首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the influence of vesicular-arbuscular mycorrhizal (VAM) inoculation on growth and nutrient relationships in two alley-cropping trials, one at the top and the other at the base of a hillslope. Each trial involved three woody hedgerow legumes with cassava (Manihot esculenta Crantz) as the sole intercrop. The hedgerow trees at the base of the slope showed greater survival and higher leaf dry weights than those at the top of the slope, although these parameters were not affected by VAM inoculation, either at the top or the base of the slope. In contrast to survival, the uptake of nutrients, particularly P and N, was higher for inoculated than uninoculated hedgerow trees, both at the top and at the base of slope. Increases in stem and leaf biomass and the uptake of nutrients by the trees were strongly correlated with increases in P uptake, indicating that the improvements were attributable to VAM inoculation. Cassava tuber yields at the base of the slope, from inoculated or uninoculated plants, were significantly greater than the corresponding cassava yields at the top of the slope. These increases at the base of the slope compared to the top of the slope were not attributed to available soil nutrients but to greater VAM spore density. Higher available soil moisture may have been another factor. Increasing the VAM spore density of effective mycorrhiza through proper agronomic practices at the top of a slope may bring about comparable yields on different parts of the slope.  相似文献   

2.
Summary Spores of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus clarum obtained from sweet potatoes grown in soil inoculated with this fungus and with an enrichment culture of Acetobacter diazotrophicus contained A. diazotrophicus and several other bacteria, including a diazotrophic Klebsiella sp. Inoculation of micropropagated sweet potatoes with G. clarum and A. diazotrophicus enhanced spore formation in soil compared to VAM inoculation alone. Plants inoculated with VAM spores containing the bacteria showed additional increases in the number of spores formed within roots. A. diazotrophicus infected aerial plant parts only when inoculated together with VAM or when present within VAM spores. Micropropagated sugarcane seedlings inoculated with the same VAM spores containing the diazotrophs also contained much higher numbers of A. diazotrophicus in aerial parts than seedlings inoculated in vitro with the bacteria alone. When grown in non-sterile soil, the sugarcane seedlings again showed the greatest infection of aerial parts after inoculation with VAM spores containing the diazotrophs. This treatment also increased VAM colonization and the numbers of spores formed within roots. Similar effects were observed in sweet sorghum except that the aerial plant parts were not infected by A. diazotrophicus.  相似文献   

3.
Leaf and root (tuber) nutrient uptake patterns of cassava (Manihot esculenta Crantz) alley-cropped with gliricidia (Gliricidia sepium), leucaena (Leucaena leucocephala), and senna [(Senna (syn. Cassia) siamea] as influenced by vesicular-arbuscular mycorrhizal (VAM) inoculation in a degraded Alfisol were investigated in consecutive years. The cassava plants were mulched with fresh prunings of each hedgerow tree species at 2-month intervals in the second and third years of alley cropping. While VAM inoculation significantly influenced the root uptake of nutrients, the leaf uptake was not affected except for the uptake of P. In most cases, there was no difference in the nutrient concentration between inoculated and uninoculated plants, either in the leaf or in the root, indicating that the productivity of cassava was regulated by the amount of nutrients the roots could absorb. In spite of similar total soil N in all inoculated and uninoculated alley-cropped cassava plots and similar exchange-able soil K contents in inoculated and uninoculated alley-cropped cassava plots with leucaena and senna, greater uptake of N, P, and K and greater concentrations of K were observed in roots of inoculated alley-cropped cassava with gliricidia and leucaena than with senna. These results indicated that greater mineralization and availability of nutrients to cassava roots from prunings of nodulating gliricidia and leucaena than from non-nodulating senna may be important, particularly with efficient VAM inoculation, in these alley-cropping systems. Also, for similar nutrients in the inoculated and uninoculated cassava soils alley-cropped with each hedgerow species, VAM inoculation significantly enhanced cassava root dry weights, indicating that an effective VAM fungus can be an agent of greater nutrient uptake in a competitive environment.  相似文献   

