共查询到20条相似文献,搜索用时 78 毫秒
1.
To investigate the relationship between stable carbon isotope discrimination ( Δ) of different organs and water use efficiency (WUE) under different water deficit levels, severe, moderate and low water deficit levels were treated at bud burst to leafing, flowering to fruit set, fruit growth and fruit maturation stages of field grown pear-jujube tree, and leaf stable carbon isotope discrimination ( ΔL) at different growth stages and fruit stable carbon isotope discrimination ( ΔF) at fruit maturation stage were measured. The results indicated that water deficit had significant effect on ΔL at different growth stages and ΔF at fruit maturation stage. As compared with full irrigation, the average ΔL at different growth stages and ΔF at fruit maturation stage were decreased by 1.23% and 2.67% for different water deficit levels, respectively. ΔL and ΔF among different water deficit treatments had significant difference at the same growth stage ( P < 0.05). Under different water deficit conditions, significant relationships between the ΔL and WUE i (photosynthesis rate/transpiration rate, Pn/ Tr), WUE n (photosynthesis rate/stomatal conductance of CO 2, Pn/ gs), WUE y (yield/crop water consumption, Y/ET c) and yield, or between the ΔF and WUE y and yield were found, respectively. There were significantly negative correlations of ΔL with WUE i, WUE n, WUE y and yield ( P < 0.01) at the fruit maturation stage, or ΔL with WUE i and WUE n ( P < 0.01) over whole growth stage, respectively. ΔF was negatively correlated with WUE y, WUE n and yield ( P < 0.05), but positively correlated with ET c ( P < 0.01) over the whole growth stage. Thus ΔL or ΔF can compare WUE n and WUE y, so the stable carbon isotope discrimination method can be applied to evaluate the water use efficiency of pear-jujube tree under the regulated deficit irrigation. 相似文献
2.
In order to investigate the response of vegetative growth, fruit development and water use efficiency to regulated deficit irrigation at different growth stages of pear-jujube tree ( Zizyphus jujube Mill.), different water deficit at single-stage were treated on field grown 7-year old pear-jujube trees in 2005 and 2006. Treatments included severe (SD), moderate (MD) and low (LD) water deficit treatments at bud-burst to leafing (I), flowering to fruit set (II), fruit growth (III) and fruit maturation (IV) stages. Compared to the full irrigation (control), different water deficit treatments at different growth stages reduced photosynthesis rate ( Pn) slightly and transpiration rate ( Tr) significantly, thus it improved leaf water use efficiency (WUE L, defined as the ratio of Pn to Tr) by 2.7-26.1%. After the re-watering, Pn had significant compensatory effect, but Tr was not enhanced significantly, thus WUE L was improved by 31.4-42.2%. I-SD, I-MD, II-SD and II-MD decreased new shoot length, new shoot diameter and panicle length by 8-28%, 13-23% and 10-31%, respectively. Simultaneously, they reduced leaf area index (LAI) and pruning amount significantly. Flowering of pear-jujube tree advanced by 3-8 days in the water deficit treatments at stage I, Furthermore, SD and MD at stage I increased flowers per panicle and final fruit set by 18.9-40.5% and 15.5-36.6%, respectively. After a period of re-watering, different water deficit treatments at different growth stages improved the fruit growth rate by 15-30% without reduction of the final fruit volume. Compared to the control, I-MD, I-SD, I-LD, I-MD and I-SD treatments increased fruit yield by 13.2-31.9%, but reduced water consumption by 9.7-17.5%, therefore, they enhanced water use efficiency at yield level (WUE Y, defined as ratio of fruit yield to total water use) by 17.3-41.4%. Therefore, suitable period and degree of water deficit can reduce irrigation water and restrain growth redundancy significantly, and it optimize the relationship between vegetative growth and reproductive growth of pear-jujube trees, which maintained or slightly increased the fruit yield, thus water use efficiency was significantly increased. 相似文献
3.
Two-year field experiments were conducted to investigate the effect of alternate partial root-zone drip irrigation on fruit yield, fruit quality and water use efficiency of table grape ( Vitis vinifera L. cv Rizamat) in the arid region of northwest China. Three irrigation treatments were included, i.e. CDI (conventional drip irrigation, both sides of the root-zone irrigated), ADI (alternate drip irrigation, both sides of the root-zone irrigated alternatively with half the water) and FDI (fixed drip irrigation, only one side of the root system irrigated with half the water). Results indicated that compared to CDI, ADI kept the same photosynthetic rate ( Pn) but reduced transpiration rate, thus increased leaf water use efficiency (WUE) of table grape. And diurnal variation of leaf water potential showed no significant differences during 7.00 a.m. to 14.00 p.m. in both years. ADI also produced similar yield and improved WUE ET by 26.7–46.4% and increased the percentage of edible grape by 3.88–5.78%, vitamin C content in the fruit by 15.3–42.2% and ratio of total soluble solid concentration/titrated acid in both years as compared to CDI. Thus ADI saved irrigation water, improved the water use efficiency and fruit quality of table grape without detrimental effect on the fruit yield in arid region. 相似文献
4.
