首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: To investigate the effects of microRNA(miRNA)-126 on the proliferation, migration and invasion of human lung cancer cell lines, and to explore its mechanism. METHODS: The A549 cells were transfected with miRNA-126 agomir by Lipofectamine 2000. The expression of miRNA-126 was detected by real-time PCR. The cell activity was detected by MTT assay. The number of viable A549 cells was counted by the method of Trypan blue exclusion. The cell colony-forming capability was determined by cell colony formation test. The cell migration and invasion abilities were assayed by wound healing and Transwell methods, respectively. The protein levels of p-EGFR, EGFR, p-AKT, AKT, p-mTOR and mTOR were determined by Western blot. RESULTS: The expression level of miRNA-126 was significantly increased in the A549 cells compared with negative control(NC) group and control group(P<0.01). The proliferation of A549 cells was decreased extremely after transfected with the miRNA-126 agomir(P<0.01), so did the result of the cell colony-formation test. The migration and invasion abilities of the lung cancer cells were also significantly inhibited. The protein levels of p-EGFR, p-AKT and p-mTOR were significantly down-regulated compared with NC group and control group(P<0.01). CONCLUSION: Over-expression of miRNA-126 significantly inhibits the proliferation, migration and invasion ability of human lung cancer A549 cells by down-regulation of EGFR/AKT/mTOR pathway.  相似文献   

2.
AIM: To study the expression of microRNA (miRNA)-181a in different human lung adenocarcinoma cell lines, and to investigate the effect of miRNA-181a on cell function and its mechanism in human lung adenocarcinoma drug resistant cell A549/DDP. METHODS: Real-time PCR was used to detect the expression of miRNA-181a in BEAS-2B cells, A549 cells and A549/DDP cells. The A549/DDP cells were transfected with pGenesil-miRNA-181a eukaryotic expression plasmid. At the same time, the untransfection group and negative transfection group were also set up. The expression of miRNA-181a, cell viability, cell growth inhibition and apoptosis rate during cis-diamminedichloroplatinum (DDP) treatment, cell cycle, cell invasion, the protein expression of miRNA-181a target genes bcl-2 and p53 in the A549/DDP cells were determined by real-time fluorescence quantitative PCR, MTT assay, flow cytometry, Transwell method and Western blot, respectivly. RESULTS: The expression of miRNA-181a in A549 cells and A549/DDP cells was significantly lower than that in BEAS-2B cells, and the lowest expression level was observed in A549/DDP cells (P<0.05). The expression of miRNA-181a in A549/DDP cells was significantly increased after transfection with pGenesil-miRNA-181a (P<0.05). The cell viability, cell cycle and invasion ability of the A549/DDP cells were inhibited after miRNA-181a transfection (P<0.05). The cell growth inhibition rate and apoptotic rate of the A549/DDP cells were increased (P<0.05). The expression of Bcl-2 was reduced, but the expression of P53 was increased after transfection with miRNA-181a in A549/DDP cells (P<0.05). CONCLUSION: miRNA-181a may be correlated with the development of human lung adenocarcinoma. miRNA-181a can serve as a new target for treatment of lung cancer.  相似文献   

3.
AIM: To examine the expression of miRNA-22 in the ovarian tissues and the effect of miRNA-22 over-expression on the proliferation, migration and invasion in SKOV-3 cells. METHODS: The expression levels of miRNA-22 in different ovarian tissues and SKOV-3 cells were determined by qPCR. miRNA-22 was over-expressed by transfection of miRNA-22 mimic. The cell viability was examined by CCK-8 assay. The cell migration was measured by wound healing test. The cell invasion was analyzed by Transwell assay. The protein expression levels of VEGF and P53 were determined by Western blot. RESULTS: Compared with the normal ovarian tissue, the expression level of miRNA-22 was remarkably decreased in the ovarian tumor tissues. After transfection with miRNA-22 mimic, the expression level of miRNA-22 in the SKOV-3 cells was significantly increased, while the cell viability, migration and invasion were obviously decreased. Moreover, the protein expression of VEGF and P53 was dramatically inhibited after over-expression of miRNA-22. CONCLUSION: The decreased miRNA-22 expression may be correlated with the development of ovarian can-cer. Over-expression of miRNA-22 decreases the cell viability, migration and invasion by reducing the protein expression of VEGF and P53.  相似文献   