4.
Summary Clovers are widely used forage legumes on acidic soils in Texas and need inoculation with appropriate rhizobia when first introduced. Acidic soils are not conducive to survival of clover rhizobia. A survey of pastures was undertaken to determine the number of rhizobia present. The effect of liming acidic soils on the survival of clover rhizobia was also evaluated in the laboratory. The number of clover rhizobia was more than 100 cells g-1 soil in 70% of the pastures surveyed but populations within pastures varied by more than two orders of magnitude. The number of years of clover production beyond 1 year did not affect the rhizobial population density. The soil pH of twelve samples was below 5.0 and six samples had populations of rhizobial lower than 100 g-1 soil. Eleven out of sixteen samples from fields that had grown clover and had pH values above 6.0 had populations exceeding 1000 g-1 soil and only three samples had populations lower than 100 g-1 soil. Incubating indigenous or inoculated rhizobia in well-mixed soils having pH values of 5.1 or below resulted in populations declining to below 10 g-1 soil in 6 weeks. Mixing of soils with pH values of up to 5.4 induced reduction of rhizobial numbers, possibly by destroying microsites. Liming of soils to increase pH values above 5.5 improved survival of native or inoculated rhizobia in most cases.  相似文献   

5.
The effect of dual inoculation on three local cultivars (Miss Kelly, Portland Red, Round Red) of red kidney beans (Phaseolus vulgaris, L.) with four strains of Rhizobium leguminosarum bv. phaseoli and three species of vesicular-arbuscular mycorrhizal (VAM) fungi was examined in a clay loam soil. Rhizobial strains B 17 and B 36, each paired with Glomus pallidum or G. aggregatum, were the most effective pairings for cv. Miss Kelly. Inoculation of Miss Kelly with any of these pairings significantly (P=0.05) increased growth, number of nodules, nodule dry weight, mycorrhizal colonization, and shoot N and P content than other pairings. The growth response by cv. Portland Red was significantly improved by pairings of B 36 or B 17 with any of the three VAM fungi. For both cultivars (Miss Kelly and Portland Red), CIAT 652 or T 2 paired with VAM fungi did not give a positive growth response. In contrast, for cv Round Red the T 2 rhizobial strain in combination with any of the three VAM fungi showed a significant (P=0.05) growth improvement in all parameters. Our results suggest that while dual inoculation of VAM fungi and rhizobia significantly improves the growth response by red kidney beans, the best pairings of VAM fungus and rhizobia for each cultivar need to be carefully selected.  相似文献   

6.
Summary We selected two isolates of Rhizobium for cowpea (Vigna unguiculata) with sterilized soil tests and two different isolates by non-sterilized soil testing. The four rhizobia were then paired individually with either Glomus pallidum, Glomus aggregatum, or Sclerocystis microcarpa in separate, sterilized, or non-sterilized soil experiments. The purpose of the experiments was to determine the effect of soil sterilization on the selection of effective cowpea rhizobia, and to see whether these rhizobia differed in their effects on cowpea growth when paired with various vesicular-arbuscular mycorrhizal (VAM) fungi. Our experiments showed that the rhizobia selected in sterilized soil tests produced few growth responses in the cowpea compared to the other introduced rhizobia, irrespective of pairing with VAM fungi in sterilized or non-sterilized soil. In contrast, the two rhizobia initially selected by non-sterilized soil testing significantly improved cowpea growth in non-sterilized soil, especially when paired with G. pallidum. Our results suggest that it is important to select for effective rhizobia in non-sterilized soil, and that pairing these rhizobia with specific, coselected VAM fungi can significantly improve the legume growth response.  相似文献   

7.
Summary In a greenhouse study we examined the effects of vesicular-arbuscular mycorrhizae (VAM) inoculation, using Glomus macrocarpum and of Zn application on dry matter production and Zn uptake by greengram in two mollisols. The VAM inoculation significantly increased the dry weight of different plant parts and the Zn uptake in both soils. Inoculated plants showed a greater response to the application of Zn at 2.5 and 5.0 mg kg-1 soil in a Zn deficient clay loam soil. The inoculated plants also absorbed — more water than the uninoculated plants. Mass flow and diffusion were the principal processes by which Zn reached the plant roots; mass flow was particularly important in the absence of VAM in a sandy soil fertilized with higher Zn doses (5 and 10 mg kg-1 soil). The greater supply of Zn to inoculated roots was attributed to an apparent diffusion process rather than to mass flow of Zn.  相似文献   

