首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The objective of this research was to examine the population structure of full‐blood (100%) Wagyu cattle registered in the United States with the American Wagyu Association, with the aim of estimating and comparing the levels of inbreeding from both pedigree and genotypic data. A total of 4132 full‐blood Wagyu cattle pedigrees were assessed and used to compute the inbreeding coefficients (FIT and FST) and the effective population size (Ne) from pedigree data for the period 1994 to 2011. In addition to pedigree analysis, 47 full‐blood Wagyu cattle representing eight prominent sire lines in the American Wagyu cattle population were genotyped using the Illumina BovineSNP50 BeadChip. Genotypic data were then used to estimate genomic inbreeding coefficients (FROH) by calculating runs of homozygosity. The mean inbreeding coefficient based on the pedigree data was estimated at 4.80%. The effective population size averaged 17 between the years 1994 and 2011 with an increase of 42.9 in 2000 and a drop of 1.8 in 2011. Examination of the runs of homozygosity revealed that the 47 Wagyu cattle from the eight prominent sire lines had a mean genomic inbreeding coefficient (FROH) estimated at 9.08% compared to a mean inbreeding coefficient based on pedigree data of 4.8%. These data suggest that the mean genotype inbreeding coefficient of full‐blood Wagyu cattle exceeds the inbreeding coefficient identified by pedigree. Inbreeding has increased slowly at a rate of 0.03% per year over the past 17 years. Wagyu breeders should continue to utilize many sires from divergent lines and consider outcrossing to other breeds to enhance genetic diversity and minimize the adverse effects of inbreeding in Wagyu.  相似文献   

2.
A pedigree including 1538 individuals of the endangered pig breed ‘Bunte Bentheimer’ and 3008 records of the fertility traits ‘number of piglets born alive’ (NBA) and ‘number of piglets weaned’ (NW) were used to i) characterize the population structure, ii) to estimate genetic (co)variance components and estimated breeding values (EBVs) and iii) to use EBVs for the application of the concept of optimal genetic contributions. The average coefficient of inbreeding increased from F = 0.103 to = 0.121 within the two recent cohorts. Average rate of inbreeding amounted to 1.66%, which resulted in an effective population size of Ne = 30 animals in the recent cohort. Average generation interval was 3.07 years considering the whole pedigree, and in total, only 612 sows and boars generated offspring. Estimated heritabilities for both traits NBA and NW were 0.12, and the estimated genetic correlation between both traits was 0.96. The variance component due to the service sire was higher than in commercial pig breeds, presumably due to the widespread use of natural service boars. The EBVs for NBA from 333 selection candidates (63 boars and 270 sows) were used to determine optimal genetic contributions. Based on selected animals and their optimal genetic contributions, specific mating designs were evaluated to minimize inbreeding in the next generation. Best results were achieved when using a simulated annealing algorithm and allowing artificial insemination.  相似文献   

3.
The objective of this study was to use pedigree analysis to evaluate the population structure and genetic variability in the Murrah dairy breed of water buffalo (Bubalus bubalis) in Brazil. Pedigree analysis was performed on 5,061 animals born between 1972 and 2002. The effective number of founders (fe) was 60, representing 6.32?% of the potential number of founders. The effective number of ancestors (fa) was 36 and the genetic contribution of the 17 most influent ancestors explained 50?% of the genetic variability in the population. The ratio fe/fa (effective number of founders/effective number of ancestors), which expresses the effect of population bottlenecks, was 1.66. Completeness level for the whole pedigree was 76.8, 49.2, 27.7, and 12.8?% for, respectively, the first, second, third, and fourth known parental generations. The average inbreeding values for the whole analyzed pedigree and for inbreed animals were, respectively, 1.28 and 7.64?%. The average relatedness coefficient between individuals of the population was estimated to be 2.05?%??the highest individual coefficient was 10.31?%. The actual inbreeding and average relatedness coefficient are probably higher than estimated due to low levels of pedigree completeness. Moreover, the inbreeding coefficient increased with the addition of each generation to the pedigree, indicating that incomplete pedigrees tend to underestimate the level of inbreeding. Introduction of new sires with the lowest possible average relatedness coefficient and the use of appropriate mating strategies are recommended to keep inbreeding at acceptable levels and increase the genetic variability in this economically important species, which has relatively low numbers compared to other commercial cattle breeds. The inclusion of additional parameters, such as effective number of founders, effective number of ancestors, and fe/fa ratio, provides better resolution as compared to the inclusion of inbreeding coefficient and may help breeders and farmers adopt better precautionary measures against inbreeding depression and other deleterious genetic effects.  相似文献   

