首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Edible films, as carriers of antimicrobial compounds, constitute an approach for incorporating plant essential oils (EOs) onto fresh-cut fruit surfaces. The effect against Escherichia coli O157:H7 of oregano, cinnamon, and lemongrass oils in apple puree film-forming solution (APFFS) and in an edible film made from the apple puree solution (APEF) was investigated along with the mechanical and physical properties of the films. Bactericidal activities of APFFS, expressed as BA50 values (BA50 values are defined as the percentage of antimicrobial that killed 50% of the bacteria under the test conditions) ranged from 0.019% for oregano oil to 0.094% for cinnamon oil. Oregano oil in the apple puree and in the film was highly effective against E. coli O157:H7. The data show that (a) the order of antimicrobial activities was oregano oil > lemongrass oil > cinnamon oil and (b) addition of the essential oils into film-forming solution decreased water vapor permeability and increased oxygen permeability, but did not significantly alter the tensile properties of the films. These results show that plant-derived essential oils can be used to prepare apple-based antimicrobial edible films for various food applications.  相似文献   

2.
The antimicrobial activities against Escherichia coli O157:H7 as well as the stability of carvacrol, the main constituent of oregano oil, were evaluated during the preparation and storage of apple-based edible films made by two different casting methods, continuous casting and batch casting. Antimicrobial assays of films and high-performance liquid chromatography (HPLC) analysis of film extracts following storage up to 49 days at 5 and 25 degrees C revealed that (a) optimum antimicrobial effects were apparent with carvacrol levels of approximately 1.0% added to the purees prior to film preparation, (b) carvacrol in the films and film weights remained unchanged over the storage period of up to 7 weeks, and (c) casting methods affected carvacrol concentration, bactericidal activity, physicochemical properties, and colors of the apple films. Carvacrol addition to the purees used to prepare the films reduced water vapor and oxygen permeability of apple films. The results indicate that carvacrol has a dual benefit. It can be used to both impart antimicrobial activities and enhance barrier properties of edible films. The cited observations facilitate relating compositional and physicochemical properties of apple puree films containing volatile plant antimicrobials to their use in foods.  相似文献   

3.
Several properties of chitosan films associated or not with hydroxypropylmethylcellulose polymer (HPMC) and HPMC films incorporating or not nisin and/or milk fat were studied. Nisin addition at a level of 250 microg mL-1 and likewise chitosan at 1% (w/v) concentration were efficient for total inhibiting Aspergillus niger and Kocuria rhizophila food deterioration microorganisms. HPMC and chitosan films were transparent, whereas nisin and/or fat incorporation induced a 2-fold lightness parameter increase and, consequently, involved more white films. Measurements of tensile strength, as well as ultimate elongation, showed that chitosan and HPMC initial films were elastic and flexible. High thermal treatments and additive incorporation induced less elastic and more plastic films. Water vapor transmission as far as total water desorption rates suggested that chitosan films were slightly sensitive to water. Water transfer was decreased by <60% as compared with other biopolymer films. Regarding its hydrophobic property, the capacity of fat to improve film water barrier was very limited.  相似文献   

4.
Four different types of chitosan-based nanocomposite films were prepared using a solvent-casting method by incorporation with four types of nanoparticles, that is, an unmodified montmorillonite (Na-MMT), an organically modified montmorillonite (Cloisite 30B), a Nano-silver, and a Ag-zeolite (Ag-Ion). X-ray diffraction patterns of the nanocomposite films indicated that a certain degree of intercalation was formed in the nanocomposite films, with the highest intercalation in the Na-MMT-incorporated films followed by films with Cloisite 30B and Ag-Ion. Scanning electron micrographs showed that in all of the nanocomposite films, except the Nano-silver-incorporated one, nanoparticles were dispersed homogeneously throughout the chitosan polymer matrix. Consequently, mechanical and barrier properties of chitosan films were affected through intercalation of nanoparticles, that is, tensile strength increased by 7-16%, whereas water vapor permeability decreased by 25-30% depending on the nanoparticle material tested. In addition, chitosan-based nanocomposite films, especially silver-containing ones, showed a promising range of antimicrobial activity.  相似文献   