4.
AIM:To investigate the roles of p21-activated kinase 6 (PAK6) and its target miRNA on the migratory and invasive abilities of non-small cell lung cancer cells. METHODS:miRNA candidates targeting PAK6 were predicted by a target prediction program. The expression of PAK6 was measured by real-time PCR and Western blotting after A549 cells were transfected with miR-23a mimics or inhibitory oligonucleotides. Luciferase reporter assay was used to determine whether PAK6 was the direct target of miR-23a. The abilities of cell migration and invasion were detected by Matrigel invasion assay and Transwell migration assay. The expression of PAK6 and matrix metalloproteinase 9 (MMP-9) was analyzed by Western blotting after A549 cells were transfected with siPAK6 or miR-23a mimics. RESULTS:miR-23a was identified by a target prediction program. Exogenetic over-expression of miR-23a resulted in a remarkable decrease in PAK6 expression (69%), whereas miR-23a inhibitory oligonucleotides induced pronounced increase in PAK6 expression (52%). The luciferase activity was significantly inhibited by 52% in wild-type PAK6 group, while there was no significant difference in the mutation group. The mRNA level of PAK6 had no change as detected by real-time PCR. Matrigel invasion assay and Transwell migration assay demonstrated there exogenetic over-expression of miR-23a markedly reduced the migration and invasion of PC-3 cells (73% and 59%, respectively). The MMP-9 expression remarkably decreased by 85% and 76% in the A549 cells transfected with siPAK6 and miR-23a mimics, respectively. CONCLUSION:miR-23a inhibits the migration and invasion of non-small cell lung cancer cells by repressing PAK6-MMP-9 signaling pathway.  相似文献   

5.
6.
AIM: To investigate the regulatory effects of microRNA (miR)-195 on the biological behaviors, such as viability, apoptosis and migration, of lung cancer A549 cells, and to explore the related mechanisms. METHODS: After miR-195 mimics were transfected into the A549 cells, the cell viability, cell cycle distribution and apoptosis were measured by CCK-8 assay and flow cytometry. Transwell assay was used to detect cell migration ability. Furthermore, the protein levels of cyclin D1, CDK2, Bcl-2 and p-Rb/Rb were determined by Western blot. Dual-luciferase reporter assay was used to screen and identify the possible target genes of miR-195. RESULTS: Over-expression of miR-195 in the A549 cells inhibited the cell viability and induced cell cycle arrest, accompanied with the decrease in the cell migration ability and the increase in the apoptotic rate (P<0.05). Furthermore, the protein levels of cyclin D1, CDK2, Bcl-2 and p-Rb were significantly decreased (P<0.05). Dual-luciferase reporter assay demonstrated that MYB was a potential target gene of miR-195. Over-expression of MYB in the A549 cells partially reversed the effects of miR-195 on the cell viability, apoptosis and migration. CONCLUSION: miR-195 inhibits lung cancer A549 cell growth and migration, and promotes cell apoptosis by targeting MYB gene.  相似文献   

