首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Controlled tile drainage (CTD) is a management practice designed to retain water and nutrients in the field for crop use. CTD has shown promise for improving water quality and augmenting crop yields but findings are often restricted to field and plot scales. Remote sensing is one of the alternatives to evaluate crop responsiveness to CTD at large spatial scales. This study compared normalized and green normalized difference vegetation indices (NDVI and GNDVI) for corn (Zea mays L.) and soybean (Glycine max L.) among CTD and uncontrolled tile drainage (UCTD) fields in a ∼950 ha experimental watershed setting in Ontario, Canada from 2005 to 2008. The indices were derived from Landsat-5 and SPOT-4 satellite imagery. Log-transformed NDVI and GNDVI for soybean (R3-R6 growth stage) and corn (VT to R5-R6 growth stage) crops were higher significantly (p ≤ 0.05) for CTD, relative to UCTD for 50% (soybean) and 72% (corn) of both the log-transformed NDVI and GNDVI image acquisitions compared; only 17% and 13% were significant (p ≤ 0.05) in the reverse direction (UCTD > CTD). Log-transformed NDVI and GNDVI standard errors for CTD, relative to UCTD fields, were lower for 65% of the significant corn and 71% of the significant soybean NDVI and GNDVI comparisons for the growth stages noted above. This finding suggested overall more uniform crop growth for CTD fields relative to UCTD fields. Observed yields from a subset of commonly managed CTD and UCTD fields in the study area were not significantly different from each other (p > 0.05) with respect to tile drainage management practice; however, 87% of these paired yield comparisons indicated that CTD mean corn/soybean grain yields were greater than or equal to those for UCTD. On average, CTD observed corn and soybean grain yields were 3% and 4%, respectively, greater than those from UCTD. From observed yield and NDVI and GNDVI observations, vegetation indices vs. yield linear regression models were developed to predict grain yields over a broader land base in the experimental watershed area. Here, predicted mean yields were 0.1-11% higher for CTD corn and −5% to 4% higher for CTD soybean, relative to UCTD crops; but results varied between manured and non-manured fertilizer practices. Eighty-nine percent of the standard deviations for these yield predictions were lower for CTD relative to UCTD. The results of this study indicate that at a minimum, CTD did not adversely impact corn and soybean grain yields over the time span and field environments of the study, and based on the weight of evidence presented here, CTD shows general promise for augmenting crop performance. Finally, remote sensing derived vegetation indices such as NDVI and GNDVI can be used to assess the impact of agricultural drainage management practices on crop response and production properties.  相似文献   

2.
Simulation of nitrate-N movement in southern Ontario,Canada with DRAINMOD-N   总被引:1,自引:0,他引:1  
DRAINMOD-N, a mathematical model to predict nitrate-N concentrations in surface runoff and drain outflows from subsurface-drained farmlands, has been tested against field data collected in southern Ontario. The data was collected in a corn field from 16 conventional drainage and subirrigation plots in Woodslee, Ontario, from 1992 to 1994. The model performance was evaluated by comparing the observed and simulated nitrate-N concentrations in surface runoff and drain outflows. A precise calculation of water-table depth is an essential prerequisite for a model to obtain a proper prediction of nitrate-N movement. For the simulation of water-table depth, the lowest root mean square error and the highest correlation coefficient of linear regression were 173 mm and 0.51 for the subirrigation plots; and 178 mm and 0.84 for the subsurface drainage plots. Therefore, the performance of DRAINMOD-N for soil hydrologic simulations was satisfactory and it could be used for assessing nitrogen fate and transport. For the simulation of nitrate-N losses in the subirrigation plots, the lowest root mean square error and the highest correlation coefficient of linear regression were 0.74 kg/ha and 0.98 for surface runoff; and 6.53 kg/ha and 0.91 for drain outflow. For the simulation in the subsurface drainage plots, the lowest root mean square error and the highest correlation coefficient of linear regression were 0.70 kg/ha and 0.96 for surface runoff; and 6.91 kg/ha and 0.92 for drain outflow. The results show that DRAINMOD-N can perform satisfactory simulation of soil hydrology and nitrate-N losses in surface runoff under various water-table management practices. The model can, therefore, be used to evaluate different water pollution scenarios and help in the development and testing of various pollution control strategies for fields in cold weather such as that in southern Canada.  相似文献   

