首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Scaffold proteins link signaling molecules into linear pathways by physically assembling them into complexes. Scaffolds may also have a higher-order role as signal-processing hubs, serving as the target of feedback loops that optimize signaling amplitude and timing. We demonstrate that the Ste5 scaffold protein can be used as a platform to systematically reshape output of the yeast mating MAP kinase pathway. We constructed synthetic positive- and negative-feedback loops by dynamically regulating recruitment of pathway modulators to an artificial binding site on Ste5. These engineered circuits yielded diverse behaviors: ultrasensitive dose response, accelerated or delayed response times, and tunable adaptation. Protein scaffolds provide a flexible platform for reprogramming cellular responses and could be exploited to engineer cells with novel therapeutic and biotechnological functions.  相似文献   

2.
3.
Wang Y  Dohlman HG 《Science (New York, N.Y.)》2004,306(5701):1508-1509
The actions of many extracellular stimuli are elicited by complexes of cell surface receptors, heterotrimeric guanine nucleotide-binding proteins (G proteins), and mitogen-activated protein (MAP) kinase complexes. Analysis of haploid yeast cells and their response to peptide mating pheromones has produced important advances in our understanding of G protein and MAP kinase signaling mechanisms. Many of the components, their interrelationships, and their regulators were first identified in yeast. Current analysis of the pheromone response pathway (see the Connections Maps at Science's Signal Transduction Knowledge Environment) will benefit from new and powerful genomic, proteomic, and computational approaches that will likely reveal additional general principles that are applicable to more complex organisms.  相似文献   

4.
A genetic screen for Caenorhabditis elegans mutants with enhanced susceptibility to killing by Pseudomonas aeruginosa led to the identification of two genes required for pathogen resistance: sek-1, which encodes a mitogen-activated protein (MAP) kinase kinase, and nsy-1, which encodes a MAP kinase kinase kinase. RNA interference assays and biochemical analysis established that a p38 ortholog, pmk-1, functions as the downstream MAP kinase required for pathogen defense. These data suggest that this MAP kinase signaling cassette represents an ancient feature of innate immune responses in evolutionarily diverse species.  相似文献   

5.
6.
7.
8.
The mitogen-activated protein (MAP) kinase cascade is inactivated at the level of MAP kinase by members of the MAP kinase phosphatase (MKP) family, including MKP-1. MKP-1 was a labile protein in CCL39 hamster fibroblasts; its degradation was attenuated by inhibitors of the ubiquitin-directed proteasome complex. MKP-1 was a target in vivo and in vitro for p42(MAPK) or p44(MAPK), which phosphorylates MKP-1 on two carboxyl-terminal serine residues, Serine 359 and Serine 364. This phosphorylation did not modify MKP-1's intrinsic ability to dephosphorylate p44(MAPK) but led to stabilization of the protein. These results illustrate the importance of regulated protein degradation in the control of mitogenic signaling.  相似文献   

9.
The atypical cadherin Fat acts as a receptor for a signaling pathway that regulates growth, gene expression, and planar cell polarity. Genetic studies in Drosophila identified the four-jointed gene as a regulator of Fat signaling. We show that four-jointed encodes a protein kinase that phosphorylates serine or threonine residues within extracellular cadherin domains of Fat and its transmembrane ligand, Dachsous. Four-jointed functions in the Golgi and is the first molecularly defined kinase that phosphorylates protein domains destined to be extracellular. An acidic sequence motif (Asp-Asn-Glu) within Four-jointed was essential for its kinase activity in vitro and for its biological activity in vivo. Our results indicate that Four-jointed regulates Fat signaling by phosphorylating cadherin domains of Fat and Dachsous as they transit through the Golgi.  相似文献   

10.
11.
The evolution of animals from a unicellular ancestor involved many innovations. Choanoflagellates, unicellular and colonial protozoa closely related to Metazoa, provide a potential window into early animal evolution. We have found that choanoflagellates express representatives of a surprising number of cell signaling and adhesion protein families that have not previously been isolated from nonmetazoans, including cadherins, C-type lectins, several tyrosine kinases, and tyrosine kinase signaling pathway components. Choanoflagellates have a complex and dynamic tyrosine phosphoprotein profile, and cell proliferation is selectively affected by tyrosine kinase inhibitors. The expression in choanoflagellates of proteins involved in cell interactions in Metazoa demonstrates that these proteins evolved before the origin of animals and were later co-opted for development.  相似文献   

12.
Cells reuse signaling proteins in multiple pathways, raising the potential for improper cross talk. Scaffold proteins are thought to insulate against such miscommunication by sequestering proteins into distinct physical complexes. We show that the scaffold protein Ste5, which organizes the yeast mating mitogen-activated protein kinase (MAPK) pathway, does not use sequestration to prevent misactivation of the mating response. Instead, Ste5 appears to use a conformation mechanism: Under basal conditions, an intramolecular interaction of the pleckstrin homology (PH) domain with the von Willebrand type A (VWA) domain blocks the ability to coactivate the mating-specific MAPK Fus3. Pheromone-induced membrane binding of Ste5 triggers release of this autoinhibition. Thus, in addition to serving as a conduit guiding kinase communication, Ste5 directly receives input information to decide if and when signal can be transmitted to mating output.  相似文献   

