首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
An important component of monitoring pollution of urban road-deposited sediment (RDS) is an understanding of the temporal variability in its composition and physical characteristics. This study set out to determine what the monthly variability in metal concentrations, organic matter content, grain-size and grain-size fraction metal-loadings are in inner city sites in Manchester, northwest England. The results show that there is significant temporal variability in metal (Pb, Zn, Fe, Mn) concentration in RDS from inner city Manchester. There was no significant temporal variability in grain-size characteristics or organic matter content, indicting that these metal variations were the result of variation in sources and accumulation processes. Pb and Zn displayed local variability, suggesting local controls on variability, whereas Fe and Mn displayed consistent variability across all sites, suggesting a common, larger-scale control on variability. The finest grain-size fraction (<63 μm) contained the highest Pb, Cu and Zn concentrations, but for the case of Fe and Mn, the coarser fractions (>300 μm) commonly contained the highest concentrations, again suggesting differing controls. For all metals, due to the weight percent dominance of the coarser fractions, the dominant loading of metals is in the coarser fractions. This has implications on management strategies, via street sweeping and the subsequent waste disposal, and on the modelling of the input of RDS and associated metals into surface waterways. The recognition of significant temporal variability of metal concentrations in RDS, independent of grain-size changes, implies that the monitoring of urban road sediment pollution will require not just consideration of spatial variability, but the design of schemes that will capture temporal variability also.  相似文献   

2.
Freshly deposited stream sediments from six urban centres of the Ganga Plain were collected and analysed for heavy metals to obtain a general scenery of sediment quality. The concentrations of heavy metals varied within a wide range for Cr (115–817), Mn (440–1 750), Fe (28 700–61 100), Co (11.7–29.0), Ni (35–538), Cu (33–1 204), Zn (90–1 974), Pb (14–856) and Cd (0.14–114.8) in mg kg-1. Metal enrichment factors for the stream sediments were <1.5 for Mn, Fe and Co; 1.5–4.1 for Cr, Ni, Cu, Zn and Pb; and 34 for Cd. The anthropogenic source in metals concentrations contributes to 59% Cr, 49% Cu, 52% Zn, 51% Pb and 77% Cd. High positive correlation between concentrations of Cr/Ni, Cr/Cu, Cr/Zn, Ni/Zn, Ni/Cu, Cu/Zn, Cu/Cd, Cu/Pb, Fe/Co, Mn/Co, Zn/Cd, Zn/Pb and Cd/Pb indicate either their common urban origin or their common sink in the stream sediments. The binding capacity of selected metals to sediment carbon and sulphur decreases in order of Zn > Cu > Cr > Ni and Cu > Zn > Cr > Ni, respectively. Stream sediments from Lucknow, Kanpur, Delhi and Agra urban centres have been classified by the proposed Sediment Pollution Index as highly polluted to dangerous sediments. Heavy metal analysis in the <20-μm-fraction of stream sediments appears to be an adequate method for the environmental assessment of urbanisation activities on alluvial rivers. The present study reveals that urban centres act as sources of Cr, Ni, Cu, Zn, Pb and Cd and cause metallic sediment pollution in rivers of the Ganga Plain.  相似文献   

3.
Heavy metal transport in Cauvery river chiefly takes place in the particulate form. Tributaries Hemevathi and Kabini draining highly mineralized areas contribute significantly to the heavy metal load of the Cauvery river. Particulate metal transport is influenced by the presence of major dams built across the river. Factor analysis of the elemental data identifies two major group of heavy metals, (a) Fe, Mn, Cr, V and Ti and (b) Cu, Pb and Zn in the suspended sediments of Cauvery river. Heavy metals in surface sediments show wide variations in their concentrations due to the non-uniform grain size distribution of the sediments. The elements Fe, Mn, Pb, Cu, Zn, Ni, Co and As are dominantly present in the <20 μm fraction of the river sediments. Speciation studies show that Fe-Mn oxide phase held the largest share of heavy metals in the sediments. The depth variation of heavy metals in the core sediments suggest their similar mobility during diagenesis. Geoaccumulation indices calculated suggest that Cd, Zn, Cr, Pb, Cu and Ni are enriched in sediments several times over background values.  相似文献   

4.

