首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since 2008, West Nile Virus (WNV) has expanded its range in several Italian regions, and its yearly recurrence suggests the virus may have become endemic in some areas. In 2011, a new plan based also on the detection of IgM antibodies was implemented in the north‐eastern Italian regions of Veneto and Friuli Venezia Giulia, aiming to early detect WNV infections in areas where the virus had already circulated during the previous summers, and in adjacent zones. From July to November 2011, 1880 sera from 521 equine premises were screened by a commercial IgM capture ELISA. Mosquitoes were captured by CDC‐CO2 traps at 61 locations in the two regions. Collected mosquitoes were identified, pooled by species/date/location and examined by real‐time RT‐PCR and sequencing. Passive surveillance was carried out on clinically affected horses and non‐migratory wild birds found dead. IgM sero‐positive equines were detected in 19 holdings, five in the area with WNV circulation (AWC) and 14 in the surveillance area (SA); 10 more horse premises tested positive to further serological controls within 4 km of the positive holdings. A total of 85 398 mosquitoes of 15 species were collected and 2732 pools examined. Five Culex pipiens pools tested positive for the presence of WNV. Passive surveillance on non‐migratory wild birds allowed detection of the virus only in one found dead collared dove (Streptopelia decaocto), of 82 birds sampled. The WNV belonged to the lineage 2, which had been isolated for the first time in Italy earlier in 2011. By the first week of October, nine human cases had been confirmed in the same area. The implementation of a protocol combining IgM screening of horses with surveillance on mosquito vectors proved to be valuable for early detecting WNV circulation.  相似文献   

2.
3.
The West Nile virus (WNV) is an arthropod-borne virus (arbovirus) circulating in a natural transmission cycle between mosquitoes (enzootic vectors) and birds (amplifying hosts). Additionally, mainly horses and humans (dead-end hosts) may be infected by blood-feeding mosquitoes (bridge vectors). We developed an epidemic model for the simulation of the WNV dynamics of birds, horses and humans in the U.S., which we apply to the Minneapolis metropolitan area (Minnesota). The SEIR-type model comprises a total of 19 compartments, that are 4 compartments for mosquitoes and 5 compartments or health states for each of the 3 host species. It is the first WNV model that simulates the seasonal cycle by explicitly considering the environmental temperature. The latter determines model parameters responsible for the population dynamics of the mosquitoes and the extrinsic incubation period. Once initialized, our WNV model runs for the entire period 2002-2009, exclusively forced by environmental temperature. Simulated incidences are mainly determined by host and vector population dynamics, virus transmission and herd immunity, respectively. We adjusted our WNV model to fit monthly totals of reported bird, equine and human cases in the Minneapolis metropolitan area. From this process we estimated that the proportion of actually WNV-induced dead birds reported by the Centers for Disease Control and Prevention is about 0.8%, whereas 7.3% of equine and 10.7% of human cases were reported. This is consistent with referenced expert opinions whereby about 10% of equine and human cases are symptomatic (the other 90% of asymptomatic cases are usually not reported). Despite the restricted completeness of surveillance data and field observations, all major peaks in the observed time series were caught by the simulations. Correlation coefficients between observed and simulated time series were R=0.75 for dead birds, R=0.96 for symptomatic equine cases and R=0.86 for human neuroinvasive cases, respectively.  相似文献   

4.
To enhance early detection of West Nile virus (WNV) transmission, an integrated ecological surveillance system was implemented in Catalonia (north‐eastern Spain) from 2007 to 2011. This system incorporated passive and active equine surveillance, periodical testing of chicken sentinels in wetland areas, serosurveillance wild birds and testing of adult mosquitoes. Samples from 298 equines, 100 sentinel chickens, 1086 wild birds and 39 599 mosquitoes were analysed. During these 5 years, no acute WNV infection was detected in humans or domestic animal populations in Catalonia. WNV was not detected in mosquitoes either. Nevertheless, several seroconversions in resident and migrant wild birds indicate that local WNV or other closely related flaviviruses transmission was occurring among bird populations. These data indicate that bird and mosquito surveillance can detect otherwise silent transmission of flaviviruses and give some insights regarding possible avian hosts and vectors in a European setting.  相似文献   