8.
Summary The effect of inoculation with a selected isolate of Glomus etunicatum Becker and Gerdemann and one of G. intraradices Schenck and Smith on the growth and nutrient content of Macroptilium atropurpureum Urb. cv. Siratro and Aeschynomene americana L., at applied P levels of 10, 30, 60, and 120 kg ha-1, was studied under field conditions. At all P levels and for all harvests, the shoot dry mass of Siratro and A. americana were greater for the plants inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungi than the control plants. Differences between the VAM fungus-inoculated and the control plants were most marked between 30 and 90 kg ha-1 of applied P and diminished at 120 kg ha-1. At the first harvest of Siratro, the plants inoculated with G. etunicatum had a greater shoot dry mass than those inoculated with G. intraradices, for all levels of applied P. However, for subsequent harvest of Siratro and for the one harvest of A. americana the response of shoot dry mass to the two VAM fungi was equivocal. Fungal inoculation gave at least a 30% saving in the amount of P fertilizer required (40 kg ha-1) for the maximum yield. The plants inoculated with VAM fungi had a greater tissue concentration and total content of P and N than the control plants at low and intermediate levels of applied P. The percentage of root colonized by VAM fungi for the inoculated plants of the two legumes increased linearly with P additions up to 60 kg ha-1. The conclusion is that under amended (limed and fertilized) soil conditions, inoculation with selected VAM fungi can improve the establishement and growth of forage legumes in fields that contain ineffective populations of native VAM fungi.  相似文献   

9.
Summary We examined the influence of a vesicular-arbuscular (VAM) fungus (Glomus pallidum Hall) on the competitive ability of introduced and native Bradyrhizobium strains to nodulate cowpeas [Vigna unguiculata (L) Walp]. Our experiments in non-sterilized soil revealed that in the presence of VAM fungus, introduced Bradyrhizobium spp. strains become more competitive than native rhizobia. For example, strain JRC29 occupied 59.2% of the total nodules when inoculated alone, but this figure increased to 71.2% when JRC29 was used in dual inoculations with VAM fungus. A similar pattern of enhanced competitiveness for nodule formation was observed with the two other strains in the presence of the VAM fungus. Our results suggest that the competitiveness of rhizobia can be enhanced by co-inoculating with a selected strain of a VAM fungus.  相似文献   

10.
Summary This study examined the response of rice (Oryza sativa L.) plants at the pretransplant/nursery stage to inoculation with vesicular-arbuscular mycorrhizal (VAM) fungi and fluorescent Pseudomonas spp., singly or in combination. The VAM fungi and fluorescent Pseudomonas spp. were isolated from the rhizosphere of rice plants. In the plants grown in soil inoculated with fluorescent Pseudomonas spp. alone, I found increases in shoot growth, and in root length and fine roots, and decreases in root growth, and P and N concentrations. In contrast, in the plants colonized by VAM fungi alone, the results were the reverse of those of the pseudomonad treatment. Dual inoculation of soil with VAM fungi and fluorescent Pseudomonas spp. yielded plants with the highest biomass and nutrient acquisition. In contrast, the plants of the control treatment had the lowest biomass and nutrient levels. The dual-inoculated plants had intermediate root and specific root lengths. The precentages of mycorrhizal colonization and colonized root lengths were significantly lower in the dual-inoculated treatment than the VAM fungal treatment. Inoculation of plants with fluorescent Pseudomonas spp. suppressed VAM fungal colonization and apparently reduced photosynthate loss to the mycorrhizal associates, which led to greater biomass and nutrient levels in dual-inoculated plants compared with plants inoculated with VAM fungi alone. Dual inoculation of seedlings with fluorescent Pseudomonas spp. and VAM fungi may be preferable to inoculation with VAM alone and may contribute to the successful establishment of these plants in the field.  相似文献   

