首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Galinsoga quadriradiata (hairy galinsoga) and Galinsoga parviflora (smallflower galinsoga, gallant soldier) are very troublesome weeds in many vegetable row crops in Europe. To optimise management strategies for Galinsoga spp. control, an in‐depth study of germination biology was performed. Germination experiments were conducted to evaluate the impact of light and alternating temperatures on germination of a large set of Galinsoga populations. Seedling emergence was investigated by burying seeds at different depths in a sandy and sandy loam soil. Dormancy of fresh seeds harvested in autumn was evaluated by studying germination response in light at 25/20°C with and without nitrate addition. Seed longevity was investigated in an accelerated ageing experiment by exposing seeds to 45°C and 100% relative humidity. Galinsoga spp. seeds required light for germination; light dependency varied among populations. Seedling emergence decreased drastically with increasing burial depth. Maximum depth of emergence varied between 4 and 10 mm depending on soil type and population. In a sandy soil, emergence percentages were higher and seedlings were able to emerge from greater depths than in a sandy loam soil. Freshly produced G. parviflora seeds, harvested in autumn, showed a varying but high degree of primary dormancy and were less persistent than G. quadriradiata seeds that lack primary dormancy. Lack of primary dormancy of freshly harvested G. quadriradiata seeds and light dependency for germination may be used to optimise and develop Galinsoga management strategies.  相似文献   

2.
The effects of seven constant temperatures (10–40°C at 5°C intervals) and seven after‐harvest periods (30–540 days after harvest) were evaluated on seed germination of nine Amaranthus species (A. albus, A. blitoides, A. cruentus, A. deflexus, A. graecizans, A. hybridus, A. lividus, A. retroflexus and A. viridis). Seeds of A. blitoides and A. viridis were also tested at alternating temperatures of 10/30°C (12/12 h thermoperiod) in continuous darkness and in an alternating 12/12 h dark/light photoperiod. With the exception of A. blitoides and A. viridis, germination increased as temperature increased from 20 to 35°C; the latter representing the optimum temperature (70–100% germination). At 10 and 15°C constant temperatures, no significant seed germination occurred in A. albus, A. deflexus, A. graecizans and A. lividus, while in A. cruentus, A. hybridus and A. retroflexus there was no germination at 10°C, but at 15°C more than 60% germination occurred. Germination was influenced strongly by after‐ripening period in A. cruentus, A. hybridus and A. retroflexus, partially in A. deflexus, and barely in A. graecizans and A. lividus. Seeds of A. blitoides and A. viridis required alternating temperatures and light to achieve high germination percentage (>90%). Primary dormancy in Amaranthus plays a fundamental role in extending germination over a longer period, so that the probability of seedling survival is maximised. The present study adds to the understanding of the environmental control and germination ecology of Amaranthus species and provides data that can contribute to predicting weed emergence dynamics.  相似文献   

3.
Four experiments were conducted to study seed dormancy and germination requirements in Solanum nigrum . In Expt 1, seeds were stratified at different constant and stepwise rising temperatures and their germinability was tested at three germination regimes at weekly intervals. In Expts 2–4, seeds dry stored at 4°C and stratified at 5 and 15°C were tested at constant temperatures, as well as fluctuating temperatures with constant and increasing amplitudes. Results suggest that the rate of dormancy release increased with increasing temperatures ranging from 4.5 to 18.6°C. However, prolonged stratification at higher temperatures caused subsequent induction of dormancy. When tested at constant temperatures, stratified seeds germinated between 18 and 34°C, with the optimum between 26 and 30°C, while dry-stored seeds showed no germination. Fluctuating temperatures, with amplitudes ranging from 5 to 15°C, promoted germination of seeds from all treatments. The dormancy dynamics and germination characteristics of the species will have implications for its survival and establishment. This information can be used to predict time of emergence and, thus, improve control of the species in weed management systems.  相似文献   

