siberian Basin in central Russia during Permo-Triassic times. New 40Ar/39Ar age determinations on plagioclase grains from deep boreholes in the basin reveal that the basalts were erupted 249.4 +/- 0.5 million years ago. This is synchronous with the bulk of the Siberian Traps, erupted further east on the Siberian Platform. The age and geochemical data confirm that the West Siberian Basin basalts are part of the Siberian Traps and at least double the confirmed area of the volcanic province as a whole. The larger area of volcanism strengthens the link between the volcanism and the end-Permian mass extinction.  相似文献   

14.
Oxygen isotope ratios measured by ion microprobe in magnetite from granulite-facies marble of the Adirondack Mountains, New York, range from +2 to +11 per mil (standard mean ocean water) across a single grain that measures 3 millimeters by 5 millimeters. Low values are concentrated in irregular domains near the grain boundary but also occur in the grain's interior. In contrast, grains 1 millimeter in diameter that are from a second nearby sample show no significant heterogeneity, except within 10 micrometers of the grain boundary. These data, including large gradients of up to 9 per mil per 10 micrometers, provide important new constraints on the nature and origins of intragrain isotopic heterogeneity and on oxygen isotope thermometry. The differences between these magnetite grains result from contrasting mechanisms of isotope exchange with fluids after the peak of regional metamorphism. Volume diffusion of oxygen through the crystal structure of magnetite contributed to isotope exchange in the rims of small grains, but larger grains are crosscut by healed cracks that are not readily detected and that short-circuited diffusion.  相似文献   

15.
Step-heating analyses for Mid-Atlantic Ridge glass samples show that maximum 40Ar/36Ar values correlate with 206,207,208Pb/204Pb. These correlations hold for the whole Atlantic Ocean and therefore are unlikely to result from shallow-level contamination processes. Instead, they are taken as mixing hyperbolae between the degassed-depleted upper mantle and a recycled component characterized by high 206Pb/204Pb ratios (19 to 21) and low 40Ar/36Ar ratios (300 to 1000). These relations imply that argon may also be a tracer of mantle recycling.  相似文献   

16.
Hotspots, basalts, and the evolution of the mantle   总被引:2,自引:0,他引:2  
The trace element concentration patterns of continental and ocean island basalts and of mid-ocean ridge basalts are complementary. The relative sizes of the source regions for these fundamentally different basalt types can be estimated from the trace element enrichment-depletion patterns. Their combined volume occupies most of the mantle above the 670 kilometer discontinuity. The source regions separated as a result of early mantle differentiation and crystal fractionation from the resulting melt. The mid-ocean ridge basalts source evolved from an eclogite cumulate that lost its late-stage enriched fluids at various times to the shallower mantle and continental crust. The mid-ocean ridge basalts source is rich in garnet and clinopyroxene, whereas the continental and ocean island basalt source is a garnet peridotite that has experienced secondary enrichment. These relationships are consistent with the evolution of a terrestrial magma ocean.  相似文献   

17.
An olivine nephelinite from the lower part of a thick alkalic ultrabasic and mafic sequence of volcanic rocks of the northeastern part of the Siberian flood basalt province (SFBP) yielded a (40)Ar/(39)Ar plateau age of 253.3 +/- 2.6 million years, distinctly older than the main tholeiitic pulse of the SFBP at 250.0 million years. Olivine phenocrysts of this rock showed (3)He/(4)He ratios up to 12.7 times the atmospheric ratio; these values suggest a lower mantle plume origin. The neodymium and strontium isotopes, rare earth element concentration patterns, and cerium/lead ratios of the associated rocks were also consistent with their derivation from a near-chondritic, primitive plume. Geochemical data from the 250-million-year-old volcanic rocks higher up in the sequence indicate interaction of this high-(3)He SFBP plume with a suboceanic-type upper mantle beneath Siberia.  相似文献   

18.
Gases trapped in individual vesicles in the volatile-rich basaltic glass "popping rock" were found to have the same carbon dioxide, helium-4, and argon-40 composition, but a variable 40Ar/36Ar ratio ( approximately 4000 to >/=40,000). The argon-36 is probably surface-adsorbed atmospheric argon; any mantle argon-36 trapped in the vesicles cannot be distinguished from an atmospheric contaminant. Consequently the 40Ar/36Ar ratios and 3He/36Ar ratios (1.45) determined are minimum estimates of the upper mantle composition. Heavy noble gas relative abundances in the mantle resemble solar noble gas abundance patterns, and a solar origin may be common to all primordial mantle noble gases.  相似文献   

19.
Subduction zones play critical roles in the recycling of oceanic lithosphere and the generation of continental crust. Seismic imaging can reveal structures associated with key dynamic processes occurring in the upper-mantle wedge above the sinking oceanic slab. Three-dimensional images of reflecting interfaces throughout the upper-mantle wedge above the subducting Tonga slab were obtained by migration of teleseismic recordings of underside P- and S-wave reflections. Laterally continuous weak reflectors with tens of kilometers of topography were detected at depths near 90, 125, 200, 250, 300, 330, 390, 410, and 450 kilometers. P- and S-wave impedances decreased at the 330-kilometer and 450-kilometer reflectors, and S-wave impedance decreased near 200 kilometers in the vicinity of the slab and near 390 kilometers, just above the global 410-kilometer increase. The pervasive seismic reflectivity results from phase transitions and compositional zonation associated with extensive metasomatism involving slab-derived fluids rising through the wedge.  相似文献   

20.
The amount of recycled crust in sources of mantle-derived melts   总被引:5,自引:0,他引:5  
Plate tectonic processes introduce basaltic crust (as eclogite) into the peridotitic mantle. The proportions of these two sources in mantle melts are poorly understood. Silica-rich melts formed from eclogite react with peridotite, converting it to olivine-free pyroxenite. Partial melts of this hybrid pyroxenite are higher in nickel and silicon but poorer in manganese, calcium, and magnesium than melts of peridotite. Olivine phenocrysts' compositions record these differences and were used to quantify the contributions of pyroxenite-derived melts in mid-ocean ridge basalts (10 to 30%), ocean island and continental basalts (many >60%), and komatiites (20 to 30%). These results imply involvement of 2 to 20% (up to 28%) of recycled crust in mantle melting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号