首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supplemental corn grain for steers grazing native rangeland during summer   总被引:1,自引:0,他引:1  
Effects of supplemental corn grain on forage OM intake (FOMI), digesta kinetics, ruminal fermentation patterns, in vitro OM digestibility (IVOMD), and in situ OM digestion were examined in steers grazing summer blue grama rangeland in northeastern New Mexico during July and August 1988. Sixteen ruminally cannulated steers (average BW 507 kg) were allotted to four treatments and individually fed whole-shelled corn at 0, .2, .4, and .6% of BW in a complete random design with repeated measurements over time. Forage OMI decreased linearly (P = .02) with increasing levels of supplemental corn; however, a tendency toward greater FOMI, as well as faster particulate and fluid passage, was observed when corn was fed at .2% of BW compared with 0, .4, or .6% of BW. Molar proportions of butyrate increased (P less than .10) but molar proportions of acetate and propionate, ruminal pH, and total VFA concentration did not change (P greater than .10) with added corn. Added corn linearly decreased (P less than .10) ruminal ammonia N concentrations in July, but patterns were inconsistent in August. A cubic response (P less than .05) for in situ OM disappearance with added corn was noted after 24, 72, and 96 h of incubation. Supplemental whole corn fed at .2% of BW had no detrimental effects and tended to increase FOMI. However, supplemental corn fed at .4 or .6% of BW decreased FOMI compared with 0 or .2% of BW.  相似文献   

2.
Six steers (468 kg) with ruminal and duodenal cannulas were fed diets formulated for two levels of energy containing three crude protein (CP) sources in a 6 X 6 Latin square with a 2 X 3 factorial arrangement of treatments. Energy levels were 2.17 and 2.71 Mcal metabolizable energy (ME)/kg dry matter (DM) provided by hay-corn (H) and corn silage-corn (CS) diets, respectively. Soybean mean (SBM), corn gluten meal-urea (CGM) and urea (U) provided 33% of dietary CP in 12% CP diets. Apparent organic matter (OM) digested in the stomach was not affected (P greater than .05) by energy level or CP source, but OM truly digested in the stomach was greater (P less than .05) when steers were fed the CS compared with the H diet. Duodenal flow of non-NH3 N was greater (P less than .05) when steers were fed CS compared with H and when fed SBM or CGM compared with U. Efficiency of bacterial protein synthesis and duodenal bacterial N flow were increased (P less than .05) when steers were fed CS, but non-NH3, nonbacterial N flow to the duodenum was increased (P less than .05) when steers were fed H. When steers were fed CS rather than H, flows (g/d) of bacterial amino acids were greater (P less than .05), but flows of nonbacterial amino acids tended (P less than .08) to be less. Total amino acid flows were not affected (P greater than .05) by energy level. Duodenal flows of total amino acids tended (P less than .06) to be greater when steers were fed CGM compared with SBM or U, due mainly to an increased (P less than .05) flow of nonessential amino acids.  相似文献   

3.
Soybean meal (SBM) treated with 70% ethanol at 80 C (ET), nontreated SBM (NT) or a ureacasein-corn mix (UC) was fed to steers fitted with ruminal and duodenal cannulae to study ruminal N metabolism. Sodium chloride (NaCl) was ruminally infused at 0 or 500 g/d. Nitrogen supplements provided approximately 70% of total dietary N. Experimental design was a 6 X 6 Latin square with a 3 X 2 factorial arrangement of treatments. Total duodenal N flows and non-ammonia, non-bacterial-N (NANB-N) flows were higher (P less than .05) when steers were fed SBM treatments compared with UC, and higher (P less than .05) when steers were fed ET compared with NT. Percentage of SBM-N escaping ruminal degradation was greater (P less than .05) when steers were fed ET compared with NT, and greater (P less than .05) when NaCl was infused into the rumen. Duodenal flows of total, indispensible and dispensible amino acids were increased (P less than .05) when steers were fed SBM treatments compared with UC, and greater (P less than .05) when steers were fed ET compared with NT. No differences in soluble N flows at the omasum were observed due to treatment. Bacterial protein comprised the majority of the N leaving the rumen. Both ruminal NaCl infusion and ethanol and heat treatment of SBM increased ruminal SBM-N escape.  相似文献   

4.