13.
Filamentous fungi employ conserved eukaryotic signaling pathway to detect and respond to environmental signals, including the presence of the host. Genetic experiment in which a particular signaling protein is lost, or its activity enhanced, have defined some of the function of heterotrimeric G proteins and MAP kinases in development and virulence. A hallmark of these studies is that orthologs in different species may have different functions. Antagonistic fungal-fungal interactions form …  相似文献   

14.
油菜素内酯(brassinosteroids,BRs)是一类重要的植物促生激素,参与调控植物生长发育。最近的研究表明,BRs能增加作物产量和增强作物抗逆性。在BRs信号转导过程中,蛋白激酶的磷酸化功能与转录因子的磷酸化和脱磷酸化过程是BRs信号重要的生化调控机制,其中起始BRs信号由胞外向胞内转导的蛋白激酶BRI1和 BAK1,以及BRs信号下游调控不同性状基因表达的转录因子BZR1和BZR2/BES1,是BRs信号途径中关键的功能基因。基于重要蛋白激酶和转录因子的蛋白结构和功能分析,通过不同氨基酸功能位点的基因定点突变和修饰技术,能实现BRs信号途径的功能研究与植物性状改良,从而提高植物对环境的适应性。综述了BRs信号途径与植物生长发育和环境胁迫的研究,期望为植物分子育种提供很好的借鉴。  相似文献   

15.
为研究LHK1蛋白的功能,构建了pPub-LHK1∶AG-GFP和pFastBac-LHK1表达载体,分别在烟草叶肉细胞和昆虫细胞表达百脉根组氨酸蛋白激酶LHK1跨膜蛋白。结果表明:在烟草和昆虫细胞中LHK1蛋白都能表达,且表达的蛋白在体外都能磷酸化底物(组氨酸转移酶HP1蛋白),具有组氨酸蛋白激酶活性。  相似文献   

16.
Activation of the protein kinase Raf can lead to opposing cellular responses such as proliferation, growth arrest, apoptosis, or differentiation. Akt (protein kinase B), a member of a different signaling pathway that also regulates these responses, interacted with Raf and phosphorylated this protein at a highly conserved serine residue in its regulatory domain in vivo. This phosphorylation of Raf by Akt inhibited activation of the Raf-MEK-ERK signaling pathway and shifted the cellular response in a human breast cancer cell line from cell cycle arrest to proliferation. These observations provide a molecular basis for cross talk between two signaling pathways at the level of Raf and Akt.  相似文献   

17.
Self-incompatibility (SI) response in Brassica is initiated by haplotype-specific interactions between the pollen-borne ligand S locus protein 11/SCR and its stigmatic S receptor kinase, SRK. This binding induces autophosphorylation of SRK, which is then thought to trigger a signaling cascade that leads to self-pollen rejection. A recessive mutation of the modifier (m) gene eliminates the SI response in stigma. Positional cloning of M has revealed that it encodes a membrane-anchored cytoplasmic serine/threonine protein kinase, designated M locus protein kinase (MLPK). Transient expression of MLPK restores the ability of mm papilla cells to reject self-pollen, suggesting that MLPK is a positive mediator of Brassica SI signaling.  相似文献   

18.
MAP激酶在植物信号传递网络中的功能   总被引:2,自引:0,他引:2       下载免费PDF全文
促分裂素原活化蛋白激酶(mitogen-activated protein kinases,MAP激酶,MAPK)链是真核生物信号传递网络中的重要途径之一.MAPK链由3类蛋白激酶MAP3K-MAP2K-MAPK组成,通过依次磷酸化将上游信号传递至下游应答分子.本文主要阐述MAPK链在植物的逆境反应、抗病反应和激素调控等信号传递网络中的功能.  相似文献   

19.
Soluble and hydrophobic lipid breakdown products have a variety of important signaling roles in cells. Here sphingoid bases derived in cells from sphingolipid breakdown are shown to have a potent and direct effect in mediating calcium release from intracellular stores. Sphingosine must be enzymically converted within the cell to a product believed to be sphingosine-1-phosphate, which thereafter effects calcium release from a pool including the inositol 1,4,5-trisphosphate-sensitive calcium pool. The sensitivity, molecular specificity, and reversibility of the effect on calcium movements closely parallel sphingoid base-mediated inhibition of protein kinase C. Generation of sphingoid bases in cells may activate a dual signaling pathway involving regulation of calcium and protein kinase C, comparable perhaps to the phosphatidylinositol and calcium signaling pathway.  相似文献   

20.
How cyclooxygenase-2 (COX-2) and its proinflammatory metabolite prostaglandin E2 (PGE2) enhance colon cancer progression remains poorly understood. We show that PGE2 stimulates colon cancer cell growth through its heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor, EP2, by a signaling route that involves the activation of phosphoinositide 3-kinase and the protein kinase Akt by free G protein betagamma subunits and the direct association of the G protein alphas subunit with the regulator of G protein signaling (RGS) domain of axin. This leads to the inactivation and release of glycogen synthase kinase 3beta from its complex with axin, thereby relieving the inhibitory phosphorylation of beta-catenin and activating its signaling pathway. These findings may provide a molecular framework for the future evaluation of chemopreventive strategies for colorectal cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号