The aim of this study was to quantify and compare the effects of two different deficit irrigation (DI) strategies (regulated deficit irrigation, or RDI, and partial rootzone drying, PRD) on almond ( Prunus dulcis (Mill.) D.A. Webb) fruit growth and quality. Five irrigation treatments, ranging from moderate to severe water restriction, were applied: (i) full irrigation (FI), irrigated to satisfy the maximum crop water requirements (ET c); (ii) regulated deficit irrigation (RDI), receiving 50% of ET c during the kernel-filling stage and at 100% ET c throughout the remaining periods; and three PRD treatments – PRD 70, PRD 50 and PRD 30 – irrigated at 70%, 50% and 30% ET c, respectively, during the whole growth season. The DI treatments did not affect the overall fruit growth pattern compared to the FI treatment, but they had a negative impact on the final kernel dry weight for the most stressed treatments. The allocation of water to the different components of the fruit, characterized by the fresh weight ratio of kernel to fruit, appeared to be the process most clearly affected by DI. Attributes of the kernel chemical composition (lipid, protein, sugar and organic acid contents) were not negatively affected by the intensity of water deprivation. Overall, our results indicated that PRD did not present a clear advantage (or disadvantage) over RDI with regard to almond fruit growth and quality. 相似文献
5.
The effects of mid-summer regulated deficit irrigation (RDI) treatments were investigated on Clementina de Nules citrus trees over three seasons. Water restrictions applied from July, once the June physiological fruit drop had finished, until mid September were compared with a Control treatment irrigated during all the season to match full crop evapotranspiration (ET c). Two degrees of water restrictions were imposed based on previous results also obtained in Clementina de Nules trees (
[Ginestar and Castel, 1996] and [González-Altozano and Castel, 1999]). During the RDI period, deficit irrigation was applied based on given reductions over the ET c, but also taking into account threshold values of midday stem water potential ( Ψs) of −1.3 to −1.5 MPa for RDI-1 and of −1.5 to −1.7 MPa for RDI-2. Results showed that water savings achieved in the RDI-2 treatment impaired yield by reducing fruit size. On the contrary, the RDI-1 strategy allowed for 20% water savings, with a reduction in tree growth but without any significant reduction in yield, fruit size nor in the economic return when irrigation was resumed to normal dose about three months before harvest. Water use efficiency (WUE) in the RDI trees was similar or even higher than in Control trees. RDI improved fruit quality increasing total soluble solids (TSS) and titratable acidity (TA). In conclusion, we suggest that the RDI-1 strategy here evaluated can be applied in commercial orchards not only in case of water scarcity, but also as a tool to control vegetative growth improving fruit composition and reducing costs associated with the crop management. 相似文献
6.
We investigated the long-term effects of different deficit irrigation (DI) options on tree growth, shoot and leaf attributes, yield determinants and water productivity of almond trees ( Prunus dulcis, cv. Marta) grown in a semiarid climate in SE Spain. Three partial root-zone drying (PRD) irrigation treatments encompassing a wide range of water restriction (30%, 50% and 70% of full crop requirements, ET c) and a regulated deficit irrigation treatment (RDI, at 50% ET c during kernel-filling) were compared over three consecutive growth seasons (2004–2006) to full irrigation (FI). The results showed that all deficit irrigation treatments have a negative impact on trunk growth parameters. The magnitude of the reduction in trunk growth rate was strongly correlated through a linear relationship with the annual volume of water applied (WA) per tree. Similarly, a significant relationship was found between WA and the increase in crown volume. In contrast, leaf-related attributes and some yield-related parameters (e.g., kernel fraction) were not significantly affected by the irrigation treatments. Except in PRD 70, individual kernel weight was significantly reduced in the deficit irrigated treatments. Kernel yield, expressed in percent of the maximum yield observed in the FI treatment, showed a linear decrease with decreasing WA and a slope of 0.43, which implies that a 1% decrease in water application would lead to a reduction of 0.43% in yield. Water productivity increased drastically with the reduction of water application, reaching 123% in the case of PRD 30. Overall, our results demonstrate the prevalence of direct and strong links between the intensity of the water restriction under PRD – i.e., the total water supply during the growing season – and the main parameters related to tree growth, yield and water productivity. Noteworthy, the treatments that received similar annual water volumes under contrasted deficit irrigation strategies (i.e., PRD 70 and RDI) presented a similar tree performance. 相似文献
7.