Three experiments were conducted to compare soybean meal/sorghum grain (SBM/SG), alfalfa hay or dehydrated alfalfa pellets (DEHY) as supplemental protein sources for beef cattle grazing dormant range forage. In Exp. 1 (35-d digestion study), 16 ruminally cannulated steers were stratified by weight (average BW 259 kg) and assigned randomly within stratification to: 1) control, no supplement; 2) SBM/SG (25% CP) fed at .48% BW; 3) alfalfa hay (17% CP) fed at .70% BW; or 4) DEHY (17.4% CP) fed at .67% BW. Steers receiving protein supplements displayed at least a twofold increase in forage intake (P less than .10). In addition, steers supplemented with DEHY consumed approximately 15% more forage (P less than .10) than SBM/SG- or alfalfa hay-supplemented steers. Digestible DM intake (kg/d), however, was similar between alfalfa hay- and DEHY-supplemented steers and 20% greater (P less than .10) than for SBM/SG-supplemented steers. In Exp. 2, 82 mature, nonlactating Hereford x Angus cows (average BW 489 kg) were assigned randomly to SBM/SG, alfalfa hay or DEHY supplement treatments, which were replicated in three pastures. Cows supplemented with DEHY gained more weight (P less than .05) during the first 84 d of supplementation and displayed the least amount of weight loss at calving (d 127; P less than .05) and just prior to breeding (P less than .10). In contrast, calving interval (361 d) and pregnancy rate (94%) were unaffected (P greater than .10) by dam's previous supplemental treatment. In Exp. 3, one block (pasture) of cows from Exp. 2 was selected at random and grazing behavior was monitored during week-long periods in January and February. A treatment X time interaction (P less than .05) occurred for total time spent grazing; treatments did not differ in January, but cows supplemented with alfalfa hay spent less time grazing in the February grazing period. In conclusion, DEHY and alfalfa hay appear to be at least as effective as SBM/SG as a supplemental protein source for pregnant grazing cows when supplements are fed on an equal CP and ME basis.  相似文献   

5.
Four multicannulated Holstein steers (initial BW 424 +/- 16 kg) were used in a 4 x 4 Latin square to determine the influence of protein supplementation on forage intake, site and extent of digestion, and nutrient flow in steers consuming dormant bluestem-range forage (2.3% CP). Treatments were 1) control, no supplement; 2) 1.8 kg of low-protein supplement, 12.8% CP (Low-CP); 3) 1.8 kg of moderate-protein supplement, 27.1% CP (Mod-CP); and 4) 2.7 kg of dehydrated alfalfa pellets, 17.5% CP (Dehy). The Dehy supplement was fed to provide the same amount of CP/d as Mod-CP, and all supplements provided similar amounts of ME/d. Forage DMI was increased (P less than .05) by feeding Mod-CP and Dehy. Ruminal OM digestibility was 39% greater (P less than .05) for the Mod-CP and Dehy supplementations than for the Low-CP supplementation and control. Ruminal CP digestibility was negative for all treatments, and control (-326%) was less (P less than .05) than supplemented treatments (average -27%). Total tract OM digestibility was greatest (P less than .10) for steers fed Mod-CP and least for control steers; Low-CP and Dehy steers were intermediate. Total tract NDF digestibility tended (P = .15) to be less with Low-CP than with Mod-CP and Dehy. Duodenal N flow was greater (P less than .05) with Mod-CP and Dehy than with Low-CP and control. In summary, supplementation with Mod-CP increased forage intake, digestion, and duodenal N flow compared with Low-CP or control; however, the response was similar when Mod-CP and Dehy supplements were fed to provide equivalent amounts of CP and ME daily.  相似文献   

6.