5.
The goal of this study was to evaluate and compare the risk distribution of human cases of West Nile virus (WNV) disease in Ontario in 2005 to 2012. The objectives were to: map the risk distribution of WNV in 2005 and 2012, identify clusters of human WNV disease and determine whether the clusters are significantly different between the years 2005 and 2012. West Nile virus surveillance data were used to calculate empirical Bayesian smoothed estimates of disease incidence in southern Ontario for 2005 and 2012. Choropleth maps were generated to visualize the spatial risk distribution, and the spatial scan test was performed to identify clusters of disease. Following identification of clusters for 2005 and 2012, a Poisson model was applied to the 2012 human WNV incidence adjusted for the smoothed human WNV incidence rate from 2005 and the scan test was repeated. Two significant clusters were identified in both the year 2005 and 2012. In 2005, the primary cluster was located in the Windsor‐Essex and Chatham‐Kent public health units (PHUs). For 2012, the primary cluster was identified in the Golden Horseshoe area. A cluster analysis for 2012 adjusted for those identified in 2005 resulted in one significant cluster in the Windsor‐Essex PHU. In 2012, the Windsor‐Essex PHU remained as a high‐risk area for human WNV disease when compared with the rest of southern Ontario. Although overall risk may change from year to year, public health programming should be employed to decrease the relative risk of WNV in this area.  相似文献   

6.
7.
West Nile virus (WNV) and Usutu virus (USUV) are arboviruses that are maintained in enzootic transmission cycles between mosquitoes and birds and are occasionally transmitted to mammals. As arboviruses are currently expanding their geographic range and emerging in often unpredictable locations, surveillance is considered an important element of preparedness. To determine whether sera collected from resident and migratory birds in the Netherlands as part of avian influenza surveillance would also represent an effective source for proactive arbovirus surveillance, a random selection of such sera was screened for WNV antibodies using a commercial ELISA. In addition, sera of jackdaws and carrion crows captured for previous experimental infection studies were added to the selection. Of the 265 screened serum samples, 27 were found to be WNV–antibody‐positive, and subsequent cross‐neutralization experiments using WNV and USUV confirmed that five serum samples were positive for only WNV‐neutralizing antibodies and seven for only USUV. The positive birds consisted of four Eurasian coots (Fulica atra) and one carrion crow (Corvus corone) for WNV, of which the latter may suggest local presence of the virus, and only Eurasian coots for USUV. As a result, the screening of a small selection of serum samples originally collected for avian influenza surveillance demonstrated a seroprevalence of 1.6% for WNV and 2.8% for USUV, suggesting that this sustained infrastructure could serve as a useful source for future surveillance of arboviruses such as WNV and USUV in the Netherlands.  相似文献   

8.
Disease clusters were retrospectively explored at national level using a geo‐referenced dataset from the 2001 Uruguayan Foot‐and‐Mouth Disease (FMD) epidemic. Disease location and time (first 11 epidemic weeks) were analysed across 250 counties (of which 160 were infected), without and with control for human mobility related factors (human population and road densities). The null hypothesis of random disease distribution over space and/or time was assessed with: (i) purely temporal; (ii) purely spatial; and (iii) space/time tests. At least within epidemic weeks 2 and 6, a principal disease cluster was observed in 33 contiguous counties (P < 0.01). Two secondary clusters, located at >100 km from each other, were also observed (P < 0.01). The purely spatial test that controlled for human population density identified two non‐contiguous clusters (P < 0.01). Space and time analysis also revealed the same 33 counties as members of the principal cluster, of which 31 were also clustered when human population was controlled (P < 0.01). No clusters were reported by the spatial test when road density was assessed. The hypothesis that human mobility related factors autocorrelate with disease was empirically supported by two pieces of information: (i) removal of human population/road densities eliminated >93.9% of the counties included in the principal disease cluster; and (ii) statistically significant correlations (P < 0.05) were observed in the first three epidemic weeks between road density and the number of cases. Clusters where human population density was associated with 47% greater number of cases/sq. km than that of the principal cluster indicated possible roles as disease vectors (vector clusters). Selective control policy in vector clusters is recommended. Periodic (i.e. weekly) cluster and correlation analyses of both disease and other covariates may facilitate disease surveillance and help design space‐specific control policy.  相似文献   

