首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Echinochloa crus‐galli and Echinochloa muricata are common weeds in Belgian maize fields. Both species are morphologically difficult to distinguish and exhibit high morphological variability. Their response to herbicides varies from field to field. This study investigated whether the considerable morphological polymorphism found among Belgian Echinochloa accessions has a genetic background and whether it is consistently associated with differences in sensitivity to maize herbicides. For this purpose, accessions of E. crus‐galli and E. muricata were compared for morphological and genetic resemblance and tested for herbicide sensitivity. All accessions were planted in the field to examine the morphological traits. A cluster analysis was conducted to assess them for morphological diversity. DNA of leaf material was used for amplified fragment length polymorphism analysis to cluster the accessions genetically. Dose–response pot experiments were conducted in the glasshouse to assess the effectiveness of an acetolactate synthase (nicosulfuron), acetyl‐CoA carboxylase (cycloxydim) and 4‐hydroxyphenyl phosphate dioxygenase (topramezone) inhibiting herbicide. The genetic and morphological clusters were compared with the effective doses obtained from the dose–response bioassays. Morphological variation significantly correlated with genetic variation, but the relation with herbicide sensitivity was weak. Spikelet size and biomass characteristics are reliable discriminating characteristics for (sub)species classification. Intraspecies identification does not seem essential for optimisation of chemical control of E. crus‐galli and E. muricata in the field.  相似文献   

2.
Echinochloa crus‐galli is a serious weed worldwide. Microsatellite markers (simple sequence repeats, SSRs) are important molecular markers that are used widely for studying genetic diversity in plants. However, a limited number of SSRs is available for E. crus‐galli. The restriction site‐associated DNA (RAD) sequencing approach was combined with Illumina DNA sequencing for the rapid and mass detection of SSRs in E. crus‐galli. The RAD tags were generated from the genomic DNA of E. crus‐galli and were sequenced in order to produce 6921.6 Mb of high‐quality sequences with 45.1% guanine–cytosine content. In total, 3081 putative SSRs were detected, of which 82.2% were dinucleotide motif‐repeats. AT was the most frequent motif, accounting for 35.0% of the SSRs. In order to test the validity of the SSRs that were developed here, eight SSRs that were selected from putative SSRs were used to study the genetic diversity and structures of 20 E. crus‐galli populations that had been collected from rice fields in eastern China. Ninety‐seven alleles were amplified from the eight microsatellite loci among the 20 E. crus‐galli populations. These populations showed low genetic diversity and were classified on the basis of their genetic structures into three distinct groups that corresponded to the three regions of population sampling. The SSRs that were identified in this study represent a valuable resource for studying the genetic diversity, population biology and evolution of E. crus‐galli.  相似文献   

3.
J Y Li  X K Guo  Q Zhang  C H Liu  Z H Lin  Z M Yu  H Wu  H B He 《Weed Research》2015,55(5):441-448
Screening crop accessions for allelopathic activity is of paramount importance for crop allelopathy research. Previous bioassays often did not use a mixed culture of donor and target plants, did not use soil and were not conducted under natural conditions. In this study, we designed an inhibitory‐circle method in which a rice accession (donor plant) and Echinochloa crus‐galli (target plant) were cultured together in paddy soil under natural conditions. First, we determined that the highest allelopathic activity of allelopathic rice accession PI312777 was at the 5‐leaf stage, and the suitable distance of rice seedlings and E. crus‐galli was 12 cm apart. This method was then validated by a field test. A further 40 rice accessions were evaluated for allelopathic activity to E. crus‐galli using this method. Two rice accessions, PI312777 and Taichung Native 1, had highly allelopathic activity to E. crus‐galli (inhibitory rate > 50%), while another accession, Lemont, had non‐allelopathic activity. These experimental results were in accordance with previous studies using direct field experiments. The inhibitory‐circle method integrated three necessary conditions, that is donor and target plants grown together, with soil as the medium and under natural conditions for reliable results. The ‘inhibitory‐circle method’, which combined donor and target plants, soil medium and field conditions, can give reliable results in one step, compared with laboratory screening methods. Also, the ‘inhibitory‐circle method’ gave results in 30‐35 days, thereby substantially reducing the requirements for time, labour and cost.  相似文献   