Four Simmental steers with ruminal, duodenal, and ileal cannulas were used to examine effects of dietary forage: concentrate ratio and supply of ruminally degradable true protein on site of nutrient digestion and net ruminal microbial protein synthesis. Steers (345 kg) were fed ammoniated corn cob (high forage; HF)- or corn cob/ground corn/cornstarch (low forage; LF)-based diets supplemented with soybean meal (SBM) or a combination of corn gluten meal and blood meal (CB). Diets were fed at 2-h intervals with average DM intake equal to 2.2% of BW. Feeding LF vs HF increased (P less than .05) OM digestion (percentage of intake) in the stomach, small intestine, and total tract. Efficiency of microbial CP synthesis (EMCP; g of N/kg of OM truly fermented) decreased (P less than .05) for LF vs HF (24.1 vs 26.8), but microbial N and total N flows to the small intestine were similar (P greater than .05) between energy levels (average 112 and 209 g/d, respectively). Total N flows to the small intestine were 13.1% greater (P less than .05) for CB than for SBM because of increased (P less than .05) passage of nonmicrobial N. Feeding SBM vs CB increased (P less than .05) EMCP (27.3 vs 23.3) and microbial N flow to the small intestine (127.5 vs 112.5 g/d), but these increases were not likely due to increased ruminal concentrations of ammonia N (NH3 N). Decreased (P less than .05) incorporation of NH3 N into bacterial N and slower turnover rates of ruminal NH3 N for SBM vs CB suggest that direct incorporation of preformed diet components into cell mass increased when SBM was fed. Results of this study suggest that the inclusion of ruminally degradable protein in the diet may increase the supply of products from proteolysis and that this can increase EMCP and microbial protein flow to the small intestine.  相似文献   

7.
Effects of advancing forage maturity and drought-induced summer dormancy on site and extent of digestion and microbial protein synthesis in beef steers grazing native blue grama rangeland were evaluated in four sampling periods. Five steers (avg initial wt 227 kg) fitted with ruminal, duodenal and ileal cannulae and three steers cannulated at the esophagus freely grazed a 12-ha study pasture. Sampling periods lasted 11 d and started June 2, which was during the early growing season (EGS); June 22, during early summer dormancy (ESD); July 21, during late summer dormancy (LSD); and August 25, 1985, during the late growing season (LGS). Dietary N content was lower (P less than .05) in ESD and LSD than in EGS and LGS. Neutral detergent fiber (NDF) content was lower (P less than .05) in EGS than in other sampling periods. Ruminal organic matter (OM) digestion was lower (P less than .05) in ESD than in EGS, probably because of increased dietary NDF and lower N content. Ruminal OM digestion was greater (P less than .05) in LSD and LGS than in ESD because of increased fiber digestion. Neutral detergent fiber and acid detergent fiber (ADF) digestion occurring in the rumen was greater (P less than .05) in LSD and LGS than in EGS and ESD. Organic matter digestion in the small intestine and OM, NDF and ADF digestion in the hindgut were similar for all sampling periods. Over 90% of the fiber digestion occurred ruminally.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
In Exp. 1, 4 ruminally and duodenally cannulated beef steers (444.0 +/- 9.8 kg) were used in a 4 x 4 Latin square with a 2 x 2 factorial treatment arrangement to evaluate the effects of forage type (alfalfa or corn stover) and concentrated separator byproduct (CSB) supplementation (0 or 10% of dietary DM) on intake, site of digestion, and microbial efficiency. In Exp. 2, 5 wethers (44 +/- 1.5 kg) were used in a 5 x 5 Latin square to evaluate the effects of CSB on intake, digestion, and N balance. Treatments were 0, 10, and 20% CSB (DM basis) mixed with forage; 10% CSB offered separately from the forage; and a urea control, in which urea was added to the forage at equal N compared with the 10% CSB treatment. In Exp. 1, intakes of OM and N (g/kg of BW) were greater (P < 0.01) for steers fed alfalfa compared with corn stover. Steers fed 10% CSB had greater (P < 0.08) OM and N intakes (g/kg of BW) compared with 0% CSB-fed steers. Total duodenal, microbial, and nonmicrobial flows of OM and N were greater (P < 0.01) for steers fed alfalfa compared with corn stover. Steers fed 10% CSB had increased (P = 0.02) duodenal