7.
AIM To investigate the effects of long non-coding RNA (lncRNA) LINC01503 on the viability, migration and invasion of lung cancer cells and its mechanism. METHODS Human lung carcinoma H1299 cells were divided into si-NC group (transfected with si-NC), si-LINC01503 group (transfected with si-LINC01503), pcDNA group (transfected with pcDNA), pcDNA-LINC01503 group (transfected with pcDNA-LINC01503), miR-NC group (transfected with miR-NC), miR-335-5p group (transfected with miR-335-5p mimics), si-LINC01503+anti-miR-NC group (co-transfected with si-LINC01503 and anti-miR-NC), si-LINC01503+anti-miR-335-5p group (co-transfected with si-LINC01503 and anti-miR-335-5p), miR-NC+WT-LINC01503 group (co-transfected with miR-NC and WT-LINC01503), miR-NC+MUT-LINC01503 group (co-transfected with miR-NC and MUT-LINC01503), miR-335-5p+WT-LINC01503 group (co-transfected with miR-335-5p and WT-LINC01503) and miR-335-5p+MUT-LINC01503 group (co-transfected with miR-335-5p and MUT-LINC01503). The expression of miR-335-5p and LINC01503 was detected by RT-qPCR. Western blot was used to detect protein expression. MTT assay was used to detect cell viability. Transwell assay was used to detect the migration and invasion abilities. Dual-luciferase reporter assay was used to confirm the targeted relationship between LINC01503 and miR-335-5p. RESULTS Compared with normal tissues, the expression of LINC01503 was significantly increased in the lung cancer tissues, and the expression of miR-335-5p was significantly decreased (P<0.05). Compared with stage I/II , the expression level of LINC01503 in the lung cancer tissues of stage III/IV was significantly increased, and the expression of miR-335-5p was significantly decreased (P<0.05). The patients with high expression of LINC01503 had lower short-term survival rates than those with low expression of LINC01503 (P<0.05). Compared with normal human bronchial epithelial cell line BEAS-2B, the expression of miR-335-5p in lung cancer cell lines H1299, A549 and SPC-A-1 were significantly decreased, and the expression of LINC01503 was significantly increased (P<0.05). Over-expression of miR-335-5p and inhibition of LINC01503 expression inhibited the viability, migration and invasion of H1299 cells, and inhibited the protein expression of cyclin D1, matrix metalloproteinase-2 (MMP-2) and MMP-9 (P<0.05). LINC01503 targeted and regulated miR-335-5p expression, and interfering with miR-335-5p expression reversed the inhibitory effect of inhibiting LINC01503 expression on the viability, migration and invasion of H1299 cells. CONCLUSION Inhibition of lncRNA LINC01503 inhibits the viability, migration and invasion of lung cancer cells. The mechanism may be related to the targeted regulation of miR-335-5p.  相似文献   

8.
AIM: To explore the target relationship between microRNA-140-3p (miR-140-3p) and programmed cell death ligand 1 (PD-L1) and their effect on the viability, migration and invasion of non-small-cell lung cancer A549 cells.METHODS: RT-qPCR was used to detect the miR-140-3p expression in HLF-1, A549 and H1299 cells, and then the A549 cells with the most significant difference were selected as the subsequent research object. TargetScan software and dual-luciferase reporter assay were performed to predict and confirm the target relationship between miR-140-3p and PD-L1. RT-qPCR and Western blot were used to determine the effects of miR-140-3p mimic and inhibitor on PD-L1 expression level. MTT assay was used to detect the viability of A549 cells. Transwell assay was performed to detect the migration and invasion abilities of the A549 cells.RESULTS: miR-140-3p was significantly down-regulated in the A549 cells and H1299 cells (P<0.05). Transfection with miR-140-3p mimic decreased the expression of PD-L1 and inhibited the viability, migration and invasion of the A549 cells. Transfection with pcDNA3.0-PD-L1 reversed the inhibitory effect of miR-140-3p on the viability, migration and invasion of the A549 cells.CONCLUSION: miR-140-3p inhibits the viability, migration and invasion of A549 cells by targeting PD-L1.  相似文献   

9.
AIM:To investigate the effects of p21-activated kinase 6 (PAK6) on the invasive and migratory abilities of human non-small-cell lung cancer A549 cells. METHODS:The expression of PAK6 mRNA in A549 cells, human bronchial epithelial (HBE) cells, non-small-cell lung cancer tissues and paired adjacent non-tumor tissues was measured by real-time PCR. After A549 cells were transfected with siRNA-PAK6 (siPAK6) or negative control (NC) for 48 h, the expression of PAK6 at mRNA and protein levels was measured by real-time PCR and Western blotting, respectively. The invasion and migration of A549 cells were detected by Matrigel invasion assay and Transwell migration assay. The cytoskeletal changes were observed with FITC-phalloidin staining under confocal microscope. RESULTS:The level of PAK6 mRNA in A549 cells was higher than that in HBE cells (3.50±1.16 vs 1.12±0.42, P<0.05). The level of PAK6 mRNA in non-small-cell lung cancer tissues was higher than that in paired adjacent non-tumor tissues (5.13±1.33 vs 1.08±0.37, P<0.05). The expression of PAK6 protein decreased by 72% in A549 cells transfected with siPAK6 (P<0.05), and the level of PAK6 mRNA significantly decreased in A549 cells transfected with siPAK6 (3.72±0.75 vs 0.69±0.21, P<0.05). Matrigel invasion assay and Transwell migration assay demonstrated that knockdown of PAK6 markedly attenuated the invasion and migration of A549 cells (P<0.05). The cytoskeletal actin remodeling and reduction of stress fibers in A549 cells transfected with siPAK6 were observed under confocal microscope. CONCLUSION:PAK6 may affect the invasive and migratory abilities of non-small-cell lung cancer cells by cytoskeletal actin remodeling.  相似文献   