4.
This study aimed to describe the population genetic structure and evaluate the state of conservation of the genetic variability of Santa Inês sheep in Brazil. We used pedigree data of the Santa Inês breed available in electronic processing of the Brazilian Association of Sheep Breeders. A file with 20,206 records, which enabled the calculation of the genetic conservation index (GCI), individual inbreeding coefficient (F), change in inbreeding (ΔF), effective population size (Ne), effective number of founders (?e), effective number of ancestors (?ɑ), generation interval (L), average relatedness coefficient of each individual (AR), and Wright’s F-statistics (F IT, F IS, and F ST). For pedigree analysis and calculation of population parameters, the program ENDOG was used. The average inbreeding coefficient (\( \overline{F} \)) was 0.97% and the mean average relatedness (\( \overline{\mathrm{AR}} \)) 0.49%. The effective numbers of founders and ancestors were, respectively, 199 and 161. The average values of F and AR increased significantly over the years. The effective population size fluctuated over the years concurrently to oscillations in inbreeding rates, wherein N e reached just 68 in the year 2012. The mean average generation interval was 5.3 years. The Santa Inês breed in Brazil is under genetic drift process, with loss of genetic variation. It requires the implementation of a genetic management plan in the herd, for conservation and improvement of the breed.  相似文献   

5.
The Catalonian donkey is one of the most endangered donkey breeds in the world. At present, five main subpopulations exist: AFRAC, which consists of many genetically connected Catalonian localities; Berga, which consists of a single herd located also in Catalunya but under private management; and three minor non‐Catalonian subpopulations (Huesca, Sevilla and Toledo). In this study, we analysed the pedigree information of the Catalonian donkey herdbook to assess the genetic diversity and population structure of the breed. We found that the Catalonian donkey has suffered an important loss of genetic diversity and moderate to high increases of inbreeding because of the abuse of a few individuals in matings. This scenario is mainly characterized by the fact that both the effective number of founders and ancestors for the whole population was 70.6 and 27, respectively, while the equivalent number of founders was 146.5 and the number of ancestors explaining overall genetic variability was 93. In addition, only 14% of animals born between the 1960s and 1970s were significantly represented in the pedigree. Our results also show that subpopulations where breeders exchanged reproductive individuals had low levels of inbreeding and average relatedness. One subpopulation, Berga, was reproductively isolated and showed high levels of inbreeding (F = 7.22%), with average relatedness (AR = 6.61%) playing an important role in increasing the values of these coefficients in the whole pedigree. Using genealogical F‐statistics we have found little evidence of population structuring (FST = 0.0083) with major genetic differences among non‐Catalonian subpopulations.  相似文献   

6.
通过计算畜群内的个体近交系数,可以把握现有畜群的遗传效应,对于畜群的选种选配有着重要的指导意义,能有效地防止近交造成的品种退化等现象。通过Excel函数计算畜群系谱信息中共同祖先出现的次数频率,可简单快速地估算个体间的近交系数,实现近交系数的直观估算,不需要使用者掌握计算机编程知识,可供基层畜牧行业的技术人员参考使用,能快速估算系谱个体的近交情况,使得对群体遗传效应的评估工作极易进行。  相似文献   

7.
Investigation of genetic structure on the basis of pedigree information requires indicators adapted to the specific context of the populations studied. On the basis of pedigree‐based estimates of diversity, we analysed genetic diversity, mating practices and gene flow among eight cat populations raised in France, five of them being single breeds and three consisting of breed groups with varieties that may interbreed. When computed on the basis of coancestry rate, effective population sizes ranged from 127 to 1406, while the contribution of founders from other breeds ranged from 0.7 to 16.4%. In the five breeds, FIS ranged between 0.96 and 1.83%, with this result being related to mating practices such as close inbreeding (on average 5% of individuals being inbred within two generations). Within the three groups of varieties studied, FIT ranged from 1.59 to 3%, while values were estimated between 0.04 and 0.91%, which was linked to various amounts of gene exchanges between subpopulations at the parental level. The results indicate that cat breeds constitute populations submitted to low selection intensity, contrasting with relatively high individual inbreeding level caused by close inbreeding practices.  相似文献   