Deficit irrigation after harvest has been proven to be a more profitable strategy for producing loquats due to its effects on promoting earlier flowering and harvest date next season. To determine water savings which most advance flowering and harvest dates, an experiment was established to compare phenology, fruit quality and yield in ‘Algerie’ loquats over two consecutive seasons. In this experiment some trees were programmed to receive 50%, 25% or 0% of the water applied to controls (RDI 50%, RDI 25%, and RDI 0%, respectively) from mid-June to the end of July (6 weeks). Fully irrigated trees acted as first controls while trees undergoing previously tested postharvest deficit irrigation (25% of water applied to controls; RDI Long) from early June up to the end of August (13 weeks of RDI total) acted as second controls. All deficit irrigation treatments promoted earlier flowering when compared to fully irrigated trees; the greatest advancement in full bloom date (27 days) was achieved with severe short term RDI (RDI 0% and RDI 25%). The trees suffering an extended period of water stress advanced full bloom date but to a lesser extent (13 and 18 days; 2004/2005 and 2005/2006, respectively). Earlier bloom derived in an earlier harvest date without detrimental effects on fruit quality and productivity. In this regard, the most severe RDI (RDI 0%) advanced mean harvest date the most (7 and 9 days, depending on the season), and increased the percentage of precocious yield to the highest extent. Productivity was not diminished by reduced irrigation in either season. Fruit size and grading was enhanced thanks to RDI in both seasons. Earliness and better fruit class distribution under RDI also improved fruit value and gross revenue enabling farmers both to increase earning and economize on water. 相似文献
8.
为探讨玉米节水灌溉方式的理论依据,通过桶栽试验研究了分根区交替灌溉(APRI)方式下,不同生育期水分亏缺对夏玉米生长、干物质累积质量、籽粒产量、总耗水量和水分利用效率(WUE)的影响.结果表明:常规灌溉(CI)方式下,苗期和全生育期水分亏缺的株高、叶面积和总耗水量均显著低于充分灌溉,但苗期水分亏缺可以提高WUE.相同的灌水方式和亏缺时期,中度亏缺的根干物质质量、地上和总干物质质量以及籽粒产量均显著高于重度亏缺;相同的灌水方式和灌水水平,苗期水分亏缺的株高、叶面积、根干物质质量、地上和总干物质质量以及总耗水量均显著的低于灌浆期,但籽粒产量和WUE均显著高于灌浆期;相同的灌水水平和亏缺时期,APRI的根干物质质量和总耗水量均显著低于CI的,但APRI的籽粒产量和水分利用效率均显著高于CI的.本研究结果表明,APRI在苗期进行中度亏缺有利于营养生长的调控,并达到节水高产,提高WUE的目的. 相似文献
9.
Four strategies of deficit irrigation based on a different water-stress ratio (WSR) applied in each phenological stage, and a control treatment were implemented in 11-year-old citrus trees ( Citrus sinensis L. Osb. Cv. Navelina) grafted onto carrizo citrange ( C. sinensis L. Osb. × Poncirus Trifoliata L. Osb.). The midday stem-water potential and stomatal conductance were measured during the periods considered, and these parameters were used to estimate the plant-water status. Integrated stem-water potential ( ΨInt) and integrated stomatal conductance ( gInt) were calculated for all treatments and used as a water-stress indicator for the crop. Reference equations were formulated to quantify the relations between water-stress indicators (WSR, ΨInt, gInt) and the crop response, expressed as yield, yield components, and fruit-quality parameters under limited seasonal water availability. Significant differences in yield were found in the second year of experiment between the stressed treatments and control, although these differences were evident during the first year. The main effects were detected in treatments with a water-sever stress applied during the flowering and fruit-growth phases. When this degree of stress was applied during the maturity phase, it was reflected mainly in fruit-quality parameters (total soluble solids, and titrable acidity). These results lead to the conclusion that, in mature orange trees, deficit irrigation affects yield and fruit quality, while enabling water savings of up to 1000 m 3 ha −1. Therefore, yield declined on average 10-12% but boosted water productivity 24% with respect to the fully irrigated treatment. Regarding the water-stress indicators used, ΨInt and gInt showed highly significant correlations with the yield and fruit-quality parameters. 相似文献
10.