Purpose

A study was carried out to evaluate the concentration of heavy metals (Pb, Cu, Cr, Cd, and Hg) and total petroleum hydrocarbons (TPH) in road-deposited sediments (RDS) from Tijuana, Mexico, and identify their possible sources.

Materials and methods

Thirty RDS samples were randomly collected during the dry season using a brush and dustpan and classified according to construction material, traffic intensity, and land use. Soil samples were collected from a nonurban area and their concentrations were used as background values. For TPH, the samples were quantified gravimetrically after Soxhlet extraction, whereas heavy metals were extracted by acid digestion and their concentrations were measured by atomic absorption spectrometry.

Results and discussion

The mean TPH concentrations for RDS were 4208 mg kg?1 and ranged from 1186 to 9982 mg kg?1. For heavy metals, mean concentrations were 31.8, 50.2, 17.1, 0.1, and 0.1 mg kg?1 for Pb, Cu, Cr, Cd, and Hg, respectively. The Igeo results showed that RDS from Tijuana are moderately to strongly polluted with Pb and Cu and moderately polluted with Cr. Principal component analysis (PCA) showed that Pb, Cu, and Cr could have their origin in tire wear, brake pads, bearings, and bushings.

Conclusions

The findings of this study revealed that RDS from Tijuana are polluted with TPH and heavy metals and that their principal sources are anthropogenic activities.
  相似文献   

5.
The Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn contents of the sand, silt, and clay fractions were determined for soils, urban street dust and bottom- and suspended-sediments sampled in the Menomonee River watershed, Wisconsin. The samples were dispersed by ultrasound prior to fractionation. The ultrasound dispersion avoids chemical contamination or alteration resulting from use of chemical dispersants and insures the dispersion of aggregates present in mechanically-sieved samples. Chemical analyses of fractionated samples were more precise than analyses of unfractionated samples in identifying areas in the watershed receiving pollutant inputs. Higher levels of Cr, Cu, Fe, and Ni were found in the coarser particles than in the finer particles of urban street dust samples. The Cd, Pb and Zn contents of some bottom and suspended sediments were greater than in the soils of the watershed. Contents of these metals were correlated significantly with each other in the clay-sized fraction of sediments but not in soils. The metal contents of sediments were largely controlled by vehicular emission.  相似文献   

6.
The relationships between heavy metal concentrations and physico-chemical properties of natural lake waters and also with chemical fractions of these metals in lake sediments were investigated in seven natural lakes of Kumaun region of Uttarakhand Province of India during 2003–2004 and 2004–2005. The concentrations of Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb in waters of different lakes ranged from 0.29–2.39, 10.3–38.3, 431–1407, 1.0–6.6, 5.3–12.1, 12.6–166.3, 0.7–2.7 and 3.9–27.1 μg l?1 and in sediments 14.3–21.5, 90.1–197.5, 5,265–6,428, 17.7–45.9, 13.4–32.0, 40.0–149.2, 11.1–14.6 and 88.9–167.4 μg g?1, respectively. The concentrations of all metals except Fe in waters were found well below the notified toxic limits. The concentrations of Cr, Mn, Ni, Cu, Zn, Cd and Pb were positively correlated with pH, electrical conductivity, biological oxygen demand, chemical oxygen demand and alkalinity of waters, but negatively correlated with dissolved oxygen. The concentrations of Cr, Ni, Zn, Cd and Pb in waters were positively correlated with water soluble + exchangeable fraction of these metals in lake sediments. The concentrations of Zn, Cd and Pb in waters were positively correlated with carbonate bound fraction of these metals in lake sediments. Except for Ni, Zn and Cd, the concentrations of rest of the heavy metals in waters were positively correlated with organically bound fraction of these metals in lake sediments. The concentrations of Cr, Mn, Ni, Cu and Zn in waters were positively correlated with reducible fraction of these metals in lake sediments. Except for Cd, the concentrations of rest of the metals in waters were positively correlated with residual fraction and total content of these heavy metals in lake sediments.  相似文献   