9.
Understanding impacts of disease on wild bird populations requires knowing not only mortality rate following infection, but also the proportion of the population that is infected. Greater sage-grouse (Centrocercus urophasianus) in western North America are known to have a high mortality rate following infection with West Nile virus (WNv), but actual infection rates in wild populations remain unknown. We used rates of WNv-related mortality and seroprevalence from radiomarked females to estimate infection rates in a wild greater sage-grouse population in the Powder River basin (PRB) of Montana and Wyoming from 2003 to 2005. Minimum WNv-related mortality rates ranged from 2.4% to 13.3% among years and maximum possible rates ranged from 8.2% to 28.9%. All live-captured birds in 2003 and 2004 tested seronegative. In spring 2005 and spring 2006, 10.3% and 1.8% respectively, of newly captured females tested seropositive for neutralizing antibodies to WNv. These are the first documented cases of sage-grouse surviving infection with WNv. Low to moderate WNv-related mortality in summer followed by low seroprevalence the following spring in all years indicates that annual infection rates were between 4% and 29%. This suggests that most sage-grouse in the PRB have not yet been exposed and remain susceptible. Impacts of WNv in the PRB in the near future will likely depend more on annual variation in temperature and changes in vector distribution than on the spread of resistance. Until the epizootiology of WNv in sagebrush-steppe ecosystems is better understood, we suggest that management to reduce impacts of WNv focus on eliminating man-made water sources that support breeding mosquitoes known to vector the virus. Our findings also underscore problems with using seroprevalence as a surrogate for infection rate and for identifying competent hosts in highly susceptible species.  相似文献   

10.
Usutu virus (USUV), a flavivirus of the Japanese encephalitis virus complex, was for the first time detected outside Africa in the region around Vienna (Austria) in 2001 by Weissenb?ck et al. [Weissenb?ck, H., Kolodziejek, J., Url, A., Lussy, H., Rebel-Bauder, B., Nowotny, N., 2002. Emergence of Usutu virus, an African mosquito-borne flavivirus of the Japanese encephalitis virus group, central Europe. Emerg. Infect. Dis. 8, 652-656]. USUV is an arthropod-borne virus (arbovirus) circulating between arthropod vectors (mainly mosquitoes of the Culex pipiens complex) and avian amplification hosts. Infections of mammalian hosts or humans, as observed for the related West Nile virus (WNV), are rare. However, USUV infection leads to a high mortality in birds, especially blackbirds (Turdus merula), and has similar dynamics with the WNV in North America, which, amongst others, caused mortality in American robins (Turdus migratorius). We hypothesized that the transmission of USUV is determined by an interaction of developing proportion of the avian hosts immune and climatic factors affecting the mosquito population. This mechanism is implemented into the present model that simulates the seasonal cycles of mosquito and bird populations as well as USUV cross-infections. Observed monthly climate data are specified for the temperature-dependent development rates of the mosquitoes as well as the temperature-dependent extrinsic-incubation period. Our model reproduced the observed number of dead birds in Austria between 2001 and 2005, including the peaks in the relevant years. The high number of USUV cases in 2003 seems to be a response to the early beginning of the extraordinary hot summer in that year. The predictions indicate that >70% of the bird population acquired immunity, but also that the percentage would drop rapidly within only a couple of years. We estimated annually averaged basic reproduction numbers between R (0)=0.54 (2004) and 1.35 (2003). Finally, extrapolation from our model suggests that only 0.2% of the blackbirds killed by USUV were detected by the Austrian USUV monitoring program [Chvala, S., Bakonyi, T., Bukovsky, C., Meister, T., Brugger, K., Rubel, F., Nowotny, N., Weissenb?ck, H., 2007. Monitoring of Usutu virus activity and spread by using dead bird surveillance in Austria, 2003-2005. Vet. Microbiol. 122, 237-245]. These results suggest that the model presented is able to quantitatively describe the process of USUV dynamics.  相似文献   