10.
ZHAO Ke  LIU Kang-dong 《园艺学报》2017,33(7):1163-1170
AIM:To investigate the effects of microRNA (miRNA)-483-3p on the growth and migration of human glioma cell line A172 and its potential mechanisms.METHODS:The abundance of miRNA-483-3p in human embryonic kidney 293 cells and different human glioma cell lines (A172,U251 and SHG44) was measured by RT-qPCR.After down-regulation of miRNA-483-3p by transfection of inhibitor in the A172 cells,the cell viability,cell cycle distribution and cell migration were detected by CCK-8 assay,flow cytometry and Transwell assay,respectively.Furthermore,the protein levels of cell cycle-related molecules and epithelial-mesenchymal transition markers were measured by Western blot.Luciferase reporter assay was used to predict and verify the target gene of miRNA-483-3p.RESULTS:miRNA-483-3p was highly expressed in human glioma cells.Knockdown of miRNA-483-3p inhibited A172 cell viability,arrested cell cycle and decreased cell migration rate.Furthermore,the protein levels of cyclin D1,cyclin-dependent kinase 4,phoshorylated retinoblastoma protein,N-cadherin and vimentin were significantly decreased after knockdown of miRNA-483-3p,accompanied with the up-regulation of E-cadherin and β-catenin protein expression.Luciferase reporter assay demonstrated that Smad4 was a potential target gene of miRNA-483-3p.Down-regulation of Smad4 in the A172 cells transfected with miRNA-483-3p inhibitor partially reversed the effect of miRNA-483-3p on cell viability and migration.CONCLUSION:Knockdown of miRNA-483-3p restrains the growth and migration of A172 cells by targeting Smad4.  相似文献   

11.
AIM: To explore the effect of new artificially synthesized androgen receptor (AR) antagonist HC-1119 on the biological function of triple-negative breast cancer (TNBC) BT549 cells and the molecular mechanism. METHODS: The AR expression was assessed in different human breast cancer cell lines MDA-MB-231, T47D, MCF-7, SKBR3 and BT549 by Western blot. The TNBC BT549 cells with AR positive expression were treated with HC-1119. The cell viability was measured by CCK-8 assay. The apoptosis rate and cell cycle distribution were analyzed by flow cytometry. The migration and invasion abilities were detected by Transwell assay in vitro. The protein expression of E-cadherin, vimentin and P21 was determined by Western blot. RESULTS: AR was positively expressed in BT549 cells. HC-1119 inhibited the cell viability in a time-and dose-dependent manner (P<0.05), increased the percentage of apoptotic cells and the percentage of S-phase cells significantly, repressed the migration and invasion abilities (P<0.05), and decreased P21 expression at protein level (P<0.01). No influence on the expression of E-cadherin and vimentin in the BT549 cells was observed. CONCLUSION: AR antagonist HC-1119 decreases the viability, migration ability and invasion ability, enhances the apoptosis, and arrests the cell cycle distribution of TNBC BT549 cells. HC-1119 represses the viability of BT549 cells by down-regulating P21 expression, while the process of epithelial-mesenchymal transition is not involved in the inhibition of cell migration.  相似文献   