5.
The synergistic antimicrobial activities of three natural essential oils (i.e., clove bud oil, cinnamon oil, and star anise oil) with chitosan films were investigated. Cinnamon oil had the best antimicrobial activity among three oils against Escherichia coli , Staphylococcus aureus , Aspergillus oryzae , and Penicillium digitatum . The chitosan solution exhibited good inhibitory effects on the above bacteria except the fungi, whereas chitosan film had no remarkable antimicrobial activity. The cinnamon oil-chitosan film exhibited a synergetic effect by enhancing the antimicrobial activities of the oil, which might be related to the constant release of the oil. The cinnamon oil-chitosan film had also better antimicrobial activity than the clove bud oil-chitosan film. The results also showed that the compatibility of cinnamon oil with chitosan in film formation was better than that of the clove bud oil with chitosan. However, the incorporated oils modified the mechanical strengths, water vapor transmission rate, moisture content, and solubility of the chitosan film. Furthermore, chemical reaction took place between cinnamon oil and chitosan, whereas phase separation occurred between clove bud oil and chitosan.  相似文献   

6.
7.
Calcium caseinate (CC) and whey protein isolate (WPI) films were prepared to contain 5 or 10% Gluconal Cal (GC), a mixture of calcium lactate and gluconate, or 0.1 or 0.2% alpha-tocopheryl acetate (VE), respectively. The pH and viscosity of film-forming solutions and the water vapor permeability and tensile property of the films were determined using standard procedures. CC and WPI films have the capabilities to carry high concentration of GC or VE, but some of the film functionality might be compromised. Adding VE to CC and WPI films increased film elongation at break, whereas incorporating 0.2% VE decreased WVP of CC films and tensile strength of both CC and WPI films. Incorporation of GC reduced the tensile strength of CC films (P < 0.05), with 10% GC decreasing both elongation at break and WVP (P < 0.05). These types of films may be used for wrapping or coating to enhance the nutritional value of foods. The concentration of GC and VE added to the films must be carefully selected to meet required water barrier and mechanical properties of the films depending on their specific applications.  相似文献   

8.
9.
Major active compounds from essential oils are well-known to possess antimicrobial activity against both pathogen and spoilage microorganisms. The aim of this work was to determine the alteration of the membrane fatty acid profile as an adaptive mechanism of the cells in the presence of a sublethal concentration of antimicrobial compound in response to a stress condition. Methanolic solutions of thymol, carvacrol, limonene, cinnamaldehyde, and eugenol were added into growth media of Escherichia coli O157:H7, Salmonella enterica serovar typhimurium, Pseudomonas fluorescens, Brochothrix thermosphacta, and Staphylococcus aureus strains. Fatty acid extraction and gas chromatographic analysis were performed to assess changes in membrane fatty acid composition. Substantial changes were observed on the long chain unsaturated fatty acids when the E. coli and Salmonella strains grew in the presence of limonene and cinnamaldehyde and carvacrol and eugenol, respectively. All compounds influenced the fatty acid profile of B. thermosphacta, while Pseudomonas and S. aureus strains did not show substantial changes in their fatty acid compositions.  相似文献   

10.
Edible films made of agar (AG), cassava starch (CAS), normal rice starch (NRS), and waxy (glutinous) rice starch (WRS) were elaborated and tested for a potential use as edible packaging or coating. Their water vapor permeabilities (WVP) were comparable with those of most of the polysaccharide-based films and with some protein-based films. Depending on the environmental moisture pressure, the WVP of the films varies and remains constant when the relative humidity (RH) is >84%. Equilibrium sorption isotherms of these films have been measured; the Guggenheim-Anderson-de Boer (GAB) model was used to describe the sorption isotherm and contributed to a better knowledge of hydration properties. Surface hydrophobicity and wettability of these films were also investigated using the sessile drop contact angle method. The results obtained suggested the migration of the lipid fraction toward evaporation surface during film drying. Among these polysaccharide-based films, AG-based film and CAS-based film displayed more interesting mechanical properties: they are transparent, clear, homogeneous, flexible, and easily handled. NRS- and WRS-based films were relatively brittle and have a low tension resistance. Microstructure of film cross section was observed by environmental scanning electron microscopy to better understand the effect of the structure on the functional properties. The results suggest that AG-based film and CAS-based films, which show better functional properties, are promising systems to be used as food packaging or coating instead of NRS- and WRS-based films.  相似文献   

11.
A supercritical fluid extraction (SFE) method for the extraction of enrofloxacin from a chicken breast muscle was examined. A liquid chromatograph, equipped with a fluorescence detector, was used for the detection of enrofloxacin. Optimal extraction parameters, such as extraction time, supercritical fluid volume, modifier concentration, pressure, and temperature, were determined by examining SFE recoveries from control muscle samples spiked with enrofloxacin at different levels. In all of the experiments, high recovery values were observed, ranging from 101 to 104%. The extraction of enrofloxacin from real muscle samples was examined in chickens that were treated orally with enrofloxacin. Extraction was carried out by the SFE method after each oral treatment and under optimal extraction conditions at set intervals over time. The SFE, combined with liquid chromatographic analysis, showed that the concentration of enrofloxacin in the chicken muscles decreased continuously with time, giving a negligible concentration 72 h after the treatment. These results suggest that SFE is a useful approach for the extraction of enrofloxacin from chicken breast muscles.  相似文献   