4.
Two major weeds in rice in the Philippines, Sphenochlea zeylanica Gaertn. and Echinochloa crus‐galli (L.) Beauv., are controlled with chemical and cultural methods. In the 1980s, after >10 years of continuous use of 2,4‐D, S. zeylanica evolved resistance to the chemical in those rice fields that had been treated with 2,4‐D once or twice every cropping season. In the 1990s, E. crus‐galli evolved resistance to butachlor and propanil in rice monocrop areas where both herbicides were used continuously for 7–9 years. Rice farmers continue to use 2,4‐D, butachlor and propanil extensively and are often unaware of herbicide resistance or the potential for cross‐resistance, its causes or its implications. In order to control herbicide‐resistant E. crus‐galli, farmers are shifting to locally available herbicides with different modes of action, such as bispyribac, an acetolactate synthase inhibitor, and cyhalofop, an acetyl coenzyme A carboxylase inhibitor. Follow‐up manual weeding or rotary weeding after herbicide spraying, a common farmers’ practice, removes the susceptible and resistant biotypes and could help to delay or prevent the evolution of resistance. Although the resistance mechanisms of both weeds are not determined yet, they could be related to enhanced degradation that is similar to the mechanisms that are shown by the resistant biotypes in other countries.  相似文献   

5.
T Hyvönen  S Ramula 《Weed Research》2014,54(3):245-255
Climate change is predicted to affect range expansion of harmful C4 weeds into the boreal region, given that they are able to successfully colonise both C3 and C4 crops. We studied the impact of a 3°C elevation in temperature on the establishment and maintenance of populations of two annual C4 weeds (Amaranthus retroflexus and Echinochloa crus‐galli) with and without a competing C3 (barley) or C4 (maize) crop. Data obtained from field and glasshouse experiments were modelled using a periodic matrix population model. Competition of a weed with a crop appeared to be a more important factor for limiting the maintenance of weed populations than elevation in temperature, as neither of the weed species was able to maintain populations in competition with crops. Even an increase in the frequency of warm years did not result in viable weed populations establishing. However, A. retroflexus was able to form persistent populations in competition with maize when released from competition every fifth year. Simulations parameterised from glasshouse data predicted that both weed species would persist without competition in the current climate, whereas simulations parameterised from field data suggested only A. retroflexus to be able to persist. These results demonstrate that competition affects the range expansion of arable weed species more than elevation in temperature, necessitating the inclusion of crop–weed interactions in models of range shifts as a consequence of climate change.  相似文献   

6.
Echinochloa crus‐galli (L.) Beauv. var. formosensis Ohwi (2n = 6x = 54, AABBCC genomes) and Echinochloa oryzicola (Vasinger) Vasinger (2n = 4x = 36, AABB) are major paddy weeds in East and Southeast Asia. E. oryzicola has been generally considered to be a paternal genome donor of E. crus‐galli s. l., which includes E. crus‐galli var. formosensis based on cpDNA sequences. Thus, molecular characterization using polymerase chain reaction‐restriction fragment length polymorphism analysis of cpDNA has been proposed as a reliable method for discriminating between the two species. In this study, we report that four accessions of E. crus‐galli var. formosensis from Okinawa, Nagasaki, Shizuoka and Tokyo had similar cpDNA sequences to E. oryzicola and had been misidentified as E. oryzicola using molecular methods. In addition, our results demonstrated that these accessions likely inherited their chloroplast genomes from E. oryzicola and not from an anonymous diploid species during polyploidization. Our findings provide new insights into the evolution of E. crus‐galli s. l. and suggest that identification using the cpDNA molecular method alone is not an appropriate approach to differentiate E. crus‐galli var. formosensis and E. oryzicola.  相似文献   