11.
Disease clusters were retrospectively explored at national level using a geo-referenced dataset from the 2001 Uruguayan Foot-and-Mouth Disease (FMD) epidemic. Disease location and time (first 11 epidemic weeks) were analysed across 250 counties (of which 160 were infected), without and with control for human mobility related factors (human population and road densities). The null hypothesis of random disease distribution over space and/or time was assessed with: (i) purely temporal; (ii) purely spatial; and (iii) space/time tests. At least within epidemic weeks 2 and 6, a principal disease cluster was observed in 33 contiguous counties (P < 0.01). Two secondary clusters, located at >100 km from each other, were also observed (P < 0.01). The purely spatial test that controlled for human population density identified two non-contiguous clusters (P < 0.01). Space and time analysis also revealed the same 33 counties as members of the principal cluster, of which 31 were also clustered when human population was controlled (P < 0.01). No clusters were reported by the spatial test when road density was assessed. The hypothesis that human mobility related factors autocorrelate with disease was empirically supported by two pieces of information: (i) removal of human population/road densities eliminated >93.9% of the counties included in the principal disease cluster; and (ii) statistically significant correlations (P < 0.05) were observed in the first three epidemic weeks between road density and the number of cases. Clusters where human population density was associated with 47% greater number of cases/sq. km than that of the principal cluster indicated possible roles as disease vectors (vector clusters). Selective control policy in vector clusters is recommended. Periodic (i.e. weekly) cluster and correlation analyses of both disease and other covariates may facilitate disease surveillance and help design space-specific control policy.  相似文献   

12.
Surveillance for West Nile virus (WNV) and other mosquito‐borne pathogens involves costly and time‐consuming collection and testing of mosquito samples. One difficulty faced by public health personnel is how to interpret mosquito data relative to human risk, thus leading to a failure to fully exploit the information from mosquito testing. The objective of our study was to use the information gained from historic West Nile virus mosquito testing to determine human risk relative to mosquito infection and to assess the usefulness of our mosquito infection forecasting models to give advance warning. We compared weekly mosquito infection rates from 2004 to 2013 to WNV case numbers in Illinois. We then developed a weather‐based forecasting model to estimate the WNV mosquito infection rate one to 3 weeks ahead of mosquito testing both statewide and for nine regions of Illinois. We further evaluated human illness risk relative to both the measured and the model‐estimated infection rates to provide guidelines for public health messages. We determined that across 10 years, over half of human WNV cases occurred following the 29 (of 210) weeks with the highest mosquito infection rates. The values forecasted by the models can identify those time periods, but model results and data availability varied by region with much stronger results obtained from regions with more mosquito data. The differences among the regions may be related to the amount of surveillance or may be due to diverse landscape characteristics across Illinois. We set the stage for better use of all surveillance options available for WNV and described an approach to modelling that can be expanded to other mosquito‐borne illnesses.  相似文献   

13.
It is well understood that Salmonella is carried by animals and in majority of cases as asymptomatic hosts. Surveillance efforts have focused on the role of agriculture and contamination points along the food chain as the main source of human infection; however, very little attention has been paid to the contribution of wildlife in the dissemination of Salmonella and what effect anthropogenic sources have on the circulation of antibiotic resistant Salmonella serovars in wildlife species. A purposive survey was taken of large corvids roosting yearly between November and March in Europe and North America. Two thousand and seven hundred and seventy‐eight corvid faecal specimens from 11 countries were submitted for Salmonella spp. culture testing. Presumptive positive isolates were further serotyped, susceptibility tested and analysed for antibiotic resistance genes. Overall, 1.40% (39/2778) (CI = 1.01, 1.90) of samples were positive for Salmonella spp. Salmonella Enteritidis was the most prevalent serovar followed by S. Infantis, S. Montevideo and S. Typhimurium. No significant difference (P > 0.05) was found in the proportion of Salmonella recovered in Europe versus North America. The most variability of serovars within a site was in Kansas, USA with five different serovars recovered. European sites were significantly more likely to yield Salmonella resistant to more than one antibiotic (OR 71.5, P < 0.001, CI = 3.77, 1358) than North American sites, where no resistance was found. Resistance to nalidixic acid, a quinolone, was recovered in nine isolates from four serovars in four different sites across Europe. Large corvids contribute to the transmission and dissemination of Salmonella and resistance genes between human and animal populations and across great distances. This information adds to the knowledge base of zoonotic pathogen prevalence and antibiotic resistance ecology in wild birds.  相似文献   