3.
An experimental watershed (Oskotz principal- Op -ca.1700 ha) covered with forest and pasture (cattle-breeding) with an equally experimental sub-watershed (Oskotz woodland - Ow - ca. 500 ha) almost entirely under forest was continuously monitored during 8 years (2001-2008). These watersheds were established by the Government of Navarre (Spain) in order to assess the impact of agricultural activities on different region of Navarre. The first results regarding exported sediment, runoff, nitrate and phosphate are presented herein. These results are compared with those from two grain-sown watersheds previously reported by the authors, elsewhere.The same as in the grain-sown watersheds, most runoff, sediment, nitrate and phosphate yields in Oskotz were generated during winter, though most erosive rainfalls occurred during summer. In Ow, average sediment, nitrate and phosphate yields were approximately: 700, 22, 0.35 kg ha year−1, respectively; for Op these figures were 550, 54 and 0.76 kg ha year−1, respectively.However, total sediment and solute yields were different depending on the prevailing land use: cereal crops > forest > pasture. Sediment yields in the forest were strongly affected by the logging moment, when exported sediment rocketed.Nitrate concentration and yields were lower (and under the critical threshold) in the forested/pastured watersheds than those recorded in the two intensively cultivated watersheds. However, phosphate yields were dramatically higher (and over the critical threshold) in the former watersheds due to the prevailing soil conditions and to the fertilization of pasture, mainly with slurry.The present work, along with that similar one recently reported by the authors, is an unprecedented and relevant piece of research for the region.  相似文献   

4.
Runoff nitrogen from a large sized paddy field during a crop period   总被引:2,自引:0,他引:2  
Nutrient load management is an important environmental issue because nutrient loads from farmlands degrade surface waters as a result of anthropogenic eutrophication. Nitrogen load from a large sized paddy field during the crop period was examined from the results of field measurements carried out in 2004. The 1.5 ha paddy field was located east of Biwa Lake. Irrigation water volume and ponded water depth were continuously observed. Field measurements were carried out at least once a week to analyze total nitrogen (TN) concentration in the irrigation water and ponded water. Daily inflow and outflow of nitrogen was obtained by multiplication of the nitrogen concentration and transported water volume, consisting of irrigation, precipitation, evapotranspiration, percolation and surface discharge. Water outflow volume was calculated by a tank model that consisted of three small tanks connected to represent ponded water depth differences in the large paddy field. The calculated nitrogen load was 18.8 kg ha−1, with 7.2 kg ha−1 from surface drainage and 11.6 kg ha−1 from percolation loss. The runoff nitrogen value of 18.8 kg ha−1 was within the range of the reported values investigated in a medium-sized paddy field. The observed value was close to the value for a low percolation flux paddy field where less irrigation water has been applied. These results suggest that less irrigation water keep runoff nitrogen low. This also indicates that irrigation water management can reduce nitrogen load from large sized paddy fields.  相似文献   