7.
The effects of herbicide dose on rice‐weed competition were investigated to develop a combined model, which can be utilised to estimate an optimum herbicide dose for a given weed density in paddy rice cultivation. Field studies were conducted in Suwon for rice‐Echinochloa crus‐galli competition and Iksan for rice‐Eleocharis kuroguwai during 2007. The competitive effect of the weeds E. crus‐galli and E. kuroguwai decreased with increasing doses of flucetosulfuron and azimsulfuron, respectively, in the same manner as the standard dose–response curve. The combination of the rectangular hyperbolic model and the standard dose–response curve adequately described the complex effects of herbicide dose and weed competition on rice yield. Parameter estimates were used with the model to predict rice yield and estimate the doses of flucetosulfuron and azimsulfuron required to restrict rice yield loss caused by E. crus‐galli and E. kuroguwai, respectively, to an acceptable level. For a rice yield of 5.0 t ha?1, the model recommended flucetosulfuron doses of 8.7, 13.4 and 20.1 g a.i. ha?1 when infested with E. crus‐galli at 12, 24 and 48 plants m?2 respectively. For a rice yield of 5.2 t ha?1, the model recommended azimsulfuron doses of 3.9, 7.5 and 12.6 g a.i. ha?1 when infested with E. kuroguwai at 24, 48 and 96 plants m?2 respectively. The theoretical outputs of the combined model appear robust and indicate there are opportunities for reduced herbicide use in the field. These now require evaluation under field conditions.  相似文献   

8.
Echinochloa species are amongst the most problematic weeds in rice fields of Korea. The steady reliance on the Acetyl‐CoA carboxylase (ACCase) and acetolactate synthase inhibiting herbicides for control of these weeds has led to resistance to these herbicides. The objective of this study was to assess the genetic diversity among populations of ACCase inhibitor‐resistant and ‐susceptible Echinochloa crus‐galli and E. oryzicola in Korea, to better understand their population structure and possible origins of resistance. Seven simple sequence repeat markers were applied to assess the genetic diversity between resistant and susceptible E. crus‐galli and E. oryzicola from 12 populations in Korea. Genetic diversity was slightly higher in the resistant group. The Unweighted Pair Group Method using Arithmetic algorithm (UPGMA) dendrogram generated two distinct clades. One clade consisted of Echinochloa spp. from three populations, i.e. Anmyeondo, Gimje 4 and Gongju, which are resistant and differentiated from the susceptible populations, and the other clade contained the rest of the populations. Structure modelling supported two clades of UPGMA clustering. Based on these data, we can infer that some resistant populations are greatly differentiated, whereas other resistant biotypes are still building up resistance in rice fields in Korea. Resistance traits will be fixed and continue to spread over time without proper control measures.  相似文献   

9.
Orobanche cumana is an obligate root parasite of sunflower. It represents a major agricultural problem in many countries of southern and eastern Europe. Information on O. cumana population genetics, structure and dynamics is scarce, particularly due to the lack of suitable molecular markers for such studies. The objective of this study was to identify and characterise simple sequence repeat (SSR) markers for O. cumana. Four thousand two hundred SSR‐containing candidate sequences were obtained from O. cumana using next‐generation sequencing, from which 298 SSR primer pairs were designed and 217 of them used for validation. Seventy nine SSR primers produced reproducible, high quality amplicons of the expected size that were polymorphic among 18 O. cumana populations from different geographical locations and hosts (sunflower, wild hosts from the Compositae family). The number of alleles per locus ranged from 2 to 10, with an average polymorphism information content value of 0.37. The O. cumana SSR markers were highly transferable to the closely related species Orobanche cernua. SSR markers showed high resolving power; UPGMA cluster analysis allowed proper classification of Orobanche spp. samples into species (O. cumana and O. cernua), geographical origin and host. The functional SSR markers reported in this study constitute a valuable tool for genetic analyses in O. cumana and related species and will contribute insights into the biology and genetics of this parasitic weed.  相似文献   

10.
大豆疫霉多态性SSR标记开发及遗传多样性分析   总被引:1,自引:0,他引:1  
 用FastPCR软件在大豆疫霉全基因组中搜索到1 234个含2~4个重复基元精确SSRs。选择260个SSRs设计引物,经对大豆疫霉5个分离物的基因组DNA检测,有212对(81.5%)有效扩增出SSR特征条带,112对(52.8%)扩增多态性。用18对多态性SSR引物分析了来自美国、中国黑龙江省和福建省大豆疫霉分离物的遗传多样性,在73个分离物中共扩增出112个等位变异,变异范围为4~9,平均为6.22个,表明选择的引物对具有高的多态性。在3个大豆疫霉群体中,黑龙江省和福建省分离物的遗传距离最近,美国和福建省分离物的遗传距离最远。UPGMA聚类将73个分离物划分为6组,其中8个美国分离物(72.73%)和53个中国分离物(85.48%)被聚类在一起,表明大豆疫霉中国分离物与美国分离物可能具有共同的祖先,中国分离物可能为外来种。  相似文献   