microbial flow (N and OM) compared with 0% CSB-fed steers. Forage x CSB interactions (P < 0.01) existed for total tract N digestibility; alfalfa with or without CSB was similar (67.4 vs. 69.5), whereas corn stover with CSB was greater than corn stover without CSB (31.9 vs. -23.9%). True ruminal OM digestion was greater (P < 0.09) in steers fed alfalfa vs. corn stover (73.0 vs. 63.1%) and in steers fed 10 vs. 0% CSB (70.3 vs. 65.8%). Microbial efficiency was unaffected (P > 0.25) by forage type or CSB supplementation. In Exp. 2, forage and total intake increased (linear; P < 0.01) as CSB increased and were greater (P < 0.04) in 10% CSB mixed with forage compared with 10% CSB fed separately. Feeding 10% CSB separately resulted in similar DM and OM apparent total tract digestibility compared with 10% CSB fed mixed. Increasing CSB led to an increase (linear; P < 0.02) in DM, OM, apparent N digestion, and water intake. Nitrogen balance (g and percentage of N intake) increased (linear; P < 0.08) with CSB addition. Feeding 10% CSB separately resulted in greater (P < 0.01) N balance compared with 10% CSB fed mixed. Using urea resulted in similar (P = 0.30) N balance compared with 10% CSB fed mixed. Inclusion of CSB improves intake, digestion, and increases microbial N production in ruminants fed forage-based diets.  相似文献   

9.
Two metabolism trials were conducted with yearling steers fed mature native forage to measure the effect of supplemental protein degradability on selected metabolic variables. Supplements contained 40% crude protein equivalence. In Trial 1, four abomasal-cannulated steers weighing 290 to 379 kg were fed supplements containing the following N sources: (1) 15% corn, 85% urea (U); (2) 100% soybean meal (SBM); (3) 10% corn, 40% soybean meal, 50% urea (SBM-U) and (4) 14% corn, 36% blood meal, 50% urea (BM-U). Equal portions of the daily diet (2.2% of body weight) were fed every 2 h. Treatment differences were not significant for organic matter digestibility, abomasal organic matter flow, nonammonia N flow, feed N flow, bacterial N flow and efficiency of microbial protein synthesis. There was a positive (P less than .05) relationship between quantity of slowly degraded protein fed and nonammonia N flow (r = .97) or feed N flow (r = .98). Escape N was determined to be 21.5, 16.5 and 54.2% in SBM, SBM-U and BM-U supplements, respectively. In the second trial, no supplement, SBM, SBM-U and BM-U were fed in a N balance trial. Dry matter, crude protein and neutral detergent fiber digestibilities were higher (P less than .05) for steers fed supplemented diets. Acid detergent fiber digestibility was higher (P less than .05) for steers supplemented with SBM than steers fed the unsupplemented diets. Nitrogen retention was greater (P less than .05) for cattle fed SBM and BM-U than for cattle fed SBM-U or no supplement.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The effects of ammoniation of wheat straw on site and extent of digestion of nutrients by cattle and the nutritive value of the N added to the straw were studied using eight Hereford steers during three consecutive 21-d periods and analyzed in an incomplete block design with steers and periods as orthogonal blocking factors. The steers, approximately 30 mo old and weighing 360 +/- 24 kg, were cannulated in the rumen, duodenum and ileum. Diets consisted of untreated (US) or ammoniated (AS) wheat straw supplemented with a mineral-vitamin mixture. Steers fed US received four supplements in which the percentages of supplemental N from soybean meal (SBM) and urea were 0:100; 33:67; 67:33 or 100:0. Percentage of N and in vitro DM digestibility values were increased in US by the ammoniation process from .42 to 1.82 and 34.8 to 54.3, respectively. Total tract digestibility of OM consumed was similar among treatments, although total tract digestibility of dietary N was decreased by ammoniation. Ammoniation doubled (P less than .05) the synthesis of microbial N per unit of dietary OM truly fermented in the rumen. When SBM and urea were fed in combination they depressed (P less than .10) microbial N flow and synthesis of microbial N per unit of OM truly fermented more than each depressed flow and synthesis individually. The nutritive value of the increased N of AS was equivalent to between 67 and 100% of SBM N based on amounts (g/d) of non-ammonia N apparently digested in the small intestine.  相似文献   

11.