5.
During the last quarter of the 20th century, many irrigation schemes were constructed along the bank of the Senegal River in Mauritania. About 40,000 ha were developed but less than 23,000 ha remain irrigated today. A program for rehabilitation is now in place to counteract deterioration and abandonment of these schemes. This paper presents an evaluation of the rehabilitation of a small, representative irrigation scheme governed by a farmers’ cooperative in the village of Bélinabé. Before rehabilitation, the scheme covered 37.7 ha comprising 107 plots each of 0.33 ha, essentially all devoted to production of rice. Water for irrigation was pumped directly from the river into two head basins and distributed through open canals. After rehabilitation, the scheme was extended to 115 ha with new plots averaging 0.36 ha. Water is now supplied by a single cluster of pumps and conveyed through pipes and open canals. Evaluation of performance consisted in analysis of: capacity; distribution losses; flexibility, adequacy and reliability of the system; maintenance status; farmer's perception of system performance. Field data were collected during irrigation campaigns before rehabilitation in 2004 and during 2006 and 2007 afterwards. A model of network distribution and field water balance was developed to assist evaluation. It was established that before rehabilitation the scheme could operate satisfactorily if proper maintenance were practiced. After rehabilitation, more families have access to irrigation but reliability and flexibility of water distribution have been reduced. Furthermore, pumping capacity is now insufficient to cover crop water requirements. Recommendations are provided for future rehabilitation work and maintenance of schemes generally.  相似文献   

6.
Droughts, resulting in low crop yields, are common in the semi-arid areas of Ethiopia and adversely influence the well-being of many people. The objective of this study was to assess the benefit that in-field rainwater harvesting (IRWH) would have, compared to conventional tillage, on maize yields on a semi-arid ecotope at Dera situated on the eastern part of the Rift Valley. Rainfall-runoff measurements were made during 2003 and 2004 on 2 m × 2 m plots provided with a runoff measuring system and replicated three times for each treatment. There were two treatments: conventional tillage (CT) and no-till (NT), the latter with a flat surface that promotes runoff and therefore IRWH. Rainfall intensity was measured at 1 min intervals with an automatic tipping bucket instrument, and runoff was measured after each rain event. Measured runoff as a function of rainfall intensity and duration from half the rainfall-runoff events was used to determine the critical parameters of a appropriate runoff model. The calibrated model was found to be capable of predicting runoff in a satisfactory way.Rainfall-runoff measurements were made during the rain seasons in 2003 and 2004 during which there were 25 rain events with >9 mm of rain. There was no statistical difference between the runoff on the two treatments. The measured runoff (R) for the two rain seasons, expressed as a fraction of the rainfall during the measuring period (P), i.e. R/P, gave values of 0.46 and 0.39 for the NT and CT treatments, respectively.Results from 7 years of field experiments with IRWH at Glen in South Africa were used to estimate the yield benefit of NT for Dera compared to CT. The results were 696 and 494 kg ha−1 for 2003 and 2004, respectively. Based on the estimated average long-term maize yield of 2000 kg ha−1 at Dera, this was an estimated yield increase ranging from 25% to 35%.  相似文献   

7.
Three field experiments located at Yuhang (YH), Changshu (CS), and Jiaxing (JX) Agricultural Research Stations in the Taihu region of China were conducted to elucidate ammonia volatilization (AV) during rice growing seasons through ‘zero-drainage water management’, combined with sound irrigation, rainfall forecasting and field drying. The experiment at each site had five N rates (0-360 kg N/ha in 90 kg increments). AV was measured by the continuous airflow enclosure method. Results show that AV was completed within 10-12 days after urea application. The peak values of AV rates after the first topdressing (AF1) at N360 treatment could reach 11.2, 9.0, and 8.5 kg N/ha day within 2-4 days at the YH, CS, and JX sites, respectively. It was only necessary to maintain a higher water level during the first ‘flooding-drying’ cycle after the AF1. The seasonal averages of the total AV fluxes accounted for 4.4-15.5%, 4.4-12.6%, and 4.6-10.9% of the applied urea at the YH, CS, and JX sites, respectively, suggesting that the zero-drainage water management with flooding-drying cycles was effective for controlling AV. This study also speculates that the total AV flux during the rice season was more N rates and seasons related than sites.  相似文献   