11.
Summary In a growth chamber study we examined the influence of a plant growth-promoting rhizobacterium, Pseudomonas putida R-20, and an acid-tolerant vesicular-arbuscular mycorrhizal (VAM) fungus, Glomus intraradices 25, on Medicago sativa L. and Lotus corniculatus L. growth and nodule development. Seedlings were planted in an acidic (pH 5.5), P-deficient soil containing re-established native microflora (minus VAM) and appropriate rhizobia, and inoculated with the rhizobacterium, the VAM fungus, or both. The plants were assayed at three intervals for up to 10–11 weeks. The growth-promoting rhizobacteria alone increased alfalfa shoot mass by 23% compared to all other treatments, but only at 8 weeks of growth, apparently by promoting nodulation and N2 fixation (acetylene reduction activity). The presence of VAM, either alone or in combination with the rhizobacteria, generally decreased root length but only at 8 weeks also. As a group, the inoculation treatments increased all nodular measurements by 10 weeks of growth. Few treatment effects were found at 7 and 9 weeks for birdsfoot trefoil; neither plant nor nodular measurements differed among treatments. By 11 weeks, shoot mass was increased by the rhizobacteria alone by 36% compared to the control. As a group, the inoculation treatments all showed increased nodular responses by this time. The rhizobacteria stimulated mycorrhizal development on both plant species, but only at the initial samplings. No synergistic effects between the plant growth-promoting rhizobacterium and VAM inoculation were found. Although these results lend credence to the concept of managing microorganisms in the rhizosphere to improve plant growth, they emphasize the necessity for a more thorough understanding of microbial interactions as plants mature.  相似文献   

12.
Summary Strains of Bradyrhizobium influenced root colonization by a species of vesicular-arbuscular mycorrhizae (VAM), and species of VAM influenced root nodulation by strains of Bradyrhizobium in pot experiments. In a field experiment, the effects of VAM on competition amongst inoculated bradyrhizobia were less evident, but inoculation with Bradyrhizobium strains increased root colonization by VAM. Certain VAM/Bradyrhizobium inoculum strain combinations produced higher nodule numbers. Plants grown without Bradyrhizobium and VAM, but supplied with ammonium nitrate (300 g ml–1) and potassium phosphate (16 g ml–1), produced higher dry-matter yields than those inoculated with both symbionts in the pot experiment. Inoculation with either symbiont in the field did not result in higher pod and haulm yields at harvest.ICRISAT Journal Article No. 886  相似文献   

13.
Abstract

The response of peanut (Arachis hypogaea L.) to inoculation with vesicular-arbuscular mycorrhizal (VAM) fungi (Glomus etunicatum) and Bradyrhizobiurn sp. was studied in pots by the acetylene reduction activity (ARA) and ‘A-value’ methods. The soil used was a Light-coloured Andosol and the treatments consisted of the inoculation of VAM fungi only, inoculation of Bradyrhizobium only, dual inoculation of VAM fungi and Bradyrhizobium and control, under non-sterilized and sterilized soil conditions.

In the non-sterilized soil the ARA and nitrogen fixation determined by the ‘A-value’ method increased significantly only by dual inoculation of VAM fungi and Bradyrhizobium at 100 days after planting (DAP), but no significant difference was observed at 70 DAP. In the case of dual inoculation, 75% of the nitrogen of the plant was derived from fixation whereas the plants inoculated only with Bradyrhizobium derived 68% of their nitrogen from fixation and the control plants, 64%. Amount of P in plant increased significantly only by dual inoculation with VAM fungi and Bradyrhizobium.

In the sterilized soil a highly significant increase in the ARA was observed of the dual inoculation at all the sampling times. Nitrogen fixation determined by the A-value technique and N and P contents in plant also increased significantly by dual inoculation. Results obtained by the A-value method showed that plants with dual inoculation derived 68% of their nitrogen from fixation while the plants inoculated only with Bradyrhizobium, 38%.

From our this study we conclude that nitrogen fixation as well as N and P contents in peanut increased significantly only by dual inoculation with VAM fungi and Bradyrhizobium.  相似文献   