12.
AIM:To study the effects of microRNA-105(miR-105) on the cell proliferation, migration and invasion abilities of non-small-cell lung cancer (NSCLC) H460 cells, and further to explore its mechanism. METHODS:The expression of miR-105 and kinesin family member C1 (KIFC1) mRNA in the NSCLC tissues and adjacent tissues and cells was detected by RT-qPCR. The protein expression of KIFC1 in the NSCLC tissues, adjacent normal tissues and cells was determined by Western blot. The H460 cells were divided into miR-105 group (transfection with miR-105 mimics), miR-negative control (NC) group (transfection with miR-NC), inhibitor-NC group (transfection with NC of inhibitor), inhibitor-miR-105 group (transfection with miR-105 inhibitor), si-NC group (transfection with NC siRNA), si-KIFC1 group (transfection with KIFC1 siRNA), miR-105+vector group (miR-105 mimics and pcDNA 3.1 co-transfection) and miR-105+KIFC1 group (miR-105 mimics and pcDNA 3.1-KIFC1 co-transfection). The cell proliferation was measured by MTT assay and colony formation assay. The migration and invasion abilities were detected by Transwell methods. The relative luciferase acitivity was evaluated by double luciferase reporter assay. RESULTS:Compared with the adjacent tissues, the expression of miR-105 was significantly decreased and the expression of KIFC1 was significantly increased in NSCLC tissues (P<0.05). Compared with human normal embryonic lung fibroblasts MRC-5, the expression of miR-105 in the H460 cells was significantly decreased, and the expression of KIFC1 was significantly increased (P<0.05). miR-105 inhibited the relative luciferase activity of H460 cells with wild-type KIFC1 and negatively regulated the protein expression of KIFC1. Over-expression of miR-105 and knockdown of KIFC1 expression significantly inhibited the proliferation, migration and invasion abilities of H460 cells. Over-expression of KIFC1 reversed the inhibitory effect of miR-105 on the cell proliferation, migration and invasion abilities of H460 cells. CONCLUSION:miR-105 inhibits the proliferation, migration and invasion abilities of NSCLC cells. The mechanism may be related to targeting and negatively regulating expression of KIFC1.  相似文献   

13.
14.
AIM To explore the effects of sphingosine kinase 1 (SphK1) on the migration and invasion of non-small-cell lung cancer (NSCLC) cells and its mechanism. METHODS Thirty-one tumor specimens, which were surgically resected and routinely histologically confirmed as NSCLC, and matched adjacent lung tissues were selected. Immunohistochemical staining and RT-qPCR were used to detect the expression of SphK1. The pcDNA3.1-SphK1 vector (SphK1 group), empty pcDNA3.1 vector control (NC group), SphK1 siRNA (siSphK1 group) or control siRNA (siNC group) was transfected into human lung adenocarcinoma A549 cells, and the protein levels of SphK1, E-cadherin, fibronectin and p-ERK1/2 were determined by Western blot. The effects of over-expression of SphK1 and inhibition of ERK1/2 on migration and invasion of A549 cells were evaluated by Transwell assays. RESULTS SphK1 was highly expressed in the NSCLC tissues and was associated with tumor stage. SphK1 over-expression significantly promoted the migration and invasion of A549 cells, increased the protein levels of p-ERK1/2 and fibronectin, and decreased the protein expression of E-cadherin (P<0.05), but the opposite result was observed after SphK1 interference. The ERK1/2 inhibitor U0126 significantly inhibited the up-regulation of p-ERK1/2 and fibronectin levels and the down-regulation of E-cadherin expression induced by SphK1 over-expression, and also inhibited the invasion and migration of A549 cells promoted by SphK1 over-expression (P<0.05). CONCLUSION SphK1 may reduce E-cadherin protein levels, increase fibronectin protein levels, and promote the invasion and migration of NSCLC cells through ERK1/2 signaling pathway.  相似文献   

15.
AIM: To investigate the regulatory mechanism of β-estradiol in the invasion and migration of lung cancer A549 cells. METHODS: Breast cancer MCF-7 cells and lung cancer A549 cells were cultured in vitro. The MCF-7 cells were used as the estrogen receptor (ER) positive expression cell model. Real-time PCR and immunofluorescence were employed to measure the expression level and the localization of ER in A549 cells. The phosphorylation of ERK1/2 upon β-estradiol stimulation was quantified by Western blot. The invasion and migration abilities of A549 cells upon β-estradiol stimulation with or without ERK1/2 inhibitor PD98059 were measured by Transwell and Cell-IQ assays. RESULTS: ERβ was the dominant ER subtype in the A549 cells and primarily comprised of ERβ2 and ERβ5. Immunofluorescence revealed that ERβ expression was mainly localized in the cytoplasm. β-estradiol induced phosphorylation of ERK1/2 and promoted the invasion and migration of the cells. Inhibition of ERK1/2 signaling reversed β-estradiol-promoted invasion and migration of A549 cells. CONCLUSION: ERβ-mediated membrane-initiated steroid signaling is involved in the process of β-estradiol-promoted invasion and migration of A549 cells, through which ERK1/2 signaling plays a pivotal role.  相似文献   