8.
The objective of this work was to measure and model the runoff for different soils classes at different rainfall intensities (30, 60 and 120 mm h−1) in Southern Brazil. A portable rainfall simulator with multiple nozzles was used to simulate these rainfall intensities. For each soil, the initial time and runoff rate, rainfall characteristics (total, duration and intensities), surface slope, crop residue amount and cover percentage, soil densities (bulk and particle), soil porosity (bulk, macro and micro), textural fractions (clay, silt and sand), and the initial and saturated soil water content were measured. The runoff measured was compared to Smith's modified and Curve Number (USDA-SCS) models. The cumulative runoff losses were 67, 45 and 27% of the total rainfall, for a Rhodic Paleudalf, Typic Quartzipsamment and Rhodic Hapludox, respectively. An inverse relationship was observed between initial runoff and the runoff rate, independently of the soil surface and rainfall conditions. Increasing rainfall intensity decreased the time to runoff and increased runoff rate. The Smith's modified model overestimated the cumulative runoff by about 4%. The Smith's modified model presented a better estimate for both higher and lower rainfall intensities (120 and 30 mm h−1). The SCS Curve Number model overestimated the cumulative runoff by about 34%. This large overestimate is probably due to that the model did not take into account the soil tillage system used in the field by farmers, particularly for irrigated conditions. The combination of high porosity, low bulk density and presence of crop residue on soil surface decreased runoff losses, independently of the soil texture class. Smith's modified model better estimated the surface runoff for soil with a high soil water content, and it was considered satisfactory for Southern Brazil runoff estimations. The SCS Curve Number model overestimated the cumulative runoff and its use needs adjustments particularly for no-tillage management system.  相似文献   

9.
In this study, high resolution (5.8 m) multi-spectral satellite data (IRS-P6, LISS IV) along with extensive ground information were used for sustainable land use planning of a rainfed watershed in eastern India (Bahasuni watershed, Dhenkanal, Orissa). Pedo-transfer functions were developed to predict soil water constants using easily measured parameters such as cation exchange capacity, organic carbon, oven-dry bulk density, soil texture, calcium carbonate etc. Different morphometric parameters like drainage density, stream frequency, form factor, circulatory ratio, elongation ratio, bifurcation ratio, relief ratio, relative relief, etc., were analyzed in relation to the development of water resources in the watershed. A circulatory ratio of 0.56 indicated that the shape of the basin was fairly elongated and suggested that the area was not prone to flood. The elongated shape, together with a moderate bifurcation ratio (3.01), indicates moderate flow, moderate runoff and moderate sediment yield. A low drainage density (2.7 km/km2) furthermore implies the presence of permeable strata with high groundwater prospects and supports the assumption of moderate runoff and sediment yield. After studying potentials and prospects of soil hydro-physical properties and morphometric parameters, a suggested land use alternative was implemented in representative, rainfed rice areas of the watershed and was found to be more productive and more profitable.  相似文献   

10.
We used a farm-level modeling approach to estimate on-farm compliance costs and environmental effects of a grassland extensification scheme in the district of Ostprignitz-Ruppin, Germany. The behavior of the regional farm population (n = 585) consisting of different farm types with different production orientations and grassland types was modeled under the presence and absence of the grassland extensification scheme using the bio-economic model MODAM. Farms were based on available accountancy data and surveyed production data, while information on farm location within the district was derived from a spatial allocation procedure. The reduction in total gross margin per unit area was used to measure on-farm compliance costs. A dimensionless environmental index was used to assess the suitability of the scheme to reduce the risk of nitrate-leaching.Calculated on-farm compliance costs and environmental effects were heterogeneous in space and farm types as a result of different agricultural production and site characteristics. On-farm costs ranged from zero up to almost 1500 Euro/ha. Such high costs occurred only in a very small part of the regional area, whereas the majority of the grassland had low on-farm costs below 50 Euro/ha. Environmental effects were moderate and greater on high-yield than on low-yield grassland. The low effectiveness combined with low on-farm costs in large parts of the region indicates that the scheme is not well targeted. The soft scheme design results from an attempt to achieve environmental and rural development objectives with only one scheme. Improving the efficiency of the scheme would require designing separate instruments for the two distinct objectives. This is in line with the Tinbergen rule, which states that consistent economic policy requires that the number of instruments equals the number of targets.  相似文献   