11.
玉米根际球孢白僵菌群体遗传多样性的ISSR分析   总被引:1,自引:0,他引:1  
为了明确玉米根际球孢白僵菌的遗传分化情况及亲缘关系,通过ISSR-PCR分子标记技术对分离自玉米根际的球孢白僵菌的遗传多样性进行了研究。从40个引物中共筛选出11个多态性高、稳定性好的引物用于正式的扩增分析,在37个菌株中共扩增出83条谱带,其中多态性条带占69条,多态性百分率为83.13%。平均每引物扩增条带在7.5条。群体的多态位点百分率(PPL)为83.13%,Nei基因多样性指数(H)为0.316 9,Shannon信息指数(I)为0.465 7。结果表明,分离自安徽省涡阳、萧县、蒙城三个地区的球孢白僵菌具有较高的遗传多样性。研究结果对进一步探讨玉米根际球孢白僵菌不同菌株的生防效果具有重要意义。  相似文献   

12.
M. Wu  B. Li  P. Liu  Q. Weng  J. Zhan  Q. Chen 《Plant pathology》2017,66(7):1182-1190
Phytophthora sojae is a destructive soilborne pathogen causing seedling damping‐off and root rot of soybean (Glycine max). The goal of this study was to determine the genetic structure of P. sojae populations in Fujian, China. Nine microsatellite markers were used to investigate the genetic variation in 19 P. sojae populations, sampled from Fujian Province and northeastern China (Jilin and Heilongjiang Provinces) between 2002 and 2013. Overall, a low genetic diversity, Hardy–Weinberg disequilibrium, and an index (an index of association) that was significantly different from zero were detected in populations; these results were consistent with self‐fertilization and clonal modes of reproduction for this pathogen. However, using Bayesian Markov chain Monte Carlo approach, principal component analysis and neighbour joining (NJ) algorithm, the Fujian P. sojae populations clustered into three distinct groups, one of which included most isolates of the northeast populations. What is more, significant estimates of pairwise fixation indices (FST) were detected between most populations, especially in different clusters. It is hypothesized that the cropping system used, the limited dispersal ability, and human‐mediated gene flow may account for the observed genetic structure of P. sojae populations in Fujian, China. In addition, a high virulence frequency of the pathogen on different cultivars carrying known major R genes for resistance, and a rapid increase in virulence frequency, indicated that these major R genes should not be used to manage seedling damping‐off and root rot diseases of soybean (Glycine max).  相似文献   

13.
The parasitic weed Orobanche cumana (sunflower broomrape) constrains sunflower production in eastern and southern Europe and in the Middle East. Although genetic resistance is the most effective control method, new parasite races evolve overcoming sunflower resistance. In this work, highly virulent populations of O. cumana were analysed for pathogenicity and genetic diversity. The virulence of 11 populations from Hungary, Romania, Spain and Turkey was assessed and compared after infection of sunflower inbred lines to differentiate races of the parasite under glasshouse conditions. Molecular diversity among and within 27 parasite populations was studied by RAPD‐PCR, UPGMA and amova analyses. Highly virulent race F was identified in Hungary, Spain and Turkey. The most virulent race (G) was also found in Turkey. The molecular analysis among highly virulent populations of O. cumana identified four molecular clusters, respectively, grouping populations from Central Spain, Hungary, South Spain and Turkey. The genetic homogeneity within parasite populations was confirmed, since no molecular divergences were found within them. This work constitutes the first geographical study of O. cumana together with pathogenicity and molecular traits inherent to each geographical group, and provides useful information for possible phylogenetic analyses of O. cumana. In addition, molecular markers associated with geographical origin could be developed and used as diagnostic tools to track new broomrape introductions into areas free of virulent races where they might represent a threat to sunflower production.  相似文献   