7.
内蒙古草原白乃庙铜矿区土壤重金属污染特征研究   总被引:4,自引:0,他引:4  
对位于内蒙古荒漠草原上的白乃庙铜矿采选矿区土壤和尾矿区周围土壤重金属污染状况进行了调查研究。结果表明,矿区土壤中Cu、Cr、Ni、Fe和Mn浓度均高于内蒙古土壤平均值。单因子指数法评价结果表明,五个调查区域土壤都受到了重金属Cu、Cr、Ni、Mn、Fe的污染,其中Cu为重污染,Cr、Ni、Mn、Fe为轻污染,Pb为安全级别,Zn和As只对某些区域有轻污染。综合污染指数法评价结果表明,五个调查区域的土壤重金属污染等级均属重污染,主要贡献元素是Cu,其次是Cr、Ni、Mn、Fe,这与尾矿砂中这些重金属的浓度是相对应的。由于周边地形复杂,多为低山丘陵,所以该地区主导风向对于尾矿库区不同方向土壤重金属污染水平的影响差异并不显著。  相似文献   

8.
杭州市城市土壤中重金属、磷和其它元素的特征   总被引:30,自引:0,他引:30  
Health implications of inhaling and/or ingesting dust particles with high concentrations of heavy metals from urban soils are a subject of intense concern. Understanding the geochemistry of these metals is key to their effective management. Total concentrations of heavy metals, phosphorus (P) and 8 other elements from topsoil samples collected at 82 locations in Hangzhou City were measured to: a) assess their distribution in urban environments; and b) understand their differentiation as related to land use. Metal mobility was also studied using a three-step sequential chemical fractionation procedure. About 8.5%, 1.2%, 3.6%, 11.0% and 30.3% of the soil samples had Cd, Cr, Cu, Pb, and Zn concentrations, respectively, above their allowable limits for public and private green areas and residential use. However, in commercial and industrial areas, most samples had metal concentrations below their allowable limits. Statistical analyses revealed that the 16 measured elements in urban soils could be divided into four groups based on natural or anthropic sources using a hierarchical cluster analysis. Additionally, Cu, Pb, and P showed similar spatial distributions with significant pollution in commercial zones, suggesting vehicle traffic or commercial activities as dominant pollutant sources. Also, Cd, Co, Cr, Ni, Zn, Mn and Fe had the highest concentrations in industrial locations, signifying that industrial activities were the main sources of these seven metals. Moreover, the data highlighted land-use as a major influence on heavy metal concentrations and forms found in topsoils with large proportions of soil Cd, Co, Cr, and Ni found in residual fractions and soil Cu, Pb and Zn mainly as extractable fractions.  相似文献   

9.
Adamo  Paola  Dudka  S.  Wilson  M. J.  McHardy  W. J. 《Water, air, and soil pollution》2002,137(1-4):95-116
The sequential extraction procedure proposed by the European Commission Measurement and Testing Programme, combined with Scanning Electron Microscopy and Energy Dispersive X-ray Analysis(SEM/EDS), was applied to identify and quantify the chemical andmineralogical forms of Cu, Ni, Fe, Mn, Zn, Pb, Cr and Cd presentin the topsoil from a mining and smelting area near Sudbury (Ontario, Canada). The possible mobility of the chemical forms was also assessed. The metal fractions: (1) soluble and exchangeable, (2) occluded in manganese oxides and in easily reducible iron oxides, (3) organically bound and in form of sulphides, (4) residual mainly present in the mineral lattice structures were separated. Cu and Ni were the major metallic contaminants, occurring in soils in broad ranges of concentrations: Cu 11–1890 and Ni 23–2150 mg kg-1. Cu was uniformly distributed among allthe extracted fractions. Ni was found associated mainly withthe residual forms, accounting for 17–92%, with an averageof 64%, of the total Ni present in the soils. Fe, Mn, Zn,Pb, Cr and Cd, while occurring in most analysed samples innormal soil concentrations, were primarily held in theresidual mineral fraction (on average >50%). The solubleand exchangeable forms made a small contribution (≤8.1%)to the total content of metals extracted. At least 14% ofthe total Cd, Mn and Pb was mobilised from the reducibleforms. The oxidizable fraction assumed mean values higher than10% only for Pb and Zn. Statistical treatment of the experimental data showed significant correlations between totalmetal content of the soils, some soil properties such as pH value, clay and organic matter content, and metal concentrationsin the various fractions. SEM/EDS analysis showed Fe in form ofoxides and sulphides in soils and Cu, Ni, Mn, Zn and Cr in association with iron oxides. Numerous black carbonaceous particles and precipitates of aluminium fluoride salts, observedin the solid residue left after `total’ digestion, were found tocontain Fe, Ni and Cr.  相似文献   