11.
A new watershed model, DRAIN-WARMF, was developed to simulate the hydrologic processes and the nitrogen fate and transport that occur in small, predominantly subsurface-drained, agricultural watersheds that experience periodic freezing and thawing conditions. In this modeling approach, surface flow is simulated using a watershed scale model, WARMF, and subsurface flow is estimated using a field-scale model for subsurface-drained shallow water table fields, DRAINMOD 5.1. For subsurface flow calculations, the watershed is subdivided into uniform cells, and DRAINMOD is run on each cell with inputs based on the individual hydrologic characteristics of the cell. The coupling results in a distributed parameter model that calculates the total flow at the outlet of a watershed as well as the nitrogen losses. The model was evaluated for the St. Esprit watershed, located approximately 50 km northeast of Montreal. Simulations were carried out from 1994 to 1996; data from 1994 and 1995 was used for model calibration and data from 1996 was used for model validation. The new model was able to adequately simulate the hydrologic response and nitrate losses at the outlet of the watershed. Comparing the observed daily flow/monthly nitrogen with the model's outputs over the validation period returned an R2 value of 0.74/0.86 and modeling efficiency of 0.72/0.83. This clearly demonstrates the model's ability to simulate hydrology and nitrogen losses occurring in small agricultural watersheds in cold climates.  相似文献   

12.
Water excess during winter limits crop development on heavy clay soil conditions of the Gharb valley (Morocco). The furrow system to eliminate these negative effects is the adopted solution. This article focuses on the development of a water transfer model through a furrow system during unsteady rainfall event to evaluate the runoff volume resulting from a reference rainy event. This model contains a production function associated to a transfer function. The production function is based on the Green-Ampt infiltration equation. The latter has been adapted to account for unsteady rain conditions and rainfall intermittence. The transfer function is based on the kinematic wave model, the explicit solution of which is coupled with the water excess generated by the production function. Simulated runoff in the furrows is collected by a drainage ditch evacuating the flow outside a plot of 1.3 ha. The similarity between parameters of a furrow irrigation model and those of the production function is advantageously used for model calibration.The proposed modelling approach shows capabilities to predict water amount and peak discharges evacuated from a plot of around 1 ha by a furrow system under unsteady rainfall events. As an application, it is used to evaluate the ability of the surface drainage system to evacuate the excessive volumes of water under typical rainfalls.  相似文献   

13.
The current increase in the global demand for food and fresh water and the associated land use changes or misuses exacerbate water erosion which has become a major threat to the sustainability of the soil and water resources. Soil erosion by rainfall and runoff is a natural and geologic phenomenon, and one of the most important components of the global geochemical cycle.Despite numerous studies on crop lands, there is still a need to quantify soil sheet erosion (an erosion form that uniformly removes fertile upper soil horizons) under grasslands and to assess the factors of the environment that control its spatial variation. For that purpose, fifteen 1 m2 micro-plots installed within a 23 ha catchment under pasture in the sloping lands of KwaZulu-Natal (South Africa) were monitored during the 2007-2008 rainy season to evaluate runoff (R) and sediment losses (SL). Soil losses computed from the 37 rainfall events with soil erosion averaged 6.45 ton ha−1 year−1with values from 3 to 13 ton ha−1 year−1. SL were significantly correlated with the proportion of soil surface coverage by the vegetation (P < 0.01) whereas the slope gradient, and soil characteristics such as bulk density or clay content were not correlated. R and SL increased as the proportion of soil surface coverage decreased and this trend was used to predict the spatial variations of sheet erosion over the 23 ha catchment. Greater sheet erosion occurred at the catchment plateau and at the vicinity of gully head cuts probably in relation to regressive erosion. Mitigating sheet erosion would require an appropriate management of the soil cover through appropriate management of cattle grazing, especially at places where “natural” erosion is likely to occur.  相似文献   