Twelve steers (332 kg) were used in three simultaneous 4 x 3 incomplete Latin squares to evaluate effects of beet molasses (BEET), cane molasses (CANE), or concentrated separator by-product (CSB) as base ingredients in cooked molasses blocks on intake and digestion of prairie hay and ruminal characteristics. All steers had ad libitum access to prairie hay (5.9% CP and 69.4% NDF; DM basis). The four experimental treatments included a control (no supplement) and three cooked molasses blocks, based on BEET, CANE, or CSB, fed daily at .125% of BW (.42 kg/d as-fed, .13 kg/d CP). Forage OM, NDF, and N intakes; digestible OM, NDF, and N intakes; and total tract OM and N digestibilities (percentage of intake) were greater (P < .05) for steers fed cooked molasses blocks than for control steers. Total tract OM digestibility was greater (P < or = .06) for steers fed BEET blocks (54.0%) than for those fed CSB (52.1%) or CANE blocks (52.2%). Digestion of NDF was greatest (P < .05) for steers fed BEET blocks (51.9%) and tended to be greater (P < .07) for steers fed CANE (49.3%) or CSB blocks (49.3%) than for control steers (46.9%). Ruminal ammonia concentrations were greater (P < .05) for steers fed cooked molasses blocks (.89 mM) than for control steers (.21 mM); this was primarily due to increases to 4.6 mM at 2 h postfeeding for steers fed blocks. Concentrations of total VFA in ruminal fluid were greater (P < .05) for steers fed BEET (92.7 mM) and CSB (88.1 mM) blocks than for control steers (80.3 mM), whereas concentrations for steers fed CANE blocks were intermediate (85.4 mM). Steers supplemented with cooked molasses blocks had greater molar percentages of butyrate than did control steers, particularly shortly after feeding. In summary, supplementation with cooked molasses blocks increased forage intake and digestion. The three base ingredients elicited similar responses, although steers fed BEET had slightly greater OM and NDF digestibilities than those fed CANE or CSB.  相似文献   

12.
Concurrent in vivo and in vitro studies were conducted to evaluate urea (U), soybean meal (SBM), ground soybeans (RAW), extruded soybeans (ES) or extruded soybeans plus urea (ES + U) as primary supplemental N sources in starter diets for Holstein steers. Three groups of 48 Holstein steers each were fed five different starter diets to 181 kg BW in three experimental periods over 2 yr. Average daily gains were similar (P greater than .05) for steers fed ES + U (1.12 kg), ES (1.08 kg) and SBM (1.09 kg) but lower (P less than .05) for those fed U (1.00 kg) or RAW (.97 kg) diets. Feed/gain was similar (P greater than .05) for ES-fed steers vs those fed other diets except U. From 181 to 477 kg, all steers were fed the same diet. Steers fed the RAW starter diet had the lowest (P less than .05) ADG for the entire period. The starter diets were used as substrates for ruminal microbial metabolism in eight dual-flow continuous culture fermenters. True OM digestion was higher and NDF and ADF digestion was lower (P less than .05) for the ES + U diet than for the ES diet. Dietary protein degradation was lowest (P less than .05) for the ES diet (64.4%). Total bacterial N flow was higher (P less than .05) with the ES + U, SBM and U diets than with the ES diet. Lysine flow was higher (P less than .05) for the ES + U diet than for all other diets except ES. Results of these experiments indicate that ES as a protected ruminal escape N source with or without added urea did not improve steer performance above that obtained from SBM in starter diets.  相似文献   

13.