14.
Since 2006, verticillium wilt of olive induced by Verticillium dahliae has caused considerable economic losses in olive orchards in Tunisia. The genetic structure of V. dahliae isolates collected from different olive growing regions was investigated using virulence tests, vegetative compatibility grouping (VCG) and amplified fragment length polymorphism (AFLP) analyses. In total, 42 isolates of V. dahliae from diseased olive trees were tested. Cluster analysis and principal coordinate analysis revealed that geographic origin was the main factor determining the genetic structure of V. dahliae populations and both methods indicated a genetic separation between the central and coastal isolates. Isolates were divided into two major groups: the AFLP‐I group included all isolates from Sidi Bouzid, Kairouan, Kasserine and Sfax (centre of the country) and the AFLP‐II group included isolates from Monastir, Zaghouane, Sousse, Mahdia (coastal region), and two isolates from Sfax. Analysis of the molecular variance (amova ) indicated a significant level of genetic differentiation among (76%) and within (23%) the two populations. Analyses of both the defoliating (D) and non‐defoliating (ND) pathotypes and VCG markers indicated that most of the isolates belong to VCG 2A and 4B/ND pathotype. The disease severity was highly variable among the isolates tested (< 0·05) with no evidence of association between aggressiveness and geographical origin of the isolates. Overall, results of this study revealed a clear association between the genetic diversity of the isolates and their geographic origin, but not between genetic diversity and virulence patterns.  相似文献   

15.
A transposon‐like element, A3aPro, with multiple copies in the Phytophthora sojae genome, was identified as a suitable detection target for this devastating soyabean root rot pathogen. The PCR primers TrapF1/TrapR1 were designed based on unique sequences derived from the transposon‐like sequence. A 267‐bp DNA fragment was amplified using this primer pair, the specificity of which was evaluated against 118 isolates of P. sojae, 72 isolates of 25 other Phytophthora spp., isolates of Pythium spp. and isolates of true fungi. In tests with P. sojae genomic DNA, detection sensitivities of 10 pg and 10 fg DNA were achieved in standard PCR (TrapF1/TrapR1) and nested PCR (TrapF1/TrapR1 and TrapF2/TrapR2), respectively. Meanwhile, PCR with TrapF1/TrapR1 primers detected the pathogen at the level of a single oospore, and even one zoospore. These primers also proved to be efficient in detecting pathogens from diseased soyabean tissues, residues and soils. In addition, real‐time quantitative PCR (qPCR) assays coupled with the TrapF1/TrapR1 primers were developed to detect and quantify the pathogen. The results demonstrated that the TrapF1/TrapR1 and TrapF2/TrapR2 primer‐based PCR assay provides a rapid and sensitive tool for the detection of P. sojae in plants and in production fields.  相似文献   

16.
小麦抗源Sw92抗叶锈病基因遗传及其分子标记   总被引:1,自引:1,他引:1       下载免费PDF全文
以小麦优异抗源Sw92为父本,感病小麦品种铭贤169为母本,杂交获得F1、F2和BC1代群体。采用我国叶锈菌优势小种PHT对双亲及其杂交世代进行接种鉴定。结果表明,小麦抗源Sw92对叶锈菌小种PHT的抗性系由一对隐性基因所控制。采用简单重复序列(SSR)技术对Sw92携带的抗性基因进行分子标记,共筛选了371对SSR引物,获得2个引物(WMC494、WMC737)可在抗/感池和双亲中扩增出多态性DNA片段。遗传连锁分析结果表明,该抗病基因位于小麦6BS上,与WMC494、WMC737标记的遗传距离分别为3.4cM和15.0cM,不同于6BS上的已知抗叶锈基因Lr36和Lr53,暂命名为LrSw92。  相似文献   

17.
Pineapple heart rot disease, caused by Phytophthora nicotianae (syn. P. parasitica), is responsible for significant annual reductions in crop yield due to plant mortality. In Ecuador, new infections arise during the rainy season and increase production costs due to the need for biocontrol and fungicide applications. Studies of P. nicotianae population structure suggest that certain genetic groups are associated with host genera; however, it is not clear how many host‐specific lineages of the pathogen exist or how they are related. The objectives of this study were to determine the level of genetic variation in the P. nicotianae population causing heart rot disease of pineapple in Ecuador and compare the genotypes found on pineapple to those previously reported from citrus, tobacco and ornamentals. Thirty P. nicotianae isolates collected from infected pineapple leaves from four farms were genotyped using nine simple sequence repeat loci. In addition, the DNA sequences of mitochondrial loci cox2 + spacer and trnG‐rns were analysed. Together, these loci supported a single clonal lineage with two multilocus genotypes differing in a single allele and low mitochondrial diversity. This lineage was distinct but closely related to isolates collected from vegetables and ornamentals in Italy. The results support the hypothesis of host specialization of P. nicotianae in intensive cropping systems and contribute to the understanding of population structure of this important pathogen.  相似文献   

