首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本研究采用爪蟾卵母细胞抽提物处理和牛胎儿成纤维细胞(JBCFF),并以发生重编程的细胞为核供体进行体细胞核移植,研究其对克隆效率的影响.分别超排3只爪蟾,收集卵母细胞后提取其抽提物,用BCA蛋白浓度测定试剂盒确定其蛋白含量,SDS-PAGE分析其中所含蛋白的种类.应用细胞膜透化剂Digitonin对建立的JBCFF进行通透处理和PI染色,筛选最适浓度;并用获得的抽提物处理牛体细胞,获得重编程细胞.以发生重编程的体细胞为供体进行核移植,同时比较离子霉素+6-DMAP和A23187+6-DMAP两种组合激活后克隆胚的体外发育能力.结果,3个爪蟾卵母细胞抽提物样品的蛋白浓度分别为56.2255、64.6570和71.2158 μg/mL,其中所含蛋白种类一致,主要集中在40~55、70~100 ku之间.经过连续的筛选,透化剂Digitonin对JBCFF通透处理的最适浓度为7 μg/mL,PI染色显示透化效率为55.44%.爪蟾卵母细胞抽提物与体细胞共孵育后继续培养6~7 d,细胞聚集形成"克隆簇".分别以"克隆簇"细胞和未处理细胞为核供体,制备的重构胚在融合率(92.83%和96.04%)、卵裂率(89.64%和89.78%)和囊胚率(24.06%和23.12%)均无显著差异(P>0.05);离子霉素+6-DMAP和A23187+6-DMAP两种激活方式对克隆胚胎的分裂率(92.16%和92.28%)和囊胚率(23.21%和24.18%)均无显著影响(P>0.05).爪蟾卵母细胞抽提物诱导和牛体细胞发生重编程,并恢复到较低的分化状态,但没有显著促进克隆胚胎的体外发育,可见缺少对胚胎发育起重要作用的重编程过程,还需要继续深入研究.  相似文献   

2.
为探讨细胞松弛素B(cytochalasin B,CB)对猪孤雌胚胎和克隆胚胎发育能力的影响,本研究通过在猪体外胚胎培养基中添加不同浓度CB以及不同孵育时间的处理,筛选出CB对猪早期胚胎发育的最适浓度和最佳孵育时间,同时通过Hoechst33342染色检测猪体外囊胚孵化期的细胞数差异,进一步研究CB对孤雌胚胎和克隆胚胎发育的影响。结果显示,培养基中添加CB浓度为7.5 μg/mL时孤雌胚胎和克隆胚胎的卵裂率分别为85.00%和90.23%,囊胚率为35.68%和42.58%,均显著高于其他各组(P < 0.05);采用7.5 μg/mL CB处理电激活后的孤雌胚胎和克隆胚胎,孤雌胚胎孵育4 h组的卵裂率(83.80%)和囊胚率最高(35.39%),与其他各组差异显著(P < 0.05),而克隆胚胎孵育6 h组的卵裂率(83.98%)和囊胚率最高(55.62%),与其他各组差异显著(P < 0.05)。此外,Hoechst33342染色结果显示,未添加CB处理的孤雌胚胎在囊胚孵化期的细胞平均数为28个,CB处理组的孤雌胚胎和克隆胚胎细胞平均数分别为36和52个,处理组和未处理组细胞数差异显著(P < 0.05)。结果表明,猪体外孤雌胚胎用7.5 μg/mL CB 处理4 h可获得较高的卵裂率和囊胚率;体外克隆胚胎用7.5 μg/mL CB 处理6 h卵裂率及囊胚率最高,且囊胚期内细胞团细胞总数最多。CB处理有利于体外胚胎早期发育,提高克隆胚胎移植受孕率。  相似文献   