10.
The objective of this study was to test the suitability of a simple approach to identify the direction from where airborne heavy metals reach the study area as indication of their sources. We examined the distribution of heavy metals in soil profiles and along differently exposed transects. Samples were taken from 10 soils derived from the same parent material along N-, S-, and SE-exposed transects at 0—10, 10—20, and 20—40 cm depth and analyzed for total Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn concentrations. The heavy metal concentrations at 0—10 cm were larger than background concentrations in German arable soils except for Cr (Cd: 0.6—1.8 mg kg—1; Cr: 39—67; Cu: 40—77; Ni: 87—156; Pb: 48—94; Zn: 71—129; Fe: 26—34 g kg—1; Mn: 1.1—2.4). Decreasing Cd, Cu, Mn, and Pb concentrations with increasing soil depth pointed at atmospheric inputs. Aluminum and Ni concentrations increased with soil depth. Those of Fe, Cr, and Zn did not change with depth indicating that inputs at most equalled leaching losses. The Pb accumulation in the surface layer (i.e. the ratio between the Pb concentrations at 0—10 to those at 20—40 cm depth) was most pronounced at N-exposed sites; Pb obviously reached Mount Križna mainly by long-range transport from N where several industrial agglomerations are located. Substantial Cd, Cu, and Mn accumulations at the S- and SE-exposed sites indicated local sources such as mining near to the study area which probably are also the reason for slight Cr and Zn accumulations in the SE-exposed soils. Based on a principal component analysis of the total concentrations in the topsoils four metal groups may be distinguished: 1. Cr, Ni, Zn; 2. Mn, Cd; 3. Pb (positive loading), Cu (negative loading); 4. Al, Fe, indicating common sources and distribution patterns. The results demonstrate that the spatial distribution of soil heavy metal concentrations can be used as indication of the location of pollution sources.  相似文献   

11.
The objective of this study was to investigate changes of total concentrations and various extract-defined Al and heavy metal fractions in Slovak agricultural soils during the last 25 years. We compared 7 stored soil samples collected between 1966 and 1970 with samples collected in 1994 at the same sites. Seven fractions of Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were determined with a sequential extraction procedure in all samples. Total concentrations of Cd, Zn, Mn, Ni, and Cu were lower in the 1994 samples; those of Al, Fe, Pb, and Cr were higher. Based on the initial concentrations, the average total concentration changes were: Cd(-10,3%)<Zn(-7,2%)<Mn(-4,8%)<Ni(-2,3%)<Cu(-1,4%)<Al(+2,1%)<Fe(+2,9%)<Cr(+7,4%)<Pb(+8,3%). This row is consistent with the decrease in metal mobility. The differences in salt-extractable metals showed the same pattern; however, changes were more pronounced than for total concentrations. The results suggest that decreases during the last 25 years are caused by higher leaching than deposition rates and increases vice versa. The highest increase in Cr and Pb concentrations is observed in the EDTA-extractable fraction, which mainly characterizes organically bound metals.  相似文献   