16.
AIM: To investigate the role of microRNA-101-3p (miRNA-101-3p) on the proliferation, apoptosis and invasion of gastric cancer cells and the possible regulatory mechanisms. METHODS: The expression of miRNA-101-3p in two kinds of gastric cancer cells and a gastric mucosal cell line was detected by real-time PCR. The miRNA-101-3p was overexpressed by Lipofectamine 2000 transfection with miRNA-101-3p mimics. The effects of miRNA-101-3p on cell cycle distribution and apoptosis were analyzed by flow cytometry. The effects of miRNA-101-3p on cell proliferation and migration abilities were detected by CCK-8 assay, trypan blue exclusion test and Transwell assay. The protein expression of enhancer of zeste homolog 2 (EZH2) was determined by Western blot. RESULTS: The expression of miRNA-101-3p in gastric cancer cells was lower than that in gastric mucosal cells (P<0.05). The gastric cancer cell MGC-803 had the lowest expression level of miRNA-101-3p. The result of flow cytometry showed that the population of S phase was reduced, and the population of G0/G1 phase and the early stage apoptotic rate were increased after the expression of miRNA-101-3p was overexpressed (P<0.05). The results of CCK-8 assay, trypan blue exclusion test and Transwell assay showed that overexpression of miRNA-101-3p significantly reduced the proliferation and migration abilities of gastric cancer cells (P<0.05). Overexpression of miRNA-101-3p decreased the protein level of EZH2 (P<0.05). CONCLUSION: miRNA-101-3p may suppresses the gastric cancer cell proliferation and migration, and promotes the gastric cancer cell apotosis by down-regulation of EZH2.  相似文献   

17.
AIM:To investigate the effects of luteolin on the invasion and epithelial-mesenchymal transition (EMT) induced by transforming growth factor-β1 (TGF-β1) in lung cancer A549 cells. METHODS:The effect of luteolin at 5, 10, 20, 40, 80 and 160 μmol/L on the viability of A549 cells was measured by MTT assay. The invasion ability was analyzed by Transwell method. The morphological changes of the A549 cells were observed under microscope.The protein expression of E-cadherin and vimentin in the A549 cells were determined by Western blot. RESULTS:The viability of the A549 cells was significantly inhibited by luteolin in a dose-time dependent manner (P<0.05). The IC50 of luteolin for the A549 cells (24 h) was 68.79 μmol/L, while that (48 h) was 47.86 μmol/L. TGF-β1 induced morphological alteration of the A549 cells from epithelial to mesenchymal forms. Luteolin significantly inhibited TGF-β1-induced invasion of the A549 cells (P<0.01). The protein expression of E-cadherin was significantly down-regulated and the protein expression of vimentin was significantly up-regulated in the presence of TGF-β1 at 5 μg/L (P<0.01). However, luteolin reversed TGF-β1-induced EMT, up-regulation of E-cadherin and down-regulation of vimentin (P<0.01). CONCLUSION:Lu-teolin reverses TGF-β1-induced EMT in the lung cancer A549 cells.  相似文献   

18.
AIM: To explore the inhibitory effects of pantoprazole sodium on epithelial-mesenchymal transition and cisplatin resistance in lung cancer cells and the underlying mechanism.METHODS: Using MTT method, wound healing assay, Transwell experiment, Western blot, the differences of morphology, invasion ability, migration ability, drug sensitivity and protein expression between A549/DDP cells and A549 cells were determined. The effect of pantoprazole sodium on morphology, invasion ability, migration ability, drug sensitivity and protein expression in A549/DDP cells were also observed.RESULTS: Compared with A549 cells, A549/DDP cells had higher invasion and migration abilities, and lower drug sensitivity, exhibited mesenchymal phenotype and activated c-Met/AKT/mTOR pathway. Pantoprazole sodium inhibited the abilities of invasion and migration, and reversed the mesenchymal phenotype, drug resistance and the c-Met/AKT/mTOR pathway activation in A549/DDP cells. Treatment with c-Met inhibitor SU11274, PI3K inhibitor LY294002 and mTOR inhibitor rapamycin had the same effects on A549/DDP cells as that of pantoprazole sodium.CONCLUSION: Pantoprazole sodium inhibits invasion, migration, epithelial-mesenchymal transition and cisplatin resistance in lung cancer cells by down-regulating c-Met/AKT/mTOR pathways.  相似文献   