Six cannulated beef cows (one Angus, two Hereford and three Angus x Hereford; 405 kg) were used in a 6 x 6 latin square experiment with a 2 x 3 factorial arrangement of treatments. Prairie hay (.77% N, 73% neutral detergent fiber [NDF] and 7% acid detergent lignin) was fed ad libitum from d 1 through 14 and at 90% of ad libitum intake from d 15 through 21 during digesta collection. Periods lasted 21 d. Soybean meal (SBM) was offered at 0 (control, C), .12 (low, L) or .24% of body weight (high, H; dry matter basis). Cows received daily doses of an antibiotic mixture (1 g neomycin and .125 g bacitracin) or saline in the duodenum. Prairie hay dry matter (DM) intake increased (P less than .05) linearly with SBM supplementation, being 25 and 40% greater for L and H than for C, respectively. Ruminal fluid concentrations of NH3-N and total volatile fatty acids increased (P less than .05) linearly as SBM was added to the diet. Ruminal fluid dilution rate increased linearly and particulate passage rate increased (P less than .05) quadratically with increasing SBM. True ruminal digestibilities of organic matter, NDF and N increased (P less than .10) quadratically with increasing SBM (organic matter; 50.3, 57.9 and 58.3%; NDF: 54.7, 60.4 and 59.8%; N: 17.5, 45.1 and 51.4% for C, L and H, respectively). Main effects of antibiotic administration were not significant. Increases in DM intake when SBM was given were large compared with the small elevations in ruminal digestion, implying that metabolic regulation was modifying intake of low-quality forage.  相似文献   

14.
A feedlot growth-performance trial involving 64 yearling steers and a metabolism trial involving four steers with cannulas in the rumen, proximal duodenum, and distal ileum were conducted to evaluate the comparative feeding value of steam-flaked corn (SFC, density = .30 kg/liter) and sorghum (SFS, density = .36 kg/liter) in finishing diets supplemented with or without .75% sodium bicarbonate (BICARB). No interactions between BICARB and grain type proved to be significant. Supplemental BICARB increased ADG 5.9% (P less than .10) and DMI 4.6% (P less than .05) but did not influence (P greater than .10) the NE value of the diet. Supplemental BICARB increased ruminal pH (P less than .01) and total tract fiber digestion (P less than .05). Differences in ruminal and total tract OM, starch, and N digestion were small (P greater than .10). Replacing SFC with SFS decreased (P less than .05) ADG 6.1% and increased (P less than .01) DMI/gain 9.7%. Corresponding diet NEm and NEg were decreased (P less than .01) 7.0 and 9.3%, respectively. Ruminal digestion of OM and starch tended to be lower (11.8 and 7.2%, respectively, P less than .10) for SFS. Ruminal degradation of feed N was 31% lower (P less than .05) for the SFS diets. Total tract digestibility of OM, N, DE, and ME were 3.3, 10.8, 4.4, and 5.5% lower (P less than .05), respectively, for the SFS vs SFC diets. In conclusion, 1) SFS had 92% the NEm of SFC; 2) differences in total tract starch digestibility were small and cannot explain the higher feeding value of SFC; 3) the low ruminal degradation of sorghum N (roughly 20%) should be considered in diet formulation to avoid a deficit in ruminally available N; and 4) .75% BICARB supplementation increased DMI and ADG of cattle fed highly processed grain-based diets.  相似文献   

15.