14.
Incorrect fertilizer decisions can be costly if quality of the output, in addition to yield, is influenced by the application rate, which contrasts the flat payoff function estimated for fertilizer by previous studies focusing only on quantity. This study aims at modelling economic potentials of the combination of site-specific fertilization and quality specific harvesting at the example of wheat (Triticum aestivum L.), in Germany. Crop yield and protein response data to different nitrogen fertilizer applications were used from 15 locations to simulate site-specific wheat management. Four different management strategies were compared using a step wise price function for wheat qualities: uniform management, completely separate management, site-specific fertilization with uniform harvest, uniform fertilization with quality-specific harvest. It was found that opportunity costs (>50 €/ha) may apply, if threshold values for crop qualities are missed. Separation of different qualities can reduce this risk and create incentives for producing higher qualities on heterogeneous fields. Completely separate management had an economic advantage of up to 30 €/ha for the gross revenue, while site-specific fertilization alone had only marginal economic effects. However, these advantages have to cover costs for the use of technologies used, to be economically preferable.  相似文献   

15.
In the semi-arid Brazilian Northeast, the exploitation of alluvial aquifers for irrigation and domestic supply to rural communities over the last 10 years has upset the traditional mechanisms of water resources management. In the Forquilha watershed (221 km2; 5°17″S, 39°30″W), the two main water resources are reservoirs (with a capacity exceeding 0.9-6.7 × 106 m3), used for domestic water supply only, and an alluvial aquifer (2.3 × 106 m3), used for irrigation and domestic water supply. From 1998 to 2006, the irrigated area with alluvial groundwater increased from 0 to 75 ha, and the fraction of population supplied through domestic water networks, using reservoirs and the aquifer, increased from 1% to 70%. Based on physical and socioeconomic issues, three main water territories have been defined (“Aquifer”, “Reservoirs”, and “Disperse Habitat”). Considering the next 30 years with a realistic population growth, three hypotheses regarding irrigated area (i.e., 0, 75, or 150 ha), and several possible water-management scenarios, hydrological balance models were built and used to simulate the different impacts on water resource availability and salinity. Simulation results showed that, in all cases, releases from the upstream main reservoir are necessary to keep reservoir salinity below 0.7 g L−1 and for guaranteeing domestic needs in the whole watershed. As a consequence, a management approach that takes into account the interrelations among the three territories is necessary. Moreover, the simulations showed that the area of irrigated fields cannot exceed the current extent (75 ha), or serious restrictions on water availability and salinity will take place. Moreover, important socioeconomic problems are expected, including a high cost of palliative water supply with tank trucks from external sources.  相似文献   

16.
Information on suspended sediment load is crucial to water management and environmental protection. Suspended sediment loads for three major rivers (Mississippi, Missouri and Rio Grande) in USA are estimated using artificial neural network (ANN) modeling approach. A multilayer perceptron (MLP) ANN with an error back propagation algorithm, using historical daily and weekly hydroclimatological data (precipitation P(t), current discharge Q(t), antecedent discharge Q(t−1), and antecedent sediment load SL(t−1)), is used to predict the suspended sediment load SL(t) at the selected monitoring stations. Performance of ANN was evaluated using different combinations of input data sets, length of record for training, and temporal resolution (daily and weekly data). Results from ANN model were compared with results from multiple linear regressions (MLR), multiple non-linear regression (MNLR) and Autoregressive integrated moving average (ARIMA) using correlation coefficient (R), mean absolute percent error (MAPE) and model efficiency (E). Comparison of training period length was also made (4, 3 and 2 years of training and 1, 2 and 3 years of testing, respectively). The model efficiency (E) and R2 values were slightly higher for the 4 years of training and 1 year of testing (4 * 1) for Mississippi River, indifferent for Missouri and slightly lower for Rio Grande River. Daily simulations using Input 1 (P(t), Q(t), Q(t−1), SL(t−1)) and three years of training and two years of testing (3 * 2) performed better (R2 and E of 0.85 and 0.72, respectively) than the simulation with two years of training and three years of testing (2 * 3) (R2 and E of 0.64 and 0.46, respectively). ANN predicted daily values using Input 1 and 3 * 2 architecture for Missouri (R2 = 0.97) and Mississippi (R2 = 0.96) were better than those of Rio Grande (R2 = 0.65). Daily predictions were better compared to weekly predictions for all three rivers due to higher correlation within daily than weekly data. ANN predictions for most simulations were superior compared to predictions using MLR, MNLR and ARIMA. The modeling approach presented in this paper can be potentially used to reduce the frequency of costly operations for sediment measurement where hydrological data is readily available.  相似文献   