19.
AIM: To explore the mechanism of p21-activated kinase 4 (PAK4) on non-small-cell lung cancer (NSCLC) migration and invasion.METHODS: After A549 and NCI-H520 cell lines were transfected with PAK4-siRNA or negative control, the expression of PAK4 at mRNA and protein levels was detected by real-time PCR and Western blot, respectively. The invasion and migration of A549 cells and NCI-H520 cells were measured by Matrigel invasion assay and Transwell migration assay. LIMK1, cofilin, and their respective phosphorylation were examined by Western blot. The interaction of PAK4 and LIMK1 was investigated by co-immunoprecipitation assay. The relationship between PAK4 and LIMK1 phosphorylation was examined by a protein kinase assay in the A549 cells and NCI-H520 cells. The expression of PAK4 and p-LIMK1 in 10 human NSCLC tissues was examined by Western blot. A549 cells and NCI-H520 cells were individually or commonly transfected with PAK4-siRNA or LIMK1 plasmid in order to observe the cell migration and invasion. RESULTS: After A549 cells and NCI-H520 cells were transfected with PAK4-siRNA for 48 h, the expression of PAK4 at mRNA and protein levels, and the numbers of invasion and migration cells in PAK4-siRNA group were lower than those in control group. Compared with control group, the phosphorylation of LIMK1 and cofilin was lower in PAK4-siRNA group, whereas the total expression levels of LIMK1 and cofilin did not change. The results of co-immunoprecipitation assays showed that PAK4 specifically interacted with LIMK1 in A549 and NCI-H520 cells. LIMK1 phosphorylation in the presence of PAK4 (K350M) was significantly lower than that in the presence of PAK4 (WT) or PAK4 (S445N) in the protein kinase assay. The PAK4 upregulation was positively correlated with the level of p-LIMK1 (P<0.05). After A549 cells and NCI-H520 cells were co-transfected with PAK4-siRNA and LIMK1 plasmid, the migration and invasion cell numbers in co-transfection group were higher than those in PAK4-siRNA transfection group. CONCLUSION: PAK4 promotes the invasive and migratory abilities of NSCLC, which is mediated by LIMK1 phosphorylation.  相似文献   

20.
AIM: To investigate the effects of curcumin on the abilities of migration and invasion in the lung cancer PC-9 cells, and to observe the relationship between curcumin and nectin-4 expression.METHODS: The viability, migration and invasion of lung cancer PC-9 cells treated with curcumin or transfected with siNectin-4 were measured by MTT assay, wound healing test and Transwell assay, respectively. The protein levels of nectin-4, p-AKT and AKT in the PC-9 cells treated with curcumin or transfected with siNectin-4 were detected by Western blot.RESULTS: Curcumin inhibited the viability of PC-9 cells. The wound healing rates and the numbers of the transmembrane cells in curcumin 10 μmol/L and 20 μmol/L groups were decreased compared with control group without curcumin treatment. The expression level of nectin-4 was reduced after curcumin treatment for 24 h. The viability of the PC-9 cells was significantly inhibited after transfected with siNectin-4 for 48 h or 72 h (P<0.01), and the wound healing rates was decreased in siNectin-4 group compared with NC group (P<0.01). The numbers of the transmembrane cells in siNectin-4 group was significantly reduced (P<0.01). Curcumin and knockdown of nectin-4 suppressed the activation of AKT pathway in PC-9 cells. In siNectin-4+curcumin group, the cell viability reduced compared with curcumin group, and wound healing rates, cell invasive ability and AKT phosphorylation levels were decreased.CONCLUSION: Curcumin inhibits migration and invasion of the lung cancer PC-9 cells via down-regulation of nectin-4 expression and inhibition of AKT pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号