12.
浙江省永康城市土壤重金属元素富集特征   总被引:7,自引:1,他引:6  
永康169个城市土壤X荧光光谱测试分析表明:Cu、Mn、Co、Fe、Cr、Pb、Ni、Ti八种重金属元素的平均含量超过金衢盆地土壤背景值,且以工业用地类样品的富集程度最高。永康城市土壤重金属污染水平呈整体较轻,局部严重态势;各重金属元素的离散程度均较大,Cu为强变异元素,变异系数为152.93%,其他元素也为中强变异,表明永康城市土壤重金属元素含量在研究区内有较大差异。多元统计分析表明,Cr、Ni、Cu、Pb、Mn等重金属元素主要来源于当地的五金制造等工业和交通运输的影响;Fe、Ti、Co来源主要与成土过程中元素的积累有关,其中Fe有部分来源于五金生产。  相似文献   

13.
This paper reports the results of a study focused on the metal (Cd, Co, Cr, Cu, Ni, Pb, Sb, U and Zn) distribution in soils and uptake and accumulation by earthworms Nicodrilus caliginosus (Savigny) from urban, peri-urban, green-urban and non-urban zones of Siena municipality (central Italy). The main goal was to define the influence of soil properties and metal soil contents on the uptake of these contaminants by earthworms. Data indicated that Cd, Cu, Pb, Sb and Zn soil contents increased in the following order: non-urban < green-urban < peri-urban < urban soils, suggesting that vehicular traffic affects the distribution of these metals. Pb and Sb were the main soil contaminants and their highest enrichments were found in urban sites where stop-and-go traffic occurs. Concentrations of these traffic-related metals in earthworms showed a distribution pattern similar to that in soil, suggesting that soil contamination influenced the uptake of Cd, Cu, Pb, Sb and Zn by N. caliginosus. There were significant positive correlations between Cd, Pb and Sb earthworm concentrations and their soil contents. The lack of correlation for Cu and Zn could be due to the physiological regulation of these elements by earthworms. Statistical analysis pointed out that the uptake and accumulation of Cd, Cu, Pb, Sb and Zn by earthworms were affected by some soil physicochemical properties such as the organic carbon and carbonate contents that are able to rule the bioavailability of metals in soils.  相似文献   

14.
Health implications of inhaling and/or ingesting dust particles with high concentrations of heavy metals from urbansoils are a subject of intense concern. Understanding the geochemistry of these metals is key to their effective management. Total concentrations of heavy metals, phosphorus (P) and 8 other elements from topsoil samples collected at 82locations in Hangzhou City were measured to:a) assess their distribution in urban environments;and b) understand theirdifferentiation as related to land use. Metal mobility was also studied using a three-step sequential chemical fractionationprocedure. About 8.5%, 1.2%, 3.6%, 11.0% and 30.3% of the soil samples had Cd, Cr, Cu, Pb, and Zn concentrations,respectively, above their allowable limits for public and private green areas and residential use. However, in commercialand industrial areas, most samples had metal concentrations below their allowable limits. Statistical analyses revealedthat the 16 measured elements in urban soils could be divided into four groups based on natural or anthropic sourcesusing a hierarchical cluster analysis. Additionally, Cu, Pb, and P showed similar spatial distributions with significantpollution in commercial zones, suggesting vehicle traffic or commercial activities as dominant pollutant sources. Also, Cd,Co, Cr, Ni, Zn, Mn and Fe had the highest concentrations in industrial locations, signifying that industrial activities werethe main sources of these seven metals. Moreover, the data highlighted land-use as a major influence on heavy metalconcentrations and forms found in topsoils with large proportions of soil Cd, Co, Cr, and Ni found in residual fractionsand soil Cu, Pb and Zn mainly as extractable fractions.  相似文献   