3.
研究旨在探讨单宁酸对猪卵母细胞体外成熟质量及其胚胎发育能力的影响。在猪卵丘卵母细胞复合体(COCs)体外成熟培养液中添加不同浓度(0、1、10、100 μg/mL)单宁酸培养42 h后,检测COCs的扩散程度和卵丘细胞扩散指数,统计COCs的体外成熟率,检测成熟卵母细胞内谷胱甘肽(glutathione,GSH)、活性氧(reactive oxygen species,ROS)和生长分化因子9(growth differentiation factor 9,GDF9)的水平,并统计孤雌激活及体外受精胚胎48和168 h的卵裂率、囊胚率及囊胚总细胞数。结果显示,与对照组相比,10 μg/mL单宁酸组卵丘细胞扩散指数显著提高(P<0.05),100 μg/mL单宁酸组显著降低(P<0.05);1和10 μg/mL单宁酸组卵母细胞成熟率差异不显著(P>0.05),100 μg/mL单宁酸组卵母细胞成熟率显著降低(P<0.05);1和10 μg/mL单宁酸组GSH和GDF9水平显著提高(P<0.05),ROS水平显著降低(P<0.05)。孤雌胚胎和体外受精胚胎发育能力结果显示,与对照组相比,各单宁酸组卵裂率差异不显著(P>0.05),10 μg/mL单宁酸组孤雌胚胎囊胚率及体外受精胚胎囊胚率显著提高(P<0.05),100 μg/mL单宁酸组孤雌胚胎囊胚细胞数及体外受精胚胎囊胚细胞数均显著低于其他各组(P<0.05)。以上结果表明,10 μg/mL单宁酸可通过提高卵丘细胞扩散能力及GSH和GDF9水平、降低卵母细胞内ROS水平,改善猪卵母细胞成熟质量,提高孤雌胚胎及体外受精胚胎的发育能力。  相似文献   

4.
体细胞核移植(somatic cell nuclear transfer,SCNT)是一种能将已分化的体细胞重编程为全能胚胎的繁殖生物技术,在良种扩繁、濒危物种保护和治疗性克隆等方面有着广泛的应用前景,但极低的克隆效率、克隆动物胎盘异常、出生后胎儿畸形等严重限制了该技术的实际应用。造成克隆效率低和胚胎发育异常的主要原因是供体核表观遗传重编程错误或不完全。1958年,将非洲爪蟾(Xenopus laevis)幼体肠细胞核移入去核卵母细胞,获得了第1例SCNT动物个体;1986年,通过电融合1个卵裂球与去核卵母细胞成功获得了3只存活的羔羊;1997年,将成年母羊的乳腺上皮细胞与去核卵细胞电融合,获得首个SCNT哺乳动物"多利",开启了克隆时代,目前牛、小鼠、山羊、猪、欧洲盘羊、家兔、家猫、马、大鼠、骡子、狗、雪貂、狼、水牛、红鹿、单峰骆驼、食蟹猴等相继成功克隆,其中最引人瞩目的是2018年食蟹猴的成功克隆。作者通过将SCNT胚胎与受精胚胎的发育进行对比,阐述了SCNT过程中DNA甲基化、组蛋白修饰、基因组印迹、染色体状态等的重编程过程和缺陷,并从表观修饰剂、组蛋白去甲基化酶、抑制Xist表达、补充鱼精蛋白和精子RNA方面探讨单独或联合消除表观遗传重编程障碍对克隆效率的影响。随着低样本量测序技术的发展和完善,人们能够在SCNT胚胎中检测到更详细的全基因组表观遗传修饰图谱,进一步揭示SCNT胚胎表观遗传重编程中的缺陷,为提高克隆效率提供了线索。通过上述内容的阐述,希望为后续开发联合消除多种表观遗传障碍而提高克隆效率的策略和思路。  相似文献   

5.
Spermatogonial stem cells (SSC) are promising resources for genetic preservation and restoration of male germ cells in humans and animals. However, no studies have used SSC as donor nuclei in pig somatic cell nuclear transfer (SCNT). This study investigated the potential for use of porcine SSC as a nuclei donor for SCNT and developmental competence of SSC‐derived cloned embryos. In addition, demecolcine was investigated to determine whether it could prevent rupture of SSC during SCNT. When the potential of SSC to support embryonic development after SCNT was compared with that of foetal fibroblasts (FF), SSC‐derived SCNT embryos showed a higher (p < .05) developmental competence to the blastocyst stage (47.8%) than FF‐derived embryos (25.6%). However, when SSC were used as donor nuclei in the SCNT process, cell fusion rates were lower (p < .05) than when FF were used (61.9% vs. 75.8%). Treatment of SSC with demecolcine significantly (p < .05) decreased rupture of SSC during the SCNT procedure (7.5% vs. 18.8%) and increased fusion of cell‐oocyte couplets compared with no treatment (74.6% vs. 61.6%). In addition, SSC‐derived SCNT embryos showed higher blastocyst formation (48.4%) than FF‐derived embryos without (28.4%) and with demecolcine treatment (17.4%), even after demecolcine treatment. Our results demonstrate that porcine SSC are a desirable donor cell type for production of SCNT pig embryos and that demecolcine increases production efficiency of cloned embryos by inhibiting rupture of nuclei donor SSC during SCNT.  相似文献   