4.
In 1998–2000, the relationship was investigated between the time of bolting of shoots and the percentage of germinability in seeds from individual plants of Rumex obtusifolius . Each year, the date of bolting of shoots was recorded in 30–108 plants, which were then grown intact until maturation, and their seeds were collected before dispersal. The proportion of germinable seeds increased with the date on which the shoots bolted. The timing of shoot bolting and seed germinability for individual plants persisted over the years of observation. To discriminate between the effect of mother plant and timing of seed maturation, shoot bolting of another 40 (1998) and 50 (1999) plants was recorded, and their shoots were then cut in late June The shoots of cut plants regrew and matured nearly simultaneously, later than in intact plants, whereas overall seed germinability decreased. In individual plants, the seed germinability was still significantly correlated with the date when plants originally bolted.  相似文献   

5.
龙葵是农田恶性杂草?为明确龙葵种子休眠与季节温度的关系, 研究了室内和室外不同贮藏条件下其种子萌发对温度的响应规律?结果表明, 室外贮藏条件下的龙葵种子萌发呈季节性变化, 从10月到翌年5月, 龙葵种子萌发率均在95%以上, 随着夏季温度的升高, 萌发率从6月开始下降, 9月达到最低值(25.4%), 由此进行年际间休眠和非休眠周期的循环?夏季6月-9月的高温可诱导龙葵种子进入休眠状态, 而秋冬季的相对低温有利于解除种子休眠, 使种子恢复萌发状态?龙葵种子休眠和非休眠状态之间的切换受季节性温度变化的影响?室内贮藏的种子, 由于环境温度较为稳定, 其萌发率年际变化较小, 在20%~50%之间?本文明确了龙葵种子休眠的周期性变化规律, 有助于精准预测其出苗时间, 研究结果可为阐明龙葵种子休眠萌发机制和制订基于萌发调控的绿色防控策略提供依据?  相似文献   

6.
Phelipanche ramosa (Branched broomrape) is an obligate root parasitic plant that is a major pest of oilseed rape in France. Knowledge on seed viability and dormancy under field conditions is crucial to understand how to control P. ramosa, but is as yet unknown. Our study aimed to quantify these processes with a 2‐year seed burial experiment. Two genetically distinct populations of P. ramosa were studied, collected on winter oilseed rape (population O) and hemp (population H). Seed mortality was very low in both populations (4–7% per year). Although obligate parasitic seeds are assumed to germinate only after exposure to germination stimulants from host root exudates, a high proportion of population H seeds germinated spontaneously (up to 90%). Seeds of both populations displayed seasonal dormancy, with timing and magnitude depending on the population. Dormancy was low at the time each native host crop is usually sown. Populations differed in germination dynamics, with seeds of population H germinating faster. The difference in behaviour that we observed between populations is consistent with reported adaptations of pathovars to their preferred hosts. The results indicate that the parasitic plant management requires targeting at the populations concerned. For example, delayed sowing is more promising against population O than against population H.  相似文献   

7.
Although the effects of cold stratification on the release of physiological dormancy in seeds have been studied extensively, knowledge of the role of soil moisture content on seed dormancy release during cold stratification is limited. Our study determined seed dormancy characteristics and the effect of soil moisture content on seed dormancy breakage during cold stratification in the five common weed species Amaranthus retroflexus, Chenopodium album, Chenopodium hybridum, Plantago lanceolata and Setaria glauca. Seeds of all five species were dormant at the time of harvest and their germination response to light and temperature varied. Soil moisture content had a significant effect on seed dormancy release of all species except P. lanceolata. Germination percentage of A. retroflexus, C. album, C. hybridum increased and then decreased as soil moisture content increased, regardless of germination test temperature. The optimal soil moisture content and seed moisture content for dormancy breakage of A. retroflexus, C. album, C. hybridum were 8%, 12%, 8% and 22.0%, 37.7%, 25.7% respectively. Dry storage (after‐ripening) significantly increased germination of S. glauca. Moreover, increasing soil moisture content first slowed and then increased dormancy breakage in S. glauca. These results suggest that data on soil moisture content should be incorporated into models that predict weed seed dormancy breakage and timing of seedling emergence as well as those for weed management.  相似文献   