15.
云南滇池沉积物中重金属的形态分布特征   总被引:7,自引:0,他引:7  
Fractionation of heavy metals in sediments can help in understanding potential hazards of heavy metals. The present study analyzed total concentrations and fractions of selected heavy metals (Cd, Cr, Cu, Pb, and Zn) in surface sediments from Dianchi Lake, Yunnan Province, China, as well as factors that may affect distributions of the various heavy metal fractions. Total concentrations of the heavy metals decreased in the order Zn 〉 Cu 〉 Pb 〉 Cr 〉 Cd. These heavy metals, except Cr, were much higher than their background levels, indicating that Dianchi Lake was polluted by Cd, Zn, Pb, and Cu. Cadmium occurred mainly as the non-residual fraction (sum of the HOAc-soluble, reducible, and oxidizable fractions) (97.6%), and Zn (55.7%) was also predominantly found in the non-residual fraction. In contrast, most of the Cr (88.5%), Pb (81.8%), and Cu (59.2%) occurred in the residual fraction. Correlation analysis showed that total heavy metal concentrations, organic matter and reducible Fe were the main factors affecting the distributions of the various heavy metal fractions. In the Walhai section of Dianchi Lake (comprising 97% of the lake area), the concentrations of Cd, Zn, Pb, and Cu in the non-residual fraction were significantly lower (P ≤ 0.01 or 0.05) than those of the Caohal section (3% of the lake area). This indicated that potential heavy metal hazards in the Caohai section were greater than the Waihai section.  相似文献   

16.
A total of 50 farmland soil samples were collected from the Yanqi County, Xinjiang, China, and the concentrations of eight heavy metal elements (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn) were determined by standard methods. The spatial distribution, pollution level and ecological risk status of heavy metals were analyzed based on GIS technology, the Geo-accumulation Index (Igeo), the Pollution Load Index (PLI) and the Potential Ecological Risk Index (RI). Results indicated that: (1) The average contents of Cd, Cr, Ni, Pb, and Zn of farmland soils exceeded the background values of irrigation soils in Xinjiang by 1.5, 1.40, 1.33, 2.63, and 4.92 times, respectively. Cd showed a no-pollution level, Zn showed a partially moderate pollution level, Pb showed a slight pollution level, and Cr, Cu, As, Mn, and Ni showed no-pollution level, compared to the classification standard. The PLI values of heavy metal elements of farmland soils varied from 0.83 to 1.89, with an average value of 1.29, at the moderate pollution level. (2) The Individual Potential Ecological Risk Index for heavy metals in the study area was ranked in the order of: As > Ni > Cu > Cd > Pb > Cr> Zn. The RI values of heavy metals of farmland soils varied from 3.45 to 11.34, with an average value of 6.13, at the low ecological risk level. (3) Cu and Mn of farmland soils were mainly originated from the soil parent material and topography of the study area. As, Cd, Ni and Pb were mainly originated from human activities, and Cr and Zn may originated from both natural and anthropogenic factors in the study area.  相似文献   

17.
Ikem  A.  Egiebor  N. O.  Nyavor  K. 《Water, air, and soil pollution》2003,149(1-4):51-75
The concentrations of trace elements in water, sediment and fish samples from Tuskegee Lake located in Southeastern United States were investigated in this study. The Lake is utilized both as a source for municipal drinking water, and for recreational fishing. The water quality characteristics over two sampling periods, the speciation of metals in the Lake sediments, the risk to water column contamination and levels of heavy metals in largemouth bass (Micropterus salmoides) samples from the Lake were evaluated. The Lake water quality characteristics were mostly below the recommended drinking water standards by the United StatesEnvironmental Protection Agency (US EPA) and the European Union (EU) except for aluminum, iron, manganese and thallium. In addition, the average values of Cr, As, Mn, Zn and Cl- in the water samples analyzed were higher than the respective reference values for fresh water. To study the speciation of metals in the Lake sediments, ten elements (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn) in four grain sizes (< 710 μm – 250 μm, < 250 μm – 75 μm, < 75 μm – 53μm, and < 53 μm) were subjected to sequential extractions. Irrespective of grain size, the elements analyzed were distributed in both the non-residual and residual phases except Ni that was found only in the residual fraction. The potential risk to Lake water contamination was highest downstream (Sites 1 and 2) based on the calculated global contamination factors. From the calculated individual contamination factors, Mn and Pb followed by Zn, Cu, Cr, Co and V posed the highest risk to water contamination. Based on this study, the human health risks for heavy metals in fish caught from Tuskegee Lake are low for now, and irrespective of the source of fish, concentrations of metals in muscle tissues were all below the recommended Food and Agriculture Organization (FAO) maximum limits for Pb (0.5 mg Kg-1), Cd (0.5 mg Kg-1), Cu (30 mg Kg-1), and Zn (30 mg Kg-1) in fish.  相似文献   