12.
The mechanical properties of cross-linked edible films based on calcium caseinate and two type of whey proteins (commercial and isolate) were investigated. Cross-linking of the proteins was carried out using thermal and radiative treatments. Size-exclusion chromatography performed on the cross-linked proteins showed that gamma-irradiation increased the molecular weight of calcium caseinate, while it changed little for the whey proteins. However, heating of the whey protein solution induced cross-linking. For both cross-linked proteins, the molecular weight distribution was >/=2 x 10(3) kDa. Combined thermal and radiative treatments were applied to protein formulations with various ratios of calcium caseinate and whey proteins. Whey protein isolate could replace up to 50% of calcium caseinate without decreasing the puncture strength of the films. Films based on commercial whey protein and calcium caseinate were weaker than those containing whey protein isolate. Electron microscopy showed that the mechanical characteristics of these films are closely related to their microstructures.  相似文献   

13.
This study investigates the effect of different types of surfactant (glycerol monostearate, Tween 60, and Tween 80) on water vapor permeability (WVP), tensile strength (TS), percentage elongation at breaking (E), and structure of an emulsified edible film composed of cornstarch, methylcellulose, and cocoa butter or soybean oil. Factorial designs at two levels were used to analyze the effect of emulsifier (EM) and lipid content on the functional properties of film. Results showed that the effects of independent variables on WVP, TS, and E depend on surfactant and lipid type. The presence of EM significantly decreased the WVP of cocoa butter films but did not improve the barrier or mechanical properties of soybean oil-based film.  相似文献   

14.
The present study investigates the composition of volatile constituents and sensory characteristics of catnip (Nepeta cataria L.) grown in Lithuania. Hydrodistillation, simultaneous distillation-solvent extraction, static headspace, and solid phase microextraction methods were used for the isolation of aroma volatiles. Geranyl acetate, citronellyl acetate, citronellol, and geraniol were the major constituents in catnip. Differences in the quantitative compositions of volatile compounds isolated by the different techniques were considerable. A sensory panel performed sensory analysis of the ground herb, pure essential oil, and extract; aroma profiles of the products were expressed graphically, and some effects of odor qualities of individual compounds present in catnip on the overall aroma of this herb were observed.  相似文献   

15.
Plasticized whey-protein and whey-protein emulsion films were produced using sorbitol and glycerol as plasticizers and butterfat and candelilla wax as lipids. Protein, plasticizer, and lipid ratios were optimized to obtain acceptable free-standing flexible films. Water solubility (20 degrees C, 24 h) and moisture sorption isotherms (0.18-0.90 a(w), 25 degrees C) of the films were determined. The experimental moisture sorption isotherm values were fitted using the Guggenheim-Anderson-DeBoer (GAB) model. Solubility and equilibrium moisture contents (EMC) of the films were influenced by plasticizer and lipid incorporation. EMCs of all films increased rapidly at a(w) > or = 0.65. Incorporation of lipids reduced solubilities and EMCs of sorbitol- and glycerol-plasticized films. The effects of plasticizer and lipid type on GAB constants were also determined.  相似文献   

16.
Tomato pomace, delignified by the edible oyster mushroom, Pleurotus ostreatus, could be used as a poultry feed ingredient to provide alpha-tocopherol for retardation of lipid oxidation in postmortem meat if the antioxidant were retained in pomace after fungal fermentation. Experiments were conducted to investigate changes in the content of alpha-tocopherol, lycopene, and beta-carotene in tomato pomace after sterilization and treatment with P. ostreatus from 0 to 104 days. alpha-Tocopherol (39.26 to 31.15 microg/g) and lycopene (17.42 to 11.19 microg/g) significantly decreased during sterilization while beta-carotene (42.56 to 35.44 microg/g) did not. The content of carotenoids decreased by day 26 as compared to 0 day for the control and for treated samples. alpha-Tocopherol decreased during fungal fermentation at day 26 as compared to 0 day for the control and increased during the same period for treated samples. By 104 days, only alpha-tocopherol in control pomace was present in a significant amount. The alpha-tocopherol content of mushroom fruit grown in pomace (74.10 microg/g) and in wheat straw (51.36 microg/g) was not significantly different. Tomato pomace could be used as a substrate to successfully grow edible mushrooms; however, the initial level of selected antioxidants and their reduction during fungal fermentation must be considered when delignified pomace is utilized for selected nutrient content in animal feed or products for human consumption.  相似文献   