8.
Senecio vulgaris is a common weed of agriculture in the UK, but is also of food value to invertebrates and birds. Thus, it may be beneficial to retain it within agricultural ecosystems to enhance overall biodiversity. A less intensive approach to weed management requires a sound understanding of weed population dynamics so as to avoid unacceptable population growth. Experiments were carried out in 2003 and 2004 to assess seed production, and subsequent germination, by S. vulgaris growing alone, in winter wheat, or in winter field beans. Plant and seed samples were collected during May and June. There was a strong allometric relationship between capsule number and plant weight, irrespective of the year or the presence of crop competition. Numbers of seeds/capsule varied slightly from 51 to 66 seeds per capsule. Plants growing alone were estimated to produce 8471 to 12 887 seeds per plant, whilst those in wheat only 923 to 2156. Germination tests in Petri dishes in incubators showed that virtually all seeds were viable and germinated under daily alternating light:dark conditions within 10 days. Seeds in continuous dark germinated less readily, reaching only 30% after 21 days. On the basis of this and other published work, it would appear that the retention of S. vulgaris in arable fields will not pose a major threat to the long-term viability of crop production.  相似文献   

9.
Summary Heteranthera limosa seeds were buried in flooded and in non-flooded soil and exposed to natural seasonal temperature changes in Lexington, Kentucky, USA. Seeds exhumed after various periods of burial ranging from 2 to 36 months were tested for germination under both flooded and non-flooded conditions. Seeds were dormant at maturity in September and became non-dormant during winter. Seeds buried in non-flooded soil during winter germinated to higher percentages and over a wider range of temperatures when tested under flooded conditions (in light) during spring and summer, than did those buried in flooded soil during winter. Thus, the water regime associated with rice culture (non-flooded in winter and flooded in summer) is optimal for dormancy-break and germination of H. limosa seeds. A portion of the buried seeds exhibited an annual dormancy/non-dormancy cycle, whereas others had a conditional dormancy/non-dormancy cycle. Regardless of the type of cycle, seeds buried in non-flooded soil retained the ability to germinate in light at high temperatures under flooded conditions throughout the summer. Thus, seeds potentially can germinate at any time during the growing season, whenever rice fields are flooded. Flooding fields during winter and/or sowing rice relatively early in the growing season may help in establishing rice before seeds of H. limosa germinate.  相似文献   

10.
Seed germination is a key transitional stage in plant life cycle and is strongly regulated by temperature and light. Therefore, research on the effects of temperature and light on seed germination is extremely meaningful for vegetation restoration, especially in desert ecosystems. Seeds of 28 ephemeral plants collected from the Gurbantunggut Desert of China were incubated at different temperatures (5°C/1°C, 15°C/5°C, 20°C/5°C, 25°C/10°C and 30°C/15°C) in 12-h light/12-h darkness or continuous darkness regimes, and the responses of seed germination to temperature and light and the germination speed were studied in 2016. Results showed that seed germination percentage of the 28 ephemeral plants significantly differed to temperature and light. We classified the studied plants as the following groups based on their responses to temperature: 1 low temperature responsed plants, 12 moderate temperature responsed plants, 7 high temperature responsed plants, 4 non-responsed plants and 5 plants of no germination. It should be noted that Corispermum lehmannianum Bunge is sensitive to both moderate and high temperatures. There were 4 groups of plant in response to light, i.e., 7 light responsed plants, 10 dark responsed plants, 6 light non-responsed plants and 5 plants of no germination. Based on seed germination speed of the 28 ephemeral plants, we divided them into 4 patterns of germination, i.e., very rapid, moderately rapid, moderate and slow. Combining variations of temperature, precipitation and sand dune types in the study area, we suggested that very rapid and moderately rapid germinated plants could be used to moving sand dunes in early spring during vegetation restoration, moderate germinated plants could be used to semi-fixed sand dunes in late autumn, and slow germinated plants could be used to sand plain in summer. Thus, seedling establishment and vegetation restoration would be improved by considering seed germination characteristics of these ephemeral plants in the Gurbantunggut Desert, China.  相似文献   