14.
Summary This paper presents soil biological data from a study on the functioning of three soil-plant systems on a Gray Luvisol in Cryoboreal Subhumid central Alberta. The systems were (1) an agroecological 8-year rotation, (2) a continuous grain system, both established in 1981, and (3) a classical Breton 5-year rotation established in 1930. The objectives were to (1) determine whether changes in vesicular-arbuscular mycorrhizae (VAM) populations occurred in soil under these cropping systems, (2) discover whether these cropping systems and/or VAM infection influenced the incidence of common root rot (Bipolaris sorokiniana), and (3) use nutrient translocation indices to test the hypothesis that soil quality influences non-specific physiological conditions in barley (Hordeum vulgare L.). VAM fungal propagules in soil samples and VAM infection under controlled conditions were significantly affected by the cropping system. VAM infection accounted for more than 85% of the variability in grain yield, plant biomass yield, and plant uptake of K, S, Ca, Fe, and Zn under controlled conditions. Backward-elimination regression analyses showed that under these conditions of high available P, plant P uptake was governed by the quantity of extractable P in the soil (r 2=0.82); the VAM infection contributed practically nothing when combined with available P (R 2=0.84). Neither VAM infection nor the cropping system were related to the B. sorokiniana infection in the barley. The growth of B. sorokiniana was equal, and its sporulation superior, when grown on residues of the non-host fababean (Vicia faba L.), compared with growth on residues of barley. Higher translocation of plant nutrients to the grain in the agroecological compared with the continuous grain treatments suggested that VAM and/or the soil history affected plant physiology, possible through hormonal effects. Superior barley yields in the agroecological compared with the continuous grain treatments were partly due to increased VAM colonization, greater nutrient accumulation and translocation to the grain, but not to a reduced disease incidence. These results demonstrate the benefits of a holistic systems approach while studying biological interactions involving plants and groups of soil microorganisms.(ICRISAT journal article number 1161)  相似文献   

15.
Summary Field experiments were carried out to determine the effects of single and mixed inoculations with Rhizobium and vesicular-arbuscular mycorrhiza (VAM) on nodulation, symbiotic N2 fixation and yield of soybeans in six Taiwan subtropical-tropical sites. Inoculation with Rhizobium alone significantly increased nodulation, nodule weight and nitrogenase activity of nodules in three out of six experimental fields, and affected soybean yields in the range –13% to + 134%. Inoculation with VAM fungi alone did not have a significant effect on nodulation and nitrogenase activity. Mycorrhiza inoculation affected soybean yields in the range –13% to + 65%, but only the yield increases at one out of six sites with N application were statistically significant. Mixed inoculation with Rhizobium and mycorrhiza affected yields in the range –8% to + 145% A synergistic effect from mixed inoculation of Rhizobium-mycorrhiza on soybean yields was found in one out of six experimental fields. The yield response to N application (40 kg N ha–1) in these six paddy-field trials was not significant. These results suggest that single or mixed inoculation of rhizobia can greatly assist soybean grain yields and can replace N fertilizers.  相似文献   

16.
Summary A field study carried out in a sandy, relatively acid Senegalese soil with a low soluble P content (7 ppm) and low vesicular-arbuscular mycorrhizal (VAM) populations showed that soybean responded toGlomus mosseae inoculation when the soluble P level in the soil had been raised by the addition of 22 kg P ha–1. In P-fertilized plots, N2 fixation of soybean, assessed by the A value method, was 109 kg N2 fixed hat when plants were inoculated withRhizobium alone and it reached 139 kg N2 fixed ha–1 when plants were dually inoculated withRhizobium andGlomus mosseae using an alginate bead inoculum. In addition to this N2 fixation increase (+28%),Glomus mosseae inoculation significantly improved grain yield (+13%) and total N content of grains (+16%). This success was attributed mainly to the low infection potential of the native VAM populations in the experimental site. In treatments without solubleP or with rock phosphate, no effect of VAM inoculation was observed.  相似文献   

17.
Summary Five selected vesicular-arbuscular mycorrhizal (VAM) fungi and the native population of a cambisol were tested in sterilized soil conditions, with Trifolium pratense as host plant. Indigenous fungi were the most effective in enhancing plant growth and P uptake, which were correlated with a higher root colonization. Selected fungi did not spread further in the root after 4 months from sowing, occupying less than 10% at the end of the experiment; inoculation with Glomus fasciculatum E3 yielded a higher dry-matter production than any other VAM species, but did not significantly increase shoot P concentration above that of the non-mycorrhizal control. Interactions between indigenous and introduced VAM fungi were studied in unsterilized soil. Results from fresh and dry weights of shoots and the percentage of fungal infection showed that the native endophytes competed more efficiently in colonizing the root. Inoculation with selected VAM species did not improve plant growth. Sterilization altered the inorganic P fractions of the soil, particularly those extracted with NH4F and NaOH. Sterilized soil contained less inorganic P than unsterilized soil, but more soluble P. By the end of the experiment in sterilized soil, P extracted with NH4Cl, NH4F and NaOH and total inorganic P were significantly different among inoculation treatments, suggesting that VAM fungi may differ in their ability to take up P.  相似文献   