6.
The efficiency of cloning by somatic cell nuclear transfer (SCNT) has remained low. In most cloned embryos, epigenetic reprogramming is incomplete, and usually the genome is hypermethylated. The DNA methylation inhibitor 5-aza-2’-deoxycytidine (5-aza-dC) could improve the developmental competence of cow, pig, cat and human SCNT embryos in previous studies. However, the parameters of 5-aza-dC treatment among species are different, and whether 5-aza-dC could enhance the developmental competence of porcine cloned embryos has still not been well studied. Therefore, in this study, we treated porcine fetal fibroblasts (PFF) that then were used as donor nuclei for nuclear transfer or fibroblast-derived reconstructed embryos with 5-aza-dC, and the concentration- and time-dependent effects of 5-aza-dC on porcine cloned embryos were investigated by assessing pseudo-pronucleus formation, developmental potential and pluripotent gene expression of these reconstructed embryos. Our results showed that 5-aza-dC significantly reduced the DNA methylation level in PFF (0 nM vs. 10 nM vs. 25 nM vs. 50 nM, 58.70% vs. 37.37% vs. 45.43% vs. 39.53%, P<0.05), but did not improve the blastocyst rate of cloned embryos derived from these cells. Treating cloned embryos with 25 nM 5-aza-dC for 24 h significantly enhanced the blastocyst rate compared with that of the untreated group. Furthermore, treating cloned embryos, but not donor cells, significantly promoted pseudo-pronucleus formation at 4 h post activation (51% for cloned embryos treated, 34% for donor cells treated and 36% for control, respectively, P<0.05) and enhanced the expression levels of pluripotent genes (Oct4, Nanog and Sox2) up to those of in vitro fertilized embryos during embryo development. In conclusion, treating cloned embryos, but not donor cells, with 5-aza-dC enhanced the developmental competence of porcine cloned embryos by promotion of pseudo-pronucleus formation and improvement of pluripotent gene expression.  相似文献   

7.
The aim of the present study was to optimize the conditions for in vitro development and postvitrification survival of somatic cell cloned feline embryos. To determine the effects of cell cycle synchronization of the nuclear donor cells, we cultured preadipocytes under serum starvation or conventional conditions. After two days in serum starvation culture, the proportion of synchronized donor cells at the G0/G1 phase was 91.6%. This was significantly higher than the proportion of non-synchronized cells in the proliferative phase (72.6%, P<0.05). The in vitro development of somatic cell nuclear transfer (SCNT) embryos reconstructed using donor cells treated under serum starvation conditions (normal cleavage rate of 65.7%, 46/70, and blastocyst formation rate of 20.0%, 14/70) was comparable to that of the serum supplemented group (52.5%, 31/59, and 20.3%, 12/59). Use of in vitro or in vivo matured oocytes as recipient cytoplasts equally supported development of the SCNT embryos to the blastocyst stage (11.9%, 5/42, vs. 9.5%, 2/21). SCNT-derived blastocysts were vitrified using the original minimum volume cooling (MVC) or the modified (stepwise) MVC method. Although none (n=10) of the SCNT blastocysts survived following vitrification by the original MVC method, the stepwise MVC method resulted in 100% survival after rewarming (n=11). In conclusion, we demonstrated that feline somatic cell cloned embryos with a high developmental ability can be produced irrespective of cell cycle synchronization of donor cells using either in vivo or in vitro matured oocytes. Furthermore, by utilizing a stepwise vitrification method, we showed that it is possible to cryopreserve cloned feline blastocysts.  相似文献   