17.
Near-infrared Fourier transform Raman (FT-Raman) spectroscopy was employed to study the molecular structure of edible zein films/coatings, which were fabricated directly from zein protein. The secondary structure of zein protein was mainly in alpha-helix and remained unaltered during film formation as evidenced by the vibrational modes of amide I at 1656 cm(-1) and amide III at 1274 cm(-1). Raman results indicated that hydrophobic interaction played an important role in the formation of zein film and disulfide bonding might be responsible for the structural stability of zein protein during film formation. To enhance its antimicrobial property, an antimicrobial zein film was manufactured by incorporating zein protein with benzoic acid whose structure was then characterized by FT-Raman. It showed that physical entrapment or hydrophobic interaction was crucial to the incorporation of benzoic acid with zein protein, and the secondary structure of the antimicrobial film was still maintained in alpha-helical form. In addition, FT-Raman exhibits its preference in directly determining the thickness of zein films/coatings. By correlating the Raman intensity ratio of nu(1003) to nu(84) (I(1003/84)) versus the thickness of zein film, a linear relationship with high coefficient (R(2) = 0.9927) was obtained, which was then used pragmatically to determine the thickness of zein coatings on apple. It showed that the FT-Raman result (thickness = 0.27 +/- 0.01 mm) was consistent with that of classical micrometric measurement (thickness = 0.28 +/- 0.02 mm). Consequently, FT-Raman provides a direct, simple, and reagent-free method to characterize the structure and the thickness of zein films/coatings.  相似文献   

18.
The contribution of thermal and radiative treatments as well as the presence of some excipients, namely glycerol, carboxymethylcellulose (CMC), pectin, and agar, on the formation of protein-protein interactions as well as the formation and loss of protein-water interactions was investigated by means of differential scanning calorimetry in an isothermal mode. Protein-water interactions were assessed through measurement of the heat of the wetting parameter. Isothermal calorimetry measurements pointed out that gamma-irradiation does not favor protein-water interactions, as reflected by its endothermic contribution (P < or = 0.05) to the heat of wetting values. Although significant (P < or = 0.05), the effect of the thermal treatment on endothermic responses using isothermal calorimetry was found to be somewhat lower. Among excipients added to biofilm formulations, glycerol generated the most important losses of protein-water interactions, as inferred by its significant (P < or = 0.05) endothermic impact on the heat of wetting values.  相似文献   

19.
为了研究具有良好性能的可食膜及其制备方法,该文以大豆分离蛋白(soy protein isolate,SPI)为成膜基材,向其中添加葵花籽壳纳米纤维素(nano-crystalline cellulose,NCC)和壳聚糖(chitosan,CS)制备得到共混可食膜。通过研究成膜材料配比、pH值和丙三醇质量浓度对可食膜抗拉强度(tensile strength,TS)、断裂伸长率(elongarion,E)、水蒸气透过系数(water vapor permeability,WVP)和氧气透过率(oxygen permeability,OP)的影响,以可食膜综合性能为响应值,各因素为自变量,利用响应面法对工艺参数进行优化,并建立了二次多项式回归模型,通过对模型的分析得到各因素对可食膜性能综合分影响的大小顺序为pH值成膜材料配比丙三醇质量浓度。结果表明:成膜材料质量比NCC:CS:SPI为1.25:0.75:2,pH值为3.59,丙三醇质量浓度为0.02 g/m L时,可食膜性能(抗拉强度、断裂伸长率、水蒸气透过系数和氧气透过率)的综合分达到最高为0.63。红外和扫描电镜结果表明成膜材料间具有良好的相容性。研究结果可为可食膜的生产应用提供参考。  相似文献   

20.
This work is a contribution to better knowledge of the influence of the structure of films obtained from emulsions based on arabinoxylans, hydrogenated palm kernel oil, and emulsifiers on their functional properties. The sucrose esters (emulsifiers) have a great effect on the stabilization of the emulsified film structure containing arabinoxylans and hydrogenated palm kernel oil. The structure and stability of the emulsion during drying strongly affect barrier and mechanical properties of films. The higher are creaming and coalescence phenomena in films, the lower is the water vapor permeability. Emulsion destabilization is favored by high drying temperature and tends to give films having a "bilayer-like" structure, which tends to improve the functional properties of arabinoxylans-based edible films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号