18.

Background Goal and Scope  

The application of solid-liquid extraction is proposed to assess extractable fractions of components in soil. The application of a several step scheme could give a lot of information about mobility of metals associated with specific solid phases, especially after separation of top and bottom layers of studied soil. In this study, it was aimed to take into solution metal fractions of major (Ca, Mg, Mn, Fe) and trace elements (Cr, Co, Cu, Zn, As, Cd, Pb) from soil collected in urban areas. The fractions were defined by using chemical extraction operationally. The extraction behavior of studied elements in a six-step sequential extraction procedure is discussed with respect to the properties of the reagents used.  相似文献   

19.
Increasing concerns about potential environmental effects of ethylenediaminetetraacetic acid (EDTA) accumulation in soils require better understanding of its behavior and its effect on trace element mobilization. In this study we investigated the effect of EDTA on soil trace element mobilization in undisturbed soil columns taken from a heavy metal contaminated field. The columns were leached by EDTA solutions of different concentrations under unsaturated, steady‐state conditions. The transport of trace elements (Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sn, Zn) and EDTA was monitored by regularly collecting the leachates. After the termination of the leaching experiment the soil columns were divided into 5 layers to determine trace elements and EDTA concentrations in the soil. The results revealed that the soil analysis alone was not suitable to infer mobilization or immobilization patterns in relation to the EDTA concentration, as the mobilized fraction was too small in relation to the total trace metal concentrations in the soil. Analysis of the leachates displayed that after 2–4 pore volumes the EDTA output concentration reached about 80% of the input concentration. The trace element concentrations in the leachates showed that some elements were mobilized by EDTA (Cd, Cu, Fe, Pb, Co, Ni, Zn) while others were immobilized (Mn, Cr, Mo, Sn) in the soil columns after EDTA application.  相似文献   

20.
The objective of this study was to investigate the changes in the chemical partitioning of Cu, Pb, Cr and Zn within a column of soil incubated with an anaerobic sewage sludge (ANSS) for 2.5 months. The soil was irrigated during the incubation period. A sequential extraction method was used to fractionate these metals into exchangeable, weakly adsorbed, organic, Al oxide, Fe–Mn oxide, and residual, respectively. ANSS was applied at a loading rate of 69 Mg ha?1. The soil is a Dystric Cambisol with low pH (<3.8), low CEC [<10 cmol(+) kg?1 below the first 4 cm depth], and low base saturation (<7%). The addition of the ANSS caused a decrease in concentrations of Cu, Pb, and Cr in the A1 horizon, and an increase in the concentrations with depth. Below the A1 horizon, concentrations of Cu increased uniformly (~1 mg cm?1), and the greatest increases were observed in the residual, Fe–Mn oxides, and weakly adsorbed fractions. Maximum increases in Pb occurred at 4–9 cm of depth (1.6 mg cm?1), and mainly affected the weakly adsorbed fraction. Chromium essentially accumulated at the limit between the A2 and the Bw horizons (1.1–1.5 mg cm?1) as residual and organic bound forms, probably through particulate transport. Zinc mainly accumulated in the A1 horizon (2.9 mg cm?1) as exchangeable Zn. At depth, Zn increments were predominantly observed in the residual fraction. The results of this study thus demonstrate the redistribution of contaminants into different chemical pools and soil layers after sludge amendment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号