8.
The purpose of this study was to investigate the role of porcine cumulus cells (CC) in oocyte maturation and somatic cell nuclear transfer (SCNT) embryo development in vitro. Denuded pig oocytes were co-cultured with CC or routinely cultured in maturation medium without a feeder layer. Porcine CC inactivated with mitomycin C or non-inactivated were used for the feeder layer in co-culture with porcine SCNT embryos to investigate comparatively the developmental competence of cloned embryos. The DNA damage aspects of apoptosis and expression pattern of genes implicated in apoptosis (Fas/FasL) as well as the mRNA expression of DNA methyltransferase (Dnmt1, Dnmt3a) of porcine SCNT embryos were also evaluated by comet assay or real-time RT-PCR, respectively. The results showed that co-culture with CC improved the extrusion rate of pbI (49.3% vs 31.5%, p<0.05) and survival rate (75.7% vs 53.3%, p<0.05) of denuded oocytes, but had no effects on blastocyst developmental rate or 2-cell-stage survival rate of in vitro fertilization embryos. Co-culture with CC inactivated by mitomycin C improved the blastocyst developmental rate (26.6% vs 13.0%, p<0.05) and decreased the apoptotic incidence (27.6% vs 46.2%, p<0.05) of porcine cloned embryos. Co-culture with inactivated CC reduced Fas and FasL mRNA expression of cloned embryos at the blastocyst stage compared with NT controls (p<0.05), but there were no differences in Dnmt1 and Dnmt3a mRNA expression among groups. Co-culture with inactivated cumulus cell monolayer significantly increased blastocyst formation and decreased the apoptotic incidence in porcine cloned embryos during in vitro development.  相似文献   

9.
The study was aimed to investigate the role of porcine oocyte nuclear factors during reprogramming. Somatic cell nuclei was introduced into intact MⅡ oocytes to establish tetraploid somatic cell nuclear transfer (SCNT) embryos containing both somatic nuclei and oocyte nuclei. And then the influence of the oocyte nucleus on tetraploid SCNT embryo development was examined by assessing characteristics including cleavage rate and blastocyst rate. The results showed that the cleavage rate of tetraploid SCNT embryos,diploid parthenogenetic embryos and haploid parthenogenetic embryos was extremely significantly higher than that of standard diploid SCNT embryos (P<0.01). The blastocyst rate and the total number of cells in tetraploid SCNT embryos were extremely significantly higher than that of standard diploid SCNT embryos (P<0.01).Overall,tetraploid SCNT embryos had a higher developmental competence than standard diploid SCNT embryos. In conclusion, the embryonic model was established in which a fetal fibroblast nucleus and an oocyte M Ⅱ plate coexist. Tetraploid SCNT represented a new research platform that was potentially useful for examining interactions between donor nuclei and oocyte nuclei. This platform should facilitate further understanding of the roles played by nuclear factors during reprogramming.  相似文献   

10.
研究旨在探讨猪卵母细胞核因子在重编程过程中发挥的作用。将体细胞引入未去核的MⅡ期卵母细胞中,构建体细胞核与卵母细胞核共存的核移植四倍体胚胎。通过分析核移植四倍体胚胎的早期发育情况探讨卵母细胞核因子对核移植四倍体胚胎早期发育的影响。结果显示,核移植四倍体胚胎、孤雌二倍体胚胎及孤雌单倍体胚胎这3组胚胎的卵裂率极显著高于核移植二倍体胚胎(P<0.01),且核移植四倍体囊胚率及总细胞数也极显著高于核移植二倍体囊胚(P<0.01)。与通过标准核移植程序构建的核移植二倍体胚胎相比,核移植四倍体胚胎具有更强的发育能力。本研究建立了一个体细胞核与完整卵母细胞核因子物质共存的四倍体胚胎模型,有助于研究供体核与卵母细胞核之间的联系,为研究核因子在重编程过程中发挥的作用提供了平台。  相似文献   

11.
The relationship between donor cell cycle and the developmental ability of somatic cell nuclear transfer (SCNT) embryos has not fully been elucidated. Donor cells that are usually prepared by serum starvation or confluent-cell culture for SCNT represent a heterogeneous population that includes mainly G0 phase cells, other cells in different phases of the cell cycle and apoptotic cells. In this study, we compared the developmental ability of porcine SCNT embryos reconstructed from G0 phase cells (G0-SCNT embryos) and strictly synchronized-G1 phase cells (G1-SCNT embryos), and examined the developmental rates and timing of first DNA synthesis. The G0 phase cells were synchronized by confluent culture, and the G1 phase cells were prepared from actively dividing M phase cells. The G1-SCNT embryos showed a significantly higher (P<0.05) developmental rate to the blastocyst stage per cleaved embryo (59%) than the G0-SCNT embryos (43%). Moreover, initiation of first DNA synthesis and cleavage occurred significantly earlier in the G1-SCNT embryos than in the G0-SCNT embryos. Delay of initiation of first DNA synthesis in the SCNT embryos by aphidicolin resulted in decreased developmental rates to the blastocyst stage without any effect on cleavage rates. Our data demonstrates that synchronized-G1 phase cells can be used as donor cells for SCNT embryos and that earlier initiation of first DNA synthesis may be important for subsequent development of SCNT embryos. The SCNT system using G1-synchronized cells, in terms of their highly uniform and viable cell states, can be useful for studying the reprogramming processes and embryonic development of SCNT embryos.  相似文献   