18.
This study was designed to assess the reliability of grapevine leaf bioassays for predicting disease resistance on fruit in the field. The efficacy of various grapevine quantitative trait loci (QTLs) for conferring resistance to downy and powdery mildew was evaluated in bioassays and in a 2‐year field experiment for downy mildew. The resistance genes studied were inherited from Muscadinia rotundifolia (Rpv1 and Run1) and from American Vitis species through cv. Regent (QTLRgP and QTLRgD). In bioassays, genotypes carrying Run1 blocked powdery mildew development at early stages. Genotypes combining Run1 with QTLRgP displayed no greater level of resistance. For downy mildew, genotypes carrying Rpv1 and/or QTLRgD were more resistant than the susceptible cv. Merlot, and showed a high level of leaf resistance in the field (<10% severity). Disease levels on bunches were much higher than those on leaves, with a high variability between Rpv1 genotypes (1–48%). A Bayesian decision theory framework predicted that an OIV‐452 threshold of 5 in leaf bioassays allowed accurate selection of grapevine genotypes (P = 0·83) with satisfactory disease severity on bunches. Therefore, this study validates that the use of early bioassays on leaves, as currently performed by grapevine breeders, ensures a satisfactory level of resistance to downy mildew of bunches in the field.  相似文献   

19.
Three Galium species are believed to be present across western Canada: Galium aparine, Galium spurium and Galium boreale. Galium spurium and G. aparine are very difficult to distinguish morphologically, which is problematic for crop consultants and weed surveyors, and could have implications for control measures. Molecular techniques could potentially make identification easier and more rapid than using chromosome counts, as is currently done. The objective of this study was to identify morphological traits and/or genetic polymorphisms capable of species differentiation. To this end, Galium seed of unknown speciation were collected from nine field populations across western Canada and, along with two reference samples of G. spurium and G. aparine, were characterised for both morphological traits and their ribosomal ITS1‐5.8S‐ITS2 genomic sequence. In addition, single nucleotide polymorphism variation within the highly conserved 5.8S ribosomal RNA gene was identified that could consistently differentiate Galium species. Sequence analysis of the ITS1‐5.8S‐ITS2 region of field collections from western Canada indicated that all samples were G. spurium and all were highly related to each other. These results were supported by a distinct lack of variation in morphological traits, as nearly all plant traits measured did not differ between populations. This suggests that all sampled populations, and perhaps most of the Galium populations across western Canada, are derived from a single species, G. spurium.  相似文献   

20.
Without herbicides, the control of Elymus repens relies on intensive tillage, often in the form of repeated post‐harvest stubble cultivations followed by ploughing. This is costly and time‐consuming and also increases the risk of nitrogen leaching. Our aim was to quantify the controlling effect on E. repens of single and repeated cultivation and differing time of cultivation in relation to spring cereal harvest. A 2‐year experiment was conducted at two sites in the south and east of Sweden in 2011–2012 and 2012–2013. We compared no, single and repeated tine cultivation followed by mouldboard ploughing; the single cultivation was performed directly after harvest or 20 days after harvest; when repeated, the first cultivation was performed immediately or 5 days after harvest, followed by a second cultivation 20 days after harvest. Tine cultivation in combination with mouldboard ploughing resulted in 50–70% lower rhizome biomass, and increased average subsequent cereal yields by 0–130% compared with ploughing alone. Large E. repens populations appeared to be more efficiently reduced by tine cultivation than smaller populations. A single tine cultivation 20 days after harvest tended to result in a higher E. repens shoot density and more rhizome biomass in the subsequent year than tine cultivation directly after harvest. Additional cultivation 20 days after harvest did not improve control of E. repens or the subsequent cereal grain yield, compared with a single cultivation conducted directly after harvest. In conclusion, preventing the growth of E. repens during the early part of the post‐harvest autumn period was more important than starving rhizomes with repeated cultivations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号