17.
Annual carbon and nitrogen loadings for a furrow-irrigated field   总被引:1,自引:0,他引:1  
Evaluations of agricultural management practices for soil C sequestration have largely focused on practices, such as reduced tillage or compost/manure applications, that minimize soil respiration and/or maximize C input, thereby enhancing soil C stabilization. Other management practices that impact carbon cycling in agricultural systems, such as irrigation, are much less understood. As part of a larger C sequestration project that focused on potential of C sequestration for standard and minimum tillage systems of irrigated crops, the effects of furrow irrigation on the field C and N loading were evaluated. Experiments were conducted on a laser-leveled 30 ha grower's field in the Sacramento valley near Winters, CA. For the 2005 calendar year, water inflow and runoff was measured for all rainfall and irrigation events. Samples were analyzed for C and N associated with both sediment and dissolved fractions. Total C and N loads in the sediment were always higher in the incoming irrigation water than field runoff. Winter storms moved little sediment, but removed substantial amounts of dissolved organic carbon (DOC), or about one-third of the total C balance. Despite high DOC loads in runoff, the large volumes of applied irrigation water with sediment and DOC resulted in a net increase in total C for most irrigation events. The combined net C input and N loss to the field, as computed from the field water balance, was 30.8 kg C ha−1 yr−1 and 5.4 kg N ha−1 yr−1 for the 2005 calendar year. It is concluded that transport of C and N by irrigation and runoff water should be considered when estimating the annual C field balance and sequestration potential of irrigated agro-ecosystems.  相似文献   

18.
The application of polymer for controlling erosion and the associated nutrient transport has been well documented. However, comparatively less information is available on the effect of polymer application together with soil amendments. In this study, the effect of polyacrylamide (PAM) in combination with surface application of gypsum and Milorganite™ (MILwaukee ORGAnic NITtrogEn) biosolid for reducing sediment and phosphorus transport under laboratory rainfall simulations was investigated. The treatments considered were bare soil, gypsum, Milorganite™, gypsum + Milorganite™, PAM-coated gypsum and PAM-coated Milorganite™. Application rates for gypsum and Milorganite™ were 392 kg ha−1 (350 lb/acre) and 726 kg ha−1 (650 lb/acre), respectively. The PAM was coated on gypsum and Milorganite™ at an application rate of 11.2 kg ha−1 (10 lb/acre) and 22.4 kg ha−1 (20 lb/acre), respectively. Rain simulation experiments were conducted using a rainfall intensity of 6.0 cm h−1 for 1 h on a 10% slope. Surface runoff was collected continuously from each soil box over 10 min intervals and leachate was collected continuously over the 60 min simulation. The reduction in runoff or in leachate for all treatments was not significantly different from the bare soil control. The sediment loss for PAM coated Milorganite™ was reduced by 77%, when compared to bare soil. However, the sediment loss was not significantly reduced for any other treatment compared to bare soil. The PAM-coated gypsum was not effective for erosion control in our study, and there appears to be a correlation between effectiveness and prill size. However, the gypsum (coated and uncoated) contributed about half of the dissolved reactive phosphorus (DRP) export (in the runoff) compared to bare soil. The PAM-coated Milorgante™ reduced the DRP and total phosphorus (TP) export to 0.3-0.5 times that of Milorganite™ and to levels similar to bare soil. The decreased sediment and phosphorus export for the PAM-coated Milorganite™ treatment is a signal for a potential management practice for controlling erosion and nutrient transport in fertilized agricultural landscapes.  相似文献   