18.
Summary Previous laboratory and greenhouse studies have shown that phages significantly reduce soil populations of homologous rhizobia. Reductions in nodulation and N2 fixation have also been observed. The purpose of the current study was to examine the effect of a phage specific ofBradyrhizobium japonicum USDA 117 on nodulation, nodule occupancy, N2 fixation and soybean growth and yield under field conditions. The phage was inoculated in combination withB. japonicum USDA 117 and/orB. japonicum USDA 110 (resistant strain) into a rhizobia-free sandy loam soil and planted toGlycine max (L.) Merr. Williams. When the phage was applied to soil inoculated withB. japonicum USDA 117 alone, significant reductions in nodule weight and number, shoot weight, foliar N, nitrogenase activity, and seed index were observed. When, however, the soil also contained the non-homologous strain,B. japonicum USDA 110, no significant effects on any of these parameters were found. Nodule occupancy by competing strains ofB. japonicum USDA 110 and USDA 117 was also affected by the phage. In soil which did not contain the phage, 46% and 44% of the identified nodules were occupied by USDA 110 and 117, respectively. When the phage was present in the soil, nodule occupancy byB. japonicum USDA 117 was reduced to 23%, while occupancy byB. japonicum USDA 110 was increased to 71%. These results suggest that nodulation by selected strains of rhizobia can be restricted and nodulation by more effective, inoculated strains can be increased through the introduction of a homologous phage to soils.  相似文献   

19.
Summary Sweet potatoes were micropropagated and then transplanted from axnic conditions to fumigated soil in pots in the greenhouse. Spores of Glomus clarum were obtained from Brachiaria decumbens or from sweet potatoes grown in soil infected with this fungus and with an enrichment culture of Acetobacter diazotrophicus. Three experiments were carried out to measure the beneficial effects of vesicular-arbuscular mycorrhizal (VAM) fungi-diazotroph interactions on growth, nutrition, and infection of sweet potato by A. diazotrophicus and other diazotrophs obtained from sweet potato roots. In two of these experiments the soils had been mixed with 15N-containing organic matter. The greatest effects of mycorrhizal inoculation were observed with co-inoculation of A. diazotrophicus and/or mixed cultures of diazotrophs containing A. diazotrophicus and Klebsiella sp. The tuber production was dependent on mycorrhization, and total N and P accumulation were increased when diazotrophs and G. clarum were applied together with VAM fungal spores. A. diazotrophicus infected aerial plant parts only when inoculated together with VAM fungi or when present within G. clarum spores. More pronounced effects on root colonization and intraradical sporulation of G. clarum were observed when A. diazotrophicus was co-inoculated. In non-fumigated soil, dual inoculation effects, however, were of lower magnitude. 15N analysis of the aerial parts and roots and tubers at the early growth stage (70 days) showed no statistical differences between treatments except for the VAM+Klebsiella sp. treatment. This indicates that the effects of A. diazotrophicus and other diazotrophs on sweet potato growth were caused by enhanced mycorrhization and, consequently, a more efficient assimilation of nutrients from the soil than by N2 fixation. The possible interactions between these effects are discussed.  相似文献   

20.
Summary Plants of Hedysarum coronarium L. and Medicago sativa L., inoculated with Glomus caledonium, were grown for 6 weeks in soils with increasing amounts of available phosphorus (P). H. coronarium showed no or very low levels of infection even at very low soil P content (4 ppm), while in M. sativa the highest soil P level (20 ppm) was associated with the lowest percentage of infection. Medicago sativa and H. coronarium grown for 16 weeks in a sandy soil showed clear effects of Glomus inoculation on shoot growth and P uptake. In M. sativa inoculation increased shoot growth and P uptake in all treatments considerably, while the P concentration in the shoot was depressed by G. caledonium. In H. coronarium inoculation with G. mosseae and G. occultum had only a modest impact on shoot growth; G. caledonium even depressed shoot growth significantly. Glomus inoculation had a positive impact on the P concentrations in the shoots of H. coronarium. The growth-depressing effect of G. caledonium on H. coronarium is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号