8.
The study of population structure by pedigree analysis is useful to identify important circumstances that affect the genetic history of populations. The intensive use of a small number of superior individuals may reduce the genetic diversity of populations. This situation is very common for the beef cattle breeds. Therefore, the objectives of the present study were to analyze the pedigree and possible inbreeding depression on traits of economic interest in the Marchigiana and Bonsmara breeds and to test the inclusion of the individual inbreeding coefficient (F(i)) or individual increases in inbreeding coefficient (ΔF(i)) in the genetic evaluation model for the quantification of inbreeding depression. The complete pedigree file of the Marchigiana breed included 29,411 animals born between 1950 and 2003. For the Bonsmara breed, the pedigree file included 18,695 animals born between 1988 and 2006. Only animals with at least 2 equivalent generations of known pedigree were kept in the analyses of inbreeding effect on birth weight, weaning weight measured at about 205 d, and BW at 14 mo in the Marchigiana breed, and on birth weight, weaning weight, and scrotal circumference measured at 12 mo in the Bonsmara breed. The degree of pedigree knowledge was greater for Marchigiana than for Bonsmara animals. The average generation interval was 7.02 and 3.19 for the Marchigiana and Bonsmara breed, respectively. The average inbreeding coefficient was 1.33% for Marchigiana and 0.26% for Bonsmara. The number of ancestors explaining 50% of the gene pool and effective population size computed via individual increase in coancestry were 13 and 97.79 for Marchigiana and 41 and 54.57 for Bonsmara, respectively. These estimates indicate reduction in genetic variability in both breeds. Inbreeding depression was observed for most of the growth traits. The model including ΔF(i) can be considered more adequate to quantify inbreeding depression. The inclusion of F(i) or ΔF(i) in the genetic evaluation model may not result in better fit to the data. A genetic evaluation with simultaneous estimation of inbreeding depression can be performed in Marchigiana and Bonsmara breeds, providing additional information to producers and breeders.  相似文献   

9.
Breeding circles allow genetic management in closed populations without pedigrees. In a breeding circle, breeding is split over sub‐populations. Each sub‐population receives breeding males from a single sub‐population and supplies breeding males to one other sub‐population. Donor‐recipient combinations of sub‐populations remain the same over time. Here, we derive inbreeding levels both mathematically and by computer simulation and compare them to actual inbreeding rates derived from DNA information in a real sheep population. In Veluws Heideschaap, a breeding circle has been in operation for over 30 years. Mathematically, starting with inbreeding levels and kinships set to zero, inbreeding rates per generation (ΔF) initially were 0.29%–0.47% within flocks but later converged to 0.18% in all flocks. When, more realistically, inbreeding levels at the start were high and kinship between flocks low, inbreeding levels immediately dropped to the kinship levels between flocks and rates more gradually converged to 0.18%. In computer simulations with overlapping generations, inbreeding levels and rates followed the same pattern, but converged to a lower ΔF of 0.12%. ΔF was determined in the real population with a 12 K SNP chip in recent generations. ΔF in the real population was 0.29%, based on markers to 0.41% per generation based on heterozygosity levels. This is two to three times the theoretically derived values. These increased rates in the real population are probably due to selection and/or the presence of dominant rams siring a disproportionate number of offspring. When these were simulated, ΔF agreed better: 0.35% for selection, 0.38% for dominant rams and 0.67% for both together. The realized inbreeding rates are a warning that in a real population inbreeding rates in a breeding circle can be higher than theoretically expected due to selection and dominant rams. Without a breeding circle, however, inbreeding rates would have been even higher.  相似文献   