19.
Paddy fields are characterized by standing water and saturation condition during the entire crop growth period. However, in sub-humid and semi-arid areas, scarce rainfall and intermittent dry spells often cause soil moisture depletion resulting in unsaturated condition in the fields. These distinctive characteristics of the paddy fields have significant influence on the runoff generation and soil moisture retention characteristics of the watershed. In this study, the objective is to extend the application of the Soil Conservation Services Curve Number (SCS-CN)-based models for the geospatial and temporal simulation of soil moisture to paddy field-dominated agricultural watersheds in the water scarce areas. Different SCS-CN-based models, integrated with the soil moisture balance equation, are used to estimate the surface runoff and soil moisture content wherein, the spatial variation in the soil hydraulic characteristics is used to calculate the geospatial variation in soil moisture content. Physical significance of the terms initial abstraction (Ia) and potential maximum retention (S) in these models and their influence on the estimation of runoff and soil moisture are analysed in detail. A new SCS-CN-based model for soil moisture simulation (SCS-CN-SMS), to improve the soil moisture estimation, is proposed in this paper. The proposed model is built up on the soil moisture balance equation to account for the effect of ponding condition and soil moisture variation between the dry and saturation condition. The method is tested with 3 years observed surface runoff data and crop production statistics from a part of the Gandeshwari sub-watershed in West Bengal, India. The entire study area is divided into cells of 20 m × 20 m. Various components of the soil moisture balance equation are estimated for each cell as a function of the soil moisture content. Remote Sensing Technique and Geographic Information System (GIS) are used to extract and integrate the spatially distributed land use and soil characteristics. The Hortonion overland flow concept adopted in the SCS-CN method is used to estimate the soil hydraulic characteristics of each cell in which the curve number is used to infer the spatial variation of the land use and soil characteristics. Even though the original SCS-CN method and the existing modified versions are efficient for runoff estimation, these models are found to be inappropriate for the estimation of soil moisture distribution. On the other hand, the proposed SCS-CN-SMS model gives better results for both runoff and soil moisture simulation and is, therefore, more suitable for the hydrological modeling of paddy field-dominated agricultural watersheds.  相似文献   

20.
Gully erosion is one of the main causes of soil loss in drylands. Understanding the dominant mechanisms of erosion is important to achieve effective erosion control, thus in this study our main objective was to quantify the mechanisms involved in gully bank retreat as a result of three processes, falling of entire soil aggregates, transport of soil material by splash and by water running along gully banks (runoff), during rainfall events. The study was conducted in the sloping lands of the KwaZulu-Natal province, a region that is highly affected by gully erosion. Artificial rain was applied at 60 mm h−1 for 45 min at the vertical wall of a gully bank typical to the area. The splash material was collected by using a network of 0.045 m2 buckets. The sediments in the running water were assessed by sampling the runoff collected from a microplot inserted within the base of the bank, and collecting the fallen aggregates after the rainfall simulation was complete. Results indicated that the overall erosion for the simulation was 721 g m−2 h−1. Runoff erosion proved to be the dominant mechanism and amounted to 450 g m−2 h−1, followed by splash and fall down of aggregates (about 170 g m−2 h−1). Gully bank retreat occurred at a rate of 0.55 mm h−1 and assuming that the soil bulk density is 1.3 g cm−3, this corresponds to a retreat of 8.8 mm y−1. Extrapolations to the watershed level, where about 500 m2 of gully bank are observed per hectare, would lead to an erosion rate of 4.8 t ha−1 y−1. These limited results based on a simulated storm show that the three main mechanisms (runoff, splash and fall down of aggregates) are responsible for the retreat of gully banks and that to mitigate gully erosion, appropriate measures are required to control all three mechanisms. Further research studies are needed to confirm and to scale up, both in time and space, as these data are obtained at one location and from a single artificial storm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号