12.
Monomeric Plum (Plum), a far-red fluorescent protein with photostability and photopermeability, is potentially suitable for in vivo imaging and detection of fluorescence in body tissues. The aim of this study was to generate transgenic cloned pigs exhibiting systemic expression of Plum using somatic cell nuclear transfer (SCNT) technology. Nuclear donor cells for SCNT were obtained by introducing a Plum-expression vector driven by a combination of the cytomegalovirus early enhancer and chicken beta-actin promoter into porcine fetal fibroblasts (PFFs). The cleavage and blastocyst formation rates of reconstructed SCNT embryos were 81.0% (34/42) and 78.6% (33/42), respectively. At 36–37 days of gestation, three fetuses systemically expressing Plum were obtained from one recipient to which 103 SCNT embryos were transferred (3/103, 2.9%). For generation of offspring expressing Plum, rejuvenated PFFs were established from one cloned fetus and used as nuclear donor cells. Four cloned offspring and one stillborn cloned offspring were produced from one recipient to which 117 SCNT embryos were transferred (5/117, 4.3%). All offspring exhibited high levels of Plum fluorescence in blood cells, such as lymphocytes, monocytes and granulocytes. In addition, the skin, heart, kidney, pancreas, liver and spleen also exhibited Plum expression. These observations demonstrated that transfer of the Plum gene did not interfere with the development of porcine SCNT embryos and resulted in the successful generation of transgenic cloned pigs that systemically expressed Plum. This is the first report of the generation and characterization of transgenic cloned pigs expressing the far-red fluorescent protein Plum.  相似文献   

13.
This experiment aimed to study the effect of brilliant cresyl blue (BCB) on in vitro maturation of pig oocytes and the developmental capacity of pig SCNT embryos.The cumulus-oocyte complexes (COCs) were stained with different concentrations of BCB (13,26,39 and 52 μmol/L) for 90 min,and then we divided the COCs into BCB+ and BCB- for in vitro culture 42 to 44 h.The results showed that,with the concentration of BCB increased,the staining rate (20.00%,46.39%,51.66% and 59.03%) raised gradually while the maturation rate of oocytes (74.03%,72.16%,70.53% and 48.61%) reduced,the percentages of oocytes staining by 26 μmol/L BCB for 90 min were higher than that of other groups in staining rate and maturation rate.However,the nuclear maturation rate of BCB+ groups were higher than that of BCB- group.Therefore,26 μmol/L BCB was selected as the most effective concentration dying the oocytes (BCB+),which were used as parthenogenetic activation and nuclear transfer embryos.The cleavage and blastocyst rates of parthenogenetic activation and SCNT embryos in BCB+ group were significantly higher than that of BCB- group (P<0.05),but there were no significant differences between the cleavage and blastocyst rates in the groups of BCB+ and control (P>0.05).Reconstructed embryos derived from the COCs stained with BCB were transferred to five surrogates,and six cloned piglets were obtained from one of the two pregnant pigs.These results showed that COCs stained with BCB was an effective method to select high-quality oocytes,which could improve the efficiency of in vitro embryo production.  相似文献   

14.
Bovine somatic cell nuclear transfer (SCNT) embryos can develop to the blastocyst stage at a rate similar to that of embryos produced by in vitro fertilization. However, the full‐term developmental rate of SCNT embryos is very low, owing to the high embryonic and fetal losses after embryo transfer. In addition, increased birth weight and postnatal mortality are observed at high rates in cloned calves. The low efficiency of SCNT is probably attributed to incomplete reprogramming of the donor nucleus and most of the developmental problems of clones are thought to be caused by epigenetic defects. Applications of SCNT will depend on improvement in the efficiency of production of healthy cloned calves. In this review, we discuss problems and recent progress in bovine SCNT.  相似文献   