10.
Our aim was to ascertain inbreeding depression in the Spanish Purebred horses for eight body measurements. A total of 16,472 individuals were measured for height at withers, height at chest, leg length, body length, width of chest, heart girth circumference, knee perimeter and cannon bone circumference. Three different multivariate animal models including, respectively, no measure of inbreeding, individual inbreeding coefficients (Fi) or individual increase in inbreeding coefficients (ΔFi) as linear covariates were used. Significant inbreeding depression was assessed. Even though the models including measures of inbreeding fitted better with data, no effect on estimates of genetic parameters was assessed. However, the inclusion of inbreeding measures affected the ranking order according to the Expected Breeding Values (EBV). Due to the better fit with data and nice properties (the adjustment of individual inbreeding coefficients with the pedigree depth and linear behaviour) the use of ΔFi in the evaluation models can be recommended for morphological traits in horses.  相似文献   

11.
The objective of this study was to use pedigree analysis to evaluate the population structure and genetic variability of the Mazandaran native fowls in Iran by quantifying the pedigree completeness index, effective population size, genetic diversity, inbreeding level, and individual increase in inbreeding. The pedigree completeness analysis showed 3.31 full, 10.19 maximum, and 6.30 equivalent generations. The effective number of founders (f e) was 131, representing 5% of the potential number of founders. The effective number of ancestors (f a) was 81, and the genetic contribution of the 37 most influent ancestors explained 50% of the genetic variability in the population. The ratio f e/f a (effective number of founders/effective number of ancestors), which expresses the effect of population bottlenecks, was 1.62. The inbreeding coefficient increased over generations and the average was 1.93%. The average relatedness coefficient between individuals of the population was estimated to be 2.59%. The effective population size, based on the number of full generations, was 56. Family size analysis showed that fewer males than females were used, resulting in the observed levels of inbreeding. Average inbreeding coefficient in the Mazandaran native fowls can be regarded to be below critical levels. However, considering the relationship coefficients of individuals is recommended to aid maintaining genetic diversity of Mazandaran native fowls.  相似文献   

12.
The Japanese Shorthorn is a Japanese Wagyu breed maintained at a small population size. We assessed the degree of inbreeding and genetic diversity among Japanese Shorthorn cattle using pedigree analysis. We analyzed the pedigree records of registered Japanese Shorthorn born between 1980 and 2018, after evaluating the pedigree completeness. The average of the actual inbreeding coefficients increased at the same rates annually from approximately 1.5% in 1980 to 4.2% in 2018 and was higher than the expected inbreeding coefficients over time. The effective population size based on the individual coancestry rate largely decreased from 127.8 in 1980 to 82.6 in 1999, and then remained almost constant at approximately 90. Three effective numbers of ancestors decreased over time until 1995, then remained almost constant. In particular, the effective number of founder genomes (Nge) decreased from 43.8 in 1980 to 11.9 in 2018. The index of genetic diversity based on Nge decreased from 0.99 in 1980 to 0.96 in 2018 due to genetic drift in non-founder generations. Changes in inbreeding and genetic diversity parameters were similar between Japanese Shorthorn and other Japanese Wagyu breeds, but the magnitude of the changes was lower in the Japanese Shorthorn.  相似文献   

13.
The first registers of Somali sheep in Brazil are from the beginning of the 1900s. This breed, adapted to the dry climate and scarce food supply, is restricted in the northeast region of the country. Molecular marker technologies, especially those based on genotyping microsatellite and mtDNA loci, can be used in conjunction with breeding (pedigree analysis) and consequently the maintenance of genetic variation in herds. Animals from the Brazilian Somali Conservation Nuclei from Embrapa Sheep and Goats in Ceará State were used to validate genetic monitoring by traditional pedigree methods and molecular markers. Nineteen microsatellite markers and 404 base pairs from the control region of mtDNA were used. For total herd diversity, an average 5.32 alleles were found, with expected heterozygosity of 0.5896, observed heterozygosity of 0.6451, 0.4126 for molecular coancestrality, and coefficient of inbreeding (F IS) was −0.095. Comparing molecular coancestrality means over the years, there was a consistent increase in this parameter within the herd, increasing from 0.4157 to 0.4769 in 2 years (approx. 12% variation). Sixteen mtDNA haplotypes were identified. Inbreeding and other estimates from genealogical analyses confirm the results from molecular markers. From these results, it is possible to state that microsatellites are useful tools in genetic management of herds, especially when routine herd recording is not carried out, or there were gaps in recent generations. As well as pedigree control, genetic diversity can be optimized. Based on the results, and despite herd recording in the herd of Brazilian Somali of Embrapa Sheep and Goats, additional management measures need to be carried out in this herd to reduce inbreeding and optimize genetic variation.  相似文献   