Two 25-d trials (late summer and early winter) were conducted to determine the influence of supplementation method on forage use and grazing behavior. Fifteen ruminally and 12 esophageally fistulated steers (316 and 400 kg, respectively) were blocked by weight and assigned randomly to one of three treatments: 1) self-feeding supplement (via Calan gates) with salt as a limiting agent; 2) daily hand-feeding supplement plus salt; and 3) daily hand-feeding supplement without salt. Supplement intake was restricted to .95 kg.steer-1.d-1 with .23 and .40 kg of salt.steer-1.d-1 during summer and winter, respectively. Neither season nor supplementation method affected forage (1.64% of BW) or total (1.89% of BW) OM intake (P greater than .10). Total OM digestibility was greater (P less than .05) in the summer, in salt-supplemented steers, and when steers were self-fed supplement. Digestibility of NDF was greater (P less than .05) in the summer than in early winter, but did not differ among treatments (P greater than .10). Fluid dilution rate was greater (P less than .05) for salt-fed and self-fed steers during the summer but similar among treatments (P greater than .10) during the winter. Total VFA concentrations did not differ among treatments during summer, but were slightly greater (P = .07) in hand-fed steers during the winter. Steers fed supplements containing salt consistently displayed lower (P less than .01) acetate:propionate ratios, and self-fed steers had lower (P less than .01) acetate:propionate ratios during the summer. Ruminal ammonia concentrations did not differ (P greater than .10) among treatments and between periods.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Three experiments were conducted to determine the effect of soybean lipid on ruminal proteolysis of soybean meal (SBM) and ground whole soybeans (GSB). Experiment 1 was a 92-d growth experiment using 120 calves (206 kg) allotted to 12 pens of 10 calves each. Three replicate pens were assigned to each of the treatment supplements: low SBM (LSBM), low GSB (LGSB), high SBM (HSBM) and high GSB (HGSB). Calves received ad libitum amounts of corn silage top-dressed with the respective supplement (.81 kg/head). High protein supplements produced greater (P less than .05) gains than low protein supplements, with HSBM calves gaining faster (P less than .05) than HGSB calves and LSBM and LGSB calves having similar (P greater than .10) gains. In Exp. 2, 15 ruminally cannulated Angus X Hereford heifers (380 kg) fed corn silage were used to determine ammonia-N release from the treatment supplements: ground corn (control), GSB, SBM and SBM coated with soybean oil (SBMO). Heifers fed the control supplement had lower (P less than .05) ruminal NH3-N concentrations than those consuming soybean protein. Ruminal NH3-N concentrations were similar (P greater than .10) for GSB and SBM; whereas, SBMO had lower (P less than .10) concentrations than SBM through 3 h. In Exp. 3, two ruminally cannulated Angus X Jersey steers (250 kg) were used to determine in situ disappearance of SBM, GSB and SBMO. Total and feed N disappearances were greater (P less than .001) for GSB than SBM or SBMO.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Seven Holstein steers (340 kg) fitted with ruminal, duodenal and ileal cannulae were used to measure the influence of supplemental N source on digestion of dietary crude protein (CP) and on ruminal rates of protein degradation. Diets used were corn-based (isonitrogenous, 12% CP on a dry matter basis, and isocaloric, 80% total digestible nutrients) with urea, soybean meal (SBM), linseed meal (LSM) or corn gluten meal (CGM) as supplemental N. Ruminal ammonia N concentrations were higher (P less than .05) in steers fed LSM than in those fed CGM, but did not differ from those in steers fed urea or SBM (11.7, 6.7, 9.1 and 9.2 mg/100 ml, respectively). Due to the high degradability of urea, ruminal digestion of dietary CP was greater (P less than .05) in steers fed urea than in those fed CGM, but intermediate in steers fed SBM and LSM (58.4, 48.8, 53.1 and 53.9%, respectively). Flow of bacterial nonammonia N to the duodenum was highest (P less than .05) in steers fed SBM or LSM, intermediate (P less than .05) for urea and lowest (P less than .05) for CGM (86.8, 86.1, 76.3 and 65.9 g/d, respectively). Efficiency of bacterial protein synthesis was lowest in steers fed CGM and differed (P less than .05) from SBM (15.6 vs 21.8 g N/kg organic matter truly digested, respectively). Rate of ruminal digestion for SBM-CP differed (P less than .05) from that of CGM-CP but not from that of LSM-CP (17.70, 5.20 and 10.13%/h, respectively). The slow rate of ruminal degradability of CGM resulted in increased amounts of dietary protein reaching the intestinal tract but lower amounts of bacterial protein, thus intestinal protein supply was not appreciably altered.  相似文献   

18.