11.
Urochloa panicoides is an annual weed of summer crops. In Argentina, in subhumid areas with monsoon rainfall, it germinates and establishes in a single flush. To (i) identify the environmental factors that modify its seed dormancy level and germination and (ii) quantify the parameters describing the thermal behaviour of the germination and emergence dynamics of this weed under non‐limiting water conditions, we established a set of germination experiments performed (i) under controlled conditions using seeds after ripened for 3 or 6 months in different thermal and hydric conditions and (ii) under field conditions, where the soil temperature was modified by applying different shading levels. Seed dormancy level remained high with 3 months after ripening in all treatments. After 6 months, seeds stored at 4°C in dry conditions did not germinate at any temperature, while seeds stored at 25°C in dry conditions and in situ germinated c. 20% and 60% respectively. Germination percentage was higher in seeds harvested before their natural dispersal. The base, optimum and maximum temperatures for seed germination were 6, 35 and 45°C respectively. Shading reduced the number of emerged seedlings, possibly by reducing the soil thermal amplitude. The results explained the dormancy‐breaking mechanism of U. panicoides that allows a high germination rate in the field when rainfall occurs.  相似文献   

12.
Thermal requirements for the germination of Amaranthus quitensis, a common annual weed in Argentina, were studied. In addition, temporal changes in dormancy from seeds produced at different times during the growing season were examined. For this second objective, thermal and light requirements for germination were tested in seeds buried at different depths, with or without crop residues. Base and optimum temperatures for germination rates were 12.8°C and 37°C respectively. At dispersal time, maximum percentage germination was 60–70% and this was generally recorded at 35°C/25°C in a 14-h photoperiod. Seed germination tended to increase in later seed collection dates. Seeds of A. quitensis showed seasonal changes in germinability in the soil. In winter, germination of retrieved seeds increased to over 90% until summer, after which there was a decrease until the following winter when germination was close to 40%. There were no differences in germinability between burial depths and crop residue levels. Germination requirements for alternating temperatures and light tended to disappear after burial. Initial viability was 99% and declined slightly during burial. Soil temperature seems to play a crucial role not only by regulating seasonal changes in dormancy, but also by defining the percentage and the germination rate in non-dormant seeds.  相似文献   

13.
The effect was studied of sunlight and far-red (FR) light during seed development, on seed quality and germination of Sicyos deppei G. Don. Seeds exposed to FR during development were lighter in colour and their weight, size and water content were significantly lower. Less than 10% of non-scarified freshly harvested seeds germinated. Scarified, freshly harvested seeds developed under sunlight had a partially negative photoblastic response; both red (R) and FR light inhibited germination. The highest and fastest germination occurred in darkness, probably due to the effect of the high photon flux densities on the phytochrome during seed development. Scarified seeds ripened under FR light, germinated well in FR light and in darkness, but R light inhibited germination. After 6 months of storage, the permeability of S. deppei seeds increased, the partially negative photoblastic response was lost and germination of scarified seeds increased. Specifically, in seeds developed under FR, germination in darkness was faster than for the other light treatments, but slow in darkness for seeds developed under sunlight. The physiological and morphological heteroblastic responses in S. deppei probably extend its seed germination and seedling recruitment periods.  相似文献   