14.
Multilocus homozygosity, measured as the proportion of the autosomal genome in homozygous genotypes or in runs of homozygosity, was compared with the respective pedigree inbreeding coefficients in 64 Iberian pigs genotyped using the Porcine SNP60 Beadchip. Pigs were sampled from a set of experimental animals with a large inbreeding variation born in a closed strain with a completely recorded multi‐generation genealogy. Individual inbreeding coefficients calculated from pedigree were strongly correlated with the different SNP‐derived metrics of homozygosity (= 0.814–0.919). However, unequal correlations between molecular and pedigree inbreeding were observed at chromosomal level being mainly dependent on the number of SNPs and on the correlation between heterozygosities measured across different loci. A panel of 192 SNPs of intermediate frequencies was selected for genotyping 322 piglets to test inbreeding depression on postweaning growth performance (daily gain and weight at 90 days). The negative effects on these traits of homozygosities calculated from the genotypes of 168 quality‐checked SNPs were similar to those of inbreeding coefficients. The results support that few hundreds of SNPs may be useful for measuring inbreeding and inbreeding depression, when the population structure or the mating system causes a large variance of inbreeding.  相似文献   

15.
Data of the Elsenburg Dormer sheep stud, which was kept closed since inception, were collected over a period of 62 years (1941–2002). The breed is a composite, resulting from a cross of Dorset Horn rams with South African Mutton Merino ewes. These data were analysed to quantify the increase in actual level of inbreeding and to investigate the effect of inbreeding on phenotypic values, genetic parameters and estimated breeding values. After editing 11954 pedigree, 11721 birth weight (BW) and survival, 9205 weaning weight (WW) and 7504 reproduction records were available for analysis. The mean level of inbreeding (F) of all animals over all years was 16%; 14% for dams and 16% for sires. Mean, minimum and maximum F for the lambs in 1997 (when 3 rams from outside were introduced) were 22%, 21% and 24% respectively. Estimates of inbreeding depression for individual inbreeding of 1% were − 0.006 kg for birth and − 0.093 kg for weaning weight respectively. These were the only estimates that were significantly (P < 0.01) different from zero. No significant effects of inbreeding on the other traits were found. There were virtually no differences in the genetic parameters estimated when fitting the two models (inclusion or exclusion of inbreeding coefficients as covariates). Estimates of the phenotypic variance differed slightly for WW between the two models. Ranking of animals were studied for weaning weight when the two models were considered. The high correlation coefficients (0.990) indicate that the use of inbreeding coefficients did not cause important changes in ranking of animals and sires for WW. It was concluded that slow inbreeding (rate of inbreeding of approximately 1.53% per generation over 19 generations) allows natural selection to operate and to remove the less fit animals. At any given mean level of F, less inbreeding depression would then be expected among the individuals who accumulated the inbreeding over a larger number of generations. Nevertheless, inbreeding coefficients should be considered when mating decisions are made, to limit the possible deleterious effects of inbreeding on productive and reproductive traits and to detect animals “resilient to” higher levels of inbreeding.  相似文献   

16.
The preservation of the maximum genetic diversity in a population is one of the main objectives within a breed conservation programme. We applied the maximum variance total (MVT) method to a unique population in order to maximize the total genetic variance. The function maximization was performed by the annealing algorithm. We have selected the parents and the mating scheme at the same time simply maximizing the total genetic variance (a mate selection problem). The scenario was compared with a scenario of full-sib lines, a MVT scenario with a rate of inbreeding restriction, and with a minimum coancestry selection scenario. The MVT method produces sublines in a population attaining a similar scheme as the full-sib sublining that agrees with other authors that the maximum genetic diversity in a population (the lowest overall coancestry) is attained in the long term by subdividing it in as many isolated groups as possible. The application of a restriction on the rate of inbreeding jointly with the MVT method avoids the consequences of inbreeding depression and maintains the effective size at an acceptable minimum. The scenario of minimum coancestry selection gave higher effective size values, but a lower total genetic variance. A maximization of the total genetic variance ensures more genetic variation for extreme traits, which could be useful in case the population needs to adapt to a new environment/production system.  相似文献   