14.
15.
We collected available chorological data of birds and mammals in China and assigned faunal types. The 19 sub‐regions of the zoogeographical regions of China were used as operative geographical units. Matrices of the geographical units using the species number of each faunal type were then constructed. Based on the matrices we clustered the geographical units using a hierarchical cluster analysis The results of the faunal divisions according to the cluster analysis were illustrated in a geographic information system (GIS). When 19 geographical units were clustered into two clusters, the boundary of the two clusters corresponded to that of the Palearctic and Indomalayan (Oriental) realms in the recent division of Chinese fauna. When the geographical units were clustered into eight clusters, the sub‐region Southern Yunnan Hilly became an idiographic cluster. As a result, Southern Yunnan hilly should be regarded as a region rather than a sub‐region at the same level as Southwest region, Central China region and South China region. The differences in the distribution patterns of birds and mammals among the units in the Indomalayan (Oriental) realm were more complicated than those in Palearctic realm. A few differences of the cluster analysis results based on the faunal types were found between the bird and mammal species. These differences might result from the different ecological and geographical distribution patterns of these two animal categories.  相似文献   

16.
We studied the prevalence of avian Plasmodium in 509 mosquitoes of 9 species collected from the Ishigaki and Iriomote islands in the Yaeyama Archipelago, located southwest from the mainland of Japan. Two identical avian Plasmodium lineages were detected from Culex (Culiciomyia) nigropunctatus. Detected lineages were phylogenetically classified into different clade to avian Plasmodium lineages from birds and mosquitoes in the mainland of Japan but identical to a lineage detected from a resident bird, White-breasted Waterken (Amaurornis phoenicurus). This is the first detection of avian Plasmodium DNA from mosquitoes in the Yaeyama Archipelago and suggested that resident birds might have been infected with an avian Plasmodium lineage specific to the studied area and C. nigropunctatus could be the candidate vector mosquito species.  相似文献   

17.
Previous studies estimate that one‐third of the annual global burden of rabies (~20,000 cases) occurs in India. Elimination of canine rabies is essential to reduce this burden. Surveillance of animal cases can assess both the risk to humans and the efficacy of control strategies. The objective of this study was to describe the spatial and temporal occurrence of reported confirmed cases of rabies in animals in Punjab, India, from 2004 to 2014. We analysed passive surveillance data on 556 samples submitted from 2004 to 2014 to GADVASU, Ludhiana, Punjab, India. Regression and time series analyses were conducted to understand seasonal and long‐term variation of cases and identify cross‐correlation of monthly cases between species. Spatio‐temporal analyses assessed spatial autocorrelation of date of reporting, mean geographic centres of disease occurrence and clustering of cases using Kulldorff's space‐time permutation statistic. The annual number of submissions and proportion of confirmed cases were consistent throughout 2004–2014. Most submissions (320; 57.6%) were confirmed rabies cases, including dogs (40.6%), buffalo (29.7%) and cattle (23.1%). Regression analysis of monthly cases in dogs showed seasonal variation with significant increases in cases in March and August. Monthly case numbers in buffalo decreased over time. Long‐term temporal trend was not detected in dog and cattle cases. Time‐series models identified significant cross‐correlation between dog and buffalo cases, suggesting that buffalo cases were spillover events from dogs. Significant spatio‐temporal variation or clusters of cases were not detected. These results indicate that rabies cases in animals—and therefore, the potential for exposure to humans—were temporally and spatially stable during 2004–2014 in Punjab, India. The endemic nature of rabies transmission in this region demands a coordinated, sustained control programme. This study provides baseline information for assessing the efficacy of rabies control measures and developing seasonally targeted dog vaccination and rabies awareness strategies.  相似文献   