14.
Understanding variability in seed germination among populations is essential for planning an effective germplasm collection for restoration and conservation purposes.The knowledge of germination and dormancy patterns among populations of desert grasses is crucial for determining the potential of the species and populations to be used for restoration and conservation as well as forage production.Variability in seed germination of Panicum turgidum Forssk and Pennisetum divisum(Gmel.)Henr.in the desert of Kuwait was evaluated in different populations in May 2017.Experiment of seed germination(25 seeds and 4 replicates)was conducted for each population at night/day temperatures of 15℃/20℃and 20℃/30℃under the following light condition:continuous darkness or 12 h/12 h light/dark.Results showed that seed masses of both species strongly varied according to their seed provenances,and both species produced heavier seeds in population with a higher soil electrical conductivity.Seed germination percentage considerably varied between two species,and the variation in P.turgidum was greater(17%–49%)than that of P.divisum(72%–93%).Germination percentage in P.turgidum was greater at high temperature(20℃/30℃)than at low temperature(15℃/20℃).However,temperature regimes had no effect on germination percentage of P.divisum seeds.Mean germination time of both species exhibited significant inter-population variability.This result is especially relevant to assure the selection of the best population of each species and the regeneration success of the species.Besides this,inter-population variability also provides valuable information for enhancing our understanding of the mechanisms that regulate seed germination and how they might be related to seed provenance.  相似文献   

15.
Eupatorium rugosum (Ageratina altissima), commonly known as white snakeroot, is a weedy plant that invades woodland areas in North America, Korea, and Japan. In order to examine the inheritance of seed dormancy in this species, seeds from a single population were screened for their differential germination response to stratification. After two cycles of recurrent selection, the seed from the shallow–dormant lines had 4.4 times greater germination prior to stratification than did the seed from the deep–dormant lines. The seed from the deep–dormant lines showed 3.4 times greater germination after stratification, compared to the seed from the shallow–dormant selections. This suggests that primary dormancy in the seed of white snakeroot is under some degree of genetic control. This perennial species produces overwintering rhizomes that give rise to adventitious, vegetative buds each spring. The plants selected for the production of seeds with lower levels of dormancy in the fall were observed to generate rhizomatous buds that were released from dormancy earlier in spring, compared to the plants that produced seeds with higher levels of dormancy. A statistically significant positive correlation also was observed between seed and bud dormancy in a naturally occurring population of white snakeroot. Common regulatory elements might be influencing dormancy in both the seeds and vegetative buds of this species.  相似文献   

16.
Omami  Haigh  Medd  & Nicol 《Weed Research》1999,39(5):345-354
Changes in dormancy and viability of Amaranthus retroflexus seeds were examined after placement in pots that were buried in the field. Seeds were placed in woven nylon envelopes on the soil surface or buried at depths of 2.5, 5 or 10 cm. After 1, 3, 6, 9 and 12 months seeds were exhumed and their germinability was tested to assess changes in dormancy and viability. Depletion of seed stocks placed on the soil surface was partly because of in situ germination that did not exceed 21% and did not vary significantly over the 12-month study period. Less germination of buried seeds occurred in situ , and seeds that did not germinate appeared to acquire dormancy. Exhumed seeds germinated readily; germinability was linearly related to the depth of burial, with those retrieved from the surface germinating least. Cyclical changes in germinability occurred during the 12-month burial period, but this influence was identical for seeds buried at all depths. Germinability was greatest after periods with the lowest mean monthly temperatures and least during the hottest periods. The stimulation of remaining ungerminated seeds exhumed at each period, by the addition of ethephon to the germination medium, provided further evidence of a seasonal acquisition of dormancy, and it was concluded that other unknown factors besides cyclical changes in seasonal temperature were responsible. Irrespective of placement, all seeds lost viability at an exponential rate over time. However, the decline was most rapid for those placed on the surface, whereas the loss in viability became less with increased depth of burial. Possible explanations for this adaptation of enhanced survival when buried are discussed.  相似文献   