17.
18.
Because native breeds can serve as genetic resources for adapting to environment changes, their conservation is important for future agroecosystems. Using pedigree analysis, we investigated genetic diversity and inbreeding in Japanese Hokkaido native horses, which have adapted to a cold climate and roughage diet. Genetic diversity was measured as the number of founders and the effective number of founders, ancestors and genomes. All metrics imply a decrease in genetic diversity. A comparison of these metrics suggested that pedigree bottlenecks contributed more than did random gene losses to the reduction of genetic diversity. Estimates of marginal contributions of ancestors suggest that the bottlenecks arose mainly because related stallions had been used for breeding. A tendency for an increase in inbreeding coefficients was observed. F‐statistics revealed that a small effective population size majorly contributed to this increase, although non‐random mating in particular regions also contributed. Because the bottlenecks are thought to have reduced the effective population size, our results imply that mitigation of bottlenecks is important for conservation. To this end, breeding should involve genetically diverse stallions. In addition, to prevent non‐random mating observed in particular regions, efforts should be made to plan mating with consideration of kinships.  相似文献   

19.
Maintaining genetic diversity and inbreeding control are important in Japanese Black cattle production, especially in remote areas such as the islands of Okinawa Prefecture. Using a single-nucleotide polymorphism (SNP) array, we evaluated the genetic diversity and genomic inbreeding in Japanese Black cows from the islands of Okinawa Prefecture and compared them to those from other locations across Japan. Linkage disequilibrium decay was slower in cows in the islands of Okinawa Prefecture. The estimated effective population size declined over time in both populations. The genomic inbreeding coefficient (FROH) was estimated using long stretches of consecutive homozygous SNPs (runs of homozygosity; ROH). FROH was higher in the cows on the islands of Okinawa Prefecture than on other locations. In total, 818 ROH fragments, including those containing NCAPG and PLAG1, which are major quantitative trait loci for carcass weight in Japanese Black cattle, were present at significantly higher frequencies in cows in the islands of Okinawa Prefecture. This suggests that the ROH fragments are under strong selection and that cows in the islands of Okinawa Prefecture have low genetic diversity and high genomic inbreeding relative to those at other locations. SNP arrays are useful tools for evaluating genetic diversity and genomic inbreeding in cattle.  相似文献   

20.
Preservation of rare genetic stocks requires continual monitoring of populations to avoid losses of genetic variability. Genetic variability can be described using genealogical and molecular parameters characterizing variation in allelic frequencies over time and providing interesting information on differentiation that occurred after the foundation of a conservation program. Here we analyze the pedigree of the rare Xalda sheep breed (1851 individuals) and the polymorphism of 14 microsatellites in 239 Xalda individuals. Individuals were assigned to a base population (BP) or 4 different cohorts (from C1 to C4) according to their pedigree information. Genetic parameters were computed at a genealogical and molecular level, namely inbreeding (F), observed (Ho) and expected (He) heterozygosity, individual coancestry coefficients (f and fm), average relatedness (AR), mean molecular kinship (Mk), average number of allele per locus (A), effective number of ancestors (fa), effective population size (Ne and Ne(m)) and founder genome equivalents (Ng and Ng(m)). In general, the computed parameters increased with pedigree depth from BP to C4, especially for the genealogical information and molecular coancestry-based parameters (fm, Mk and Ng(m)). However, Ho and He showed the highest values for C1 and the molecular heterozygote deficiency within population (FIS(m)) showed the lowest value for C1, thus indicating that loss of genetic variability occurs very soon after the implementation of conservation strategies. Although no genealogical or molecular parameters are sufficient by themselves for monitoring populations at the beginning of a conservation program, our data suggests that coancestry-based parameters may be better criteria than those of inbreeding or homozygosity because of the rapid and strong correlation established between f and f(m). However, the obtaining of molecular information in well-established conservation programs could not be justified, at least in economic terms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号