Soybean meal (SBM) was treated with aqueous solutions of ethanol or propanol at room temperature or at 80 C to study treatment effects on SBM-N solubility and utilization by sheep. Soybean meal was soaked in an excess of 70% (v/v) ethanol at 80 C (ET-80), 70% ethanol at 23 C (ET-23) or 70% propanol at 80 C (PR-80). Nontreated SBM and nontreated SBM heated at 80 C without alcohol treatment (NT-80) served as controls. Nitrogen solubility in McDougall's buffer was lowest (P less than .05) for PR-80 and ET-80 (2.2 and 4.7% of total N, respectively), intermediate (P less than .05) for ET-23 (9.0%), greater (P less than .05) for nontreated SBM (36.2%) and highest for NT-80 (40.2%). In an situ study using three ruminally cannulated cows and two bags per treatment per animal per removal time, more (P less than .05) N remained in in situ bags after 3, 6, 9 and 12 h incubation for ET-23, ET-80 and PR-80 than for nontreated SBM and NT-80. A lamb metabolism trial, using 15 lambs in each of two periods, compared nontreated SBM, ET-23, ET-80, PR-80 and urea as N supplements. Nitrogen retention was higher (P less than .02) for lambs fed SBM treatments compared with urea. When the same N supplements were fed to wethers in a 5 X 5 Latin square experiment and duodenal N flow was measured, non-ammonia non-bacterial N flow was higher (P less than .07) for wethers fed SBM treatments than for wethers fed urea.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Four experiments were conducted to evaluate three crude protein (CP) sources (urea, U; soybean meal, SBM; corn gluten meal, CGM) in diets based on corn silage (high energy) or grass hay (low energy). In Exp. 1 and 2, growing steers were fed all combinations of energy and protein source at 10.5 or 12% CP. Steers fed high energy diets or 12% CP had improved (P less than .05) daily gains and feed:gain over 84 d. Protein source had no effect (P greater than .05) on performance except that steers fed U consumed more (P less than .05) feed than those fed CGM. Steers were fed experimental diets to a common weight and switched to an 85% concentrate diet for finishing. During finishing, steers fed low energy diets in the growing period consumed more (P less than .05) feed and had increased (P less than .05) feed:gain compared with those fed high energy diets. Growing lambs were fed the same diets as steers. At 10.5% CP, lambs fed high energy diets had higher (P less than .05) digestibilities of dry matter (DM), organic matter (OM), nitrogen (N) and fiber components, and retained more (P less than .05) N. For lambs on 12% CP, high energy diets had higher (P less than .05) DM and OM digestibilities and lower (P less than .05) N digestibilities. At 12% CP, energy level had no effect (P greater than .05) on N retained. Protein source had no effect (P greater than .05) on N retention. There appeared to be no advantage in supplementing with ruminally undegradable proteins, i.e. CGM, in these experiments.  相似文献   

20.
Six heifers (two Hereford X Jersey, four Hereford X Longhorn; average BW 278 kg) cannulated at the rumen and duodenum and fed a grass hay (fescue/orchardgrass) diet were used in a replicated 3 X 3 Latin square. Treatments were either no infusion (C), 150 ml of duodenally infused soybean oil (DI), or 150 ml of ruminally infused soybean oil (RI)/heifer twice daily for a total daily infusion of 300 ml of soybean oil. Periods of the Latin square included 18 d for adaptation and 5 d for collection. Forage OM, ADF, NDF, and N intakes were not affected (P greater than .10) by soybean oil infusion. Ruminal (P = .11) and total tract (P less than .10) OM digestibilities were decreased by RI compared with C or DI, but ADF and NDF digestibilities were not affected by treatment. Duodenal N (P less than .05) and microbial N flows were increased (P less than .10) for C and RI compared with DI. Microbial efficiency (g of N/kg of OM truly fermented) was improved (P less than .10) by RI compared with DI but did not differ (P greater than .10) from C. Ruminal pH was lower (P less than .05) with RI than with either C or DI. Ruminal NH3 N, total VFA, and acetate were not affected (P greater than .10) by treatment. Propionate (mol/100 mol) was greater (P less than .05) with RI than with DI and C, but the proportion of butyrate did not differ among treatments. These data indicate minimal direct benefits for improving forage usage as a result of soybean oil infusion with a 100% grass diet; however, animals should realize benefits from additional dietary energy provided by infused lipid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号