17.
The seed dormancy cycle in Solanum nigrum and Solanum physalifolium was studied in relation to seasonal temperature. Seed lots of both species were buried in pots outdoors in a randomised complete block design with four replicates from November 2004 to November 2006. At regular intervals, samples of the seeds were randomly exhumed and tested for germination in incubators at three temperatures and light/darkness regimes. For both species, low winter temperature weakened dormancy and high temperature strengthened it. Dormancy induction mainly occurred from August to October in both species after experiencing warm temperatures. An exception from the general pattern of seed dormancy was however observed; seed germination percentages were temporarily reduced in early spring, followed by a peak in germination, before the main period of strong dormancy in S. nigrum . The same phenomenon was observed in S. physalifolium during June in the first year. This short-lived dormancy induction might explain the late emergence of the species. Seed dormancy enables the species to maximise its chance of survival by regulating germination timing to favourable conditions. Therefore, information on the dormancy cycle can be used to predict seedling emergence and optimise weed control operations.  相似文献   

18.
差巴嘎蒿(Artemisia halodendron)是科尔沁沙地植被的关键种之一,它在沙地植被的恢复演替过程中扮演着重要角色,也被广泛应用于人工固沙活动中。为了了解差巴嘎蒿对风沙环境的适应特点,试验研究了其种子萌发对土壤温度、水分和埋藏深度的响应模式。结果表明:差巴嘎蒿种子在4月和5月的土壤温度条件下萌发良好,总萌发率可达到96%,在7月的土壤温度条件下萌发较差,总萌发率低于50%;若以试验前3天的总萌发率为准,则5月的萌发率远大于其它两个月。在0MPa、-0.1MPa、-0.2MPa、-0.4MPa、-0.8MPa和-1.6MPa水势下,差蒿种子的总萌发率分别为89%、83%、80%、46%、17%和0%。在0.5cm、1.0cm和2.0cm埋深下,最终出苗率分别为90%、32%和9%,当埋深大于4cm后,种子无法出苗。种子萌发对温度、水势和埋深的这种响应模式总体上不利于差巴嘎蒿实生苗在科尔沁沙丘生境中的存活。  相似文献   

19.
In pot studies, seeds of Alopecurus myosuroides were less dormant when produced under warm and dry, than under cool and wet conditions. The temperature to which plants were exposed had a greater effect on seed dormancy than soil moisture. The timing of temperature stress had a big impact on initial seed dormancy. The critical period was during seed maturation, irrespective of temperature conditions during the earlier phase of panicle emergence and anthesis. A much higher proportion (57–62%) of seeds collected from fields in 2001, 2003 and 2005 were non‐dormant than in 2002 and 2004 (22–28%). Meteorological records showed that the mid‐June to mid‐July periods in England for 2001, 2003 and 2005 were warmer than average but in 2002 and 2004 were cooler than average. Consequently, results for samples collected from fields support those from experiments conducted under more controlled conditions. Studies in outdoor micro‐plots showed that the differences in seed dormancy recorded with freshly produced seed did affect the rate of germination in the field, 2–3 months after shedding.  相似文献   

20.
Seasonal changes in the germination of buried seeds of Monochoria vaginalis   总被引:4,自引:0,他引:4  
CHEN  & KUO 《Weed Research》1999,39(2):107-115
This study investigates the seasonal variation of germination ability of buried seeds of Monochoria vaginalis (Burm.f.) Presl var. plantaginea Solms. The field-collected seeds were buried in a flooded or an upland field and then exhumed monthly. The exhumed seeds were germinated under four temperature regimes. The seeds exhumed from the flooded soil were dormant at the beginning of burial and proceeded into a conditional dormancy/non-dormancy/conditional dormancy cycle throughout the remaining period of the experiment. The seeds exhumed monthly from the non-flooded soil exhibited an annual dormant cycle, which is dormancy/conditional dormancy/non-dormancy/conditional dormancy/dormancy. At day and night temperatures of 25/20 °C, the exhumed seeds from both the flooded and the upland soil resembled each other in terms of seasonal variation of the germination percentage. In September and October, more seeds exhumed from upland soil failed to germinate under higher temperature than from flooded soil. Strictly avoiding exposure to light during seed exhuming and seed testing prevented the seeds from germinating. A short exposure of the exhumed seeds to light during preparation promoted dark germination when the seeds were at the non-dormant stage. The potential implications of our results for weed management strategies in rice production are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号