15.
The limited success of somatic cell nuclear transfer (SCNT) is largely attributed to defects in epigenetic reprogramming of the donor genome. Donor cell types with distinct potential competence may offer different epigenetic flexibility for subsequent genome reprogramming in SCNT. Stem cells possibly enable their genomes to be more readily reprogrammed than differentiated cells. To improve the efficiency of cloning, porcine mesenchymal stem cells (pMSCs) were isolated and well identified by 6‐channel flow cytometry and differentiation assays and were used as donors in SCNT. Compared with porcine embryonic fibroblasts (pEFs), our results showed that pMSCs markedly enhanced cloned embryo development in terms of cleavage and blastocyst formation (p < 0.05). To enhance the epigenetic flexibility of pMSCs, classical reprogramming factors (RFs) were transfected by electroporation, and we achieved optimization with ectopic expression of RFs in pMSCs. Our results suggest that the epigenetic status of donor cells has an improvement on genome reprogramming, and multipotent pMSCs favoured subsequent embryonic development.  相似文献   

16.
试验旨在研究亮甲酚蓝(brilliant cresyl blue,BCB)染色对卵母细胞体外成熟及后期胚胎发育潜力的影响。本研究利用13、26、39 、52 μmol/L BCB对成熟培养前的卵丘-卵母细胞复合体(cumulus-oocyte-complexes,COCs)染色90 min,比较各组卵母细胞的着色率、成熟率及孤雌激活胚胎和核移植胚胎的发育情况。结果表明,随着BCB浓度的增加,COCs着色率依次增加(20.00%、46.39%、51.66%和59.03%),但猪卵母细胞体外成熟率逐渐降低(74.03%、72.16%、70.53%和48.61%);不同浓度BCB染色后所得BCB+组卵的成熟率均明显高于BCB-组。试验结果发现,BCB浓度在26 μmol/L时,经染色的COCs既有较高的着色率,且不影响其体外成熟的效率。基于此,研究选取26 μmol/L BCB作为最佳浓度对猪卵母细胞进行染色筛选,然后进行体外培养、孤雌激活及核移植试验。结果显示,筛选的BCB+组卵母细胞的孤雌胚和核移植胚的卵裂率和囊胚率均显著高于BCB-组(P<0.05),而与对照组间无显著差异(P>0.05)。胚胎移植试验挑选BCB+组中发育较好的1-2细胞期重组胚对5头代孕母猪进行了移植,其中2头怀孕,1头顺利产下了6头健康胎儿。综合以上试验结果表明,利用BCB染色可作为一种有效的方法筛选体外成熟质量较高的猪卵母细胞,同时提高胚胎体外生产效率。  相似文献   

17.
To evaluate whether oocytes excluded from somatic cell nuclear transfer (SCNT) could be utilized for embryo production by parthenogenetic activation (PA), porcine oocytes with poor morphology after maturation culture were excluded from SCNT and subsequently used for PA with different stimuli. In the first set of experiment, either electric pulse of different strengths (1.75, 2.0 or 2.25 kV/cm for 30 microsec each) or chemicals with different treatment durations [7% ethanol for 5 min followed by exposure to 6-dimethylaminopurine (6-DMAP) for 0, 2, 3 or 4 hr] was employed. Development to the 8-cell and morula stages was significantly (P<0.05) improved by electric stimulation of 2.0 kV/cm, while blastocyst formation was enhanced by chemical treatment of ethanol and 6-DMAP for 4 hr. Subsequently, oocytes were parthenogenetically activated by one of four stimuli; 1) optimal electric (2.0 kV/cm for 30 microsec), 2) optimal chemical (ethanol followed by 6-DMAP for 4 hr), 3) electric then chemical and 4) vice versa. On the other hand, oocytes with normal morphology were subjected to the same experimental treatments for the control. Regardless of oocyte type, a combination of electric and chemical stimulations did not further stimulate preimplantation development, compared with electric activation only. However, combinational treatment greatly increased the cell number of blastocysts in SCNT-excluded oocytes (21.9 to 22.9 vs. 16.9 cells/blastocyst), while such effect was not found in normal oocytes (22.2 to 23.3 cells/blastocyst). In conclusion, porcine oocytes excluded from SCNT still have a potential to develop blastocysts after PA and this might contribute to increasing the efficiency of SCNT for various purposes. A combined activation by electricity and chemical yielded the best rate of preimplantation development with increasing the quality of blastocyst.  相似文献   