18.
Brucellosis is one of the most common and widely spread zoonotic diseases in the world. Control of the disease in humans is dependent upon limiting the infection in animals through surveillance and vaccination. Given the dramatic economic and political changes that have taken place in the former Soviet Union, which have limited control, evaluating the status of human brucellosis in former Soviet states is crucial. We assessed annual spatial and temporal trends in the epidemiology of human brucellosis in Azerbaijan, 1983–2009, in conjunction with data from a livestock surveillance and control programme (2002–2009). To analyse trends, we used a combination of segmented regression and spatial analysis. From 1983 to 2009, a total of 11 233 cases of human brucellosis were reported. Up to the mid‐1990s, the incidence of human brucellosis showed a pattern of re‐emergence, increasing by 25% annually, on average. Following Soviet governance, the incidence rates peaked, increasing by 1.8% annually, on average, and subsequently decreasing by 5% annually, on average, during the period 2002–2009. Despite recent national declines in human incidence, we identified geographic changes in the case distribution characterized by a geographic expansion and an increasing incidence among districts clustered in the south‐east, compared to a decrease of elsewhere in the country. Males were consistently, disproportionately afflicted (71%) and incidence was highest in the 15 to 19 age group (18.1 cases/100 000). During the period 2002–2009, >10 million small ruminants were vaccinated with Rev1. Our findings highlight the improving prospects for human brucellosis control following livestock vaccination; however, the disease appears to be re‐emerging in south‐eastern Azerbaijan. Sustained one health measures are needed to address changing patterns of brucellosis in Azerbaijan and elsewhere in the former Soviet Union.  相似文献   

19.
This study aimed to assess which method of wild waterbird surveillance had the greatest probability of detecting highly pathogenic avian influenza (HPAI) H5N1 during a period of surveillance activity, the cost of each method was also considered. Lake Constance is a major wintering centre for migratory waterbirds and in 2006 it was the site of an HPAI H5N1 epidemic in wild birds. Avian influenza surveillance was conducted using harmonised approaches in the three countries around the lake, Austria, Germany and Switzerland, from 2006–2009. The surveillance consisted of testing birds sampled by the following methods: live birds caught in traps, birds killed by hunters, birds caught in fishing nets, dead birds found by the public and catching live Mute Swans (Cygnus olor); sentinel flocks of Mallards (Anas platyrhynchos) were also used. Scenario tree analysis was performed including sensitivity analysis, followed by assessment of cost-effectiveness. Results indicated that if HPAI H5N1 was present at 1% prevalence and assuming HPAI resulted in bird mortality, sampling dead birds found by the public and sentinel surveillance were the most sensitive approaches despite residual uncertainty over some parameters. The uncertainty over the mortality of infected birds was an influential factor. Sampling birds found dead was most cost-effective, but strongly dependent on mortality and awareness of the public. Trapping live birds was least cost-effective. Based on our results, we recommend that future HPAI H5N1 surveillance around Lake Constance should prioritise sentinel surveillance and, if high mortality is expected, the testing of birds found dead.  相似文献   

20.
The accidental introduction of West Nile Virus into New York City from the Old World in 1999 resulted in an epidemic in humans, horses, and birds that swept to the west coast in just 3 years. The virus is transmitted by infective mosquitoes among susceptible native birds, which serve as amplifying hosts. Clinical disease occurs in humans and horses, but not enough virus is produced in their blood to infect other mosquitoes; therefore, humans and horses are considered dead-end hosts. Humans can best protect themselves by remaining indoors during periods of high mosquito activity and/or by using recommended repellents. Effective vaccines are available for horses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号