18.
The present study compared the efficiency of transgenic (TG) cloned embryo production by somatic cell nuclear transfer (SCNT) with fetal-derived fibroblast cells (FFCs) which were transfected with pEGFP-N1 to in vitro-fertilized (IVF), parthenogenetic and SCNT counterparts by evaluating the rates of cleavage and blastocyst formation, apoptosis rate at different developmental stages, cell number, ploidy and gene expression in blastocysts. In SCNT and TG embryos, the rates of cleavage and blastocyst formation were significantly lower (p < 0.05) than those of IVF controls, but it did not differ between SCNT and TG embryos. In IVF control, 86.7% embryos displayed diploid chromosomal complements and the rates were significantly (p < 0.05) higher than those of SCNT and TG embryos. Most TG embryos (79%) with FFCs expressed the gene by both PCR and under fluorescence microscopy. The expression of apoptosis by TUNEL was first detected at six to eight cell stages in all embryos of IVF, SCNT and TG groups, but the expression rate at each developmental stages was significantly higher (p < 0.05) in SCNT and TG embryos than in IVF counterparts. The expression rate in inner cell mass (ICM) of TG embryos was significantly higher (p < 0.05) than in SCNT and IVF embryos. These results indicate that the high occurrence of apoptosis observed in SCNT and TG embryos compared with IVF counterparts might influence the developmental competence. Moreover, the SCNT embryos derived using non-transfected donor cells exhibited a lower apoptosis expression in ICM cells than in TG embryos derived using pEGP-N1-transfected donor cells suggesting a possible role of negative gene effect in TG embryos.  相似文献   

19.
In mouse somatic cell nuclear transfer (SCNT), polyvinylpyrrolidone (PVP) is typically included in the nuclear donor injection medium. However, the cytotoxicity of PVP, which is injected into the cytoplasm of oocytes, has recently become a cause of concern. In the present study, we determined whether bovine serum albumin deionized with an ion-exchange resin treatment (d-BSA) was applicable to the nuclear donor injection medium in SCNT as an alternative to PVP. The results obtained showed that d-BSA introduced into the cytoplasm of an enucleated oocyte together with a donor nucleus significantly enhanced the rate of in vitro development of cloned embryos to the blastocyst stage compared with that of a conventional nuclear injection with PVP in SCNT. We also defined the enhancing effects of d-BSA on the blastocyst formation rate when d-BSA was injected into the cytoplasm of oocytes reconstructed using the fusion method with a hemagglutinating virus of Japan envelope before oocyte activation. Furthermore, immunofluorescence experiments revealed that the injected d-BSA increased the acetylation levels of histone H3 lysine 9 and histone H4 lysine 12 in cloned pronuclear (PN) and 2-cell embryos. The injection of d-BSA before oocyte activation also increased the production of cloned mouse offspring. These results suggested that intracytoplasmic injection of d-BSA into SCNT oocytes before oocyte activation was beneficial for enhancing the in vitro and in vivo development of mouse cloned embryos through epigenetic modifications to nuclear reprogramming.  相似文献   

20.
This study was conducted to reconstruct heterogeneous embryos using equine skin fibroblast cells as donor karyoplasts and the bovine oocytes as recipient cytoplast for investigating the reprogramming of equine somatic cell nuclear in bovine oocyte cytoplasm and the developmental potential of the reconstructed embryos. Adult horse skin fibroblast cells serum-starved were used as donor somatic cells. Bovine oocytes matured in vitro were employed as recipient cytoplasts. The fusion of fibroblast cells into recipient cytoplasm was induced by electofusion. The fused eggs were activated by inomycin with 2 mm/ml 6-dimethylaminopurine (6-DMAP). The activated reconstructed embryos were co-cultured with bovine cumulus cells in synthetic oviduct fluid supplemented with amino acid (SOFaa) and 10% fetal calf serum (FCS) for 168 h. The results showed that the first completed cleavage of xenonuclear transfer equine embryos occurred between 30 and 48 h following activation. 52% of the injected oocytes were successfully fused, 72% of the fused eggs underwent the first egg cleavage and 17% of the heterospecific nuclear-transferred zygotes developed to 4- or 8-cell embryo stages. This study demonstrated that the reconstructed embryos have undergone the first embryonic division and the reprogramming of equine fibroblast nuclei can be initiated in bovine-enucleated oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号