The successful application of postharvest regulated deficit irrigation (RDI) over ten consecutive years (from season 1999/2000 to season 2007/2008) confirms the sustainability of this strategy for producing ‘Algerie’ loquat. Postharvest RDI consisting in a reduction of watering (between 45 and 80% depending on the season) from early June until the end of August, improved loquat profitability by increasing fruit value and by reducing water consumption with respect to fully irrigated trees (control). The increase in fruit value in RDI trees was due to a consistent improvement in harvest earliness as a result of an earlier blooming. Water savings of around 20% did not diminish yield nor fruit quality. Water use efficiency in RDI trees rose by over 30%. Water productivity reached 9.5 € m −3 of water applied in RDI trees versus 6.6 € m −3 in control trees. The most noticeable effect of RDI on vegetative growth was a significant and progressive decline in trunk growth. The canopy volume seems to be strongly influenced by pruning and no significant effects were detected in this parameter. Our results confirm the suitability of RDI in loquat and the economic benefits of saving water during the summer. 相似文献
11.
针对南疆地区水资源短缺、作物水分利用效率低等问题,以棉花为试验材料进行田间小区试验,在棉花现蕾期、开花期以及结铃期分别设置3个亏缺灌溉水平(W 1:50%ET c,W 2:65%ET c,W 3:80%ET c,ET c为作物蒸发蒸腾量),以全生育期100%ET c灌溉处理为对照(CK),研究膜下滴灌条件下,不同生育期亏缺灌溉对棉花生长、产量、氮素吸收和水分利用效率的影响.结果表明:现蕾期亏水对棉花株高、叶面积指数、地上干物质生长、氮素吸收和产量有不同程度的抑制效应,但复水后补偿效应显著,其中轻度亏水(W 3)在籽棉产量减少3.48%的条件下,WUE高达1.57 kg/m 3,显著高于CK的1.48 kg/m 3;开花期亏水,棉花的各项生长指标均有显著降低,复水后补偿效应不显著,不利于棉花生长发育;结铃期亏水对棉花地上干物质累积、氮素吸收和产量均有显著的抑制效应,但在W 2和W 3水平下,WUE均达1.51 kg/m 3.综合考虑在保证棉花产量的同时达到节水增产的目的,可在棉花蕾期进行80%ET c灌水,其他生育阶段实施充分灌溉,来控制营养生长,促进生殖生长,获得更高的水分利用效率. 相似文献
12.
Water shortage is the major bottleneck that limits sustainable development of agriculture in north China. Crop physiological water-saving irrigation methods such as temporal (regulated deficit irrigation) and spatial (partial root zone irrigation) deficit irrigation have been tested with much improved crop water use efficiency (WUE) without significant yield reduction. Field experiments were conducted to investigate the effect of (1) spatial deficit irrigation on spring maize in arid Inland River Basin of northwest China during 1997–2000; (2) temporal deficit irrigation on winter wheat in semi-arid Haihe River Basin during 2003–2007 and (3) temporal deficit irrigation on winter wheat and summer maize in Yellow River Basin during 2006–2007. Results showed that alternate furrow irrigation (AFI) maintained similar photosynthetic rate ( Pn) but reduced transpiration rate ( Tr), and thus increased leaf WUE of maize. It also showed that the improved WUE might only be gained for AFI under less water amount per irrigation. The feasible irrigation cycle is 7d in the extremely arid condition in Inner River Basin of northwest China and less water amount with more irrigation frequency is better for both grain yield and WUE in semi-arid Haihe River Basin of north China. Field experiment in Yellow River Basin of north China also suggests that mild water deficit at early seedling stage is beneficial for grain yield and WUE of summer maize, and the deficit timing and severity should be modulated according to the drought tolerance of different crop varieties. The economical evapotranspiration for winter wheat in Haihe River Basin, summer maize in Yellow River Basin of north China and spring maize in Inland River Basin of northwest China are 420.0 mm, 432.5 mm and 450.0 mm respectively. Our study in the three regions in recent decade also showed that AFI should be a useful water-saving irrigation method for wide-spaced cereals in arid region, but mild water deficit in earlier stage might be a practical irrigation strategy for close-planting cereals. Application of such temporal and spatial deficit irrigation in field-grown crops has greater potential in saving water, maintaining economic yield and improving WUE. 相似文献
13.
为了研究阶段水分亏缺(亏水+不亏水W LW H、不亏水+亏水W HW L、亏水+亏水W LW L、不亏水+不亏水W HW H)和不同施氮量(N Z:0,N L:0.2 g/kg,N H:0.4 g/kg)对小桐子生长、生理指标和灌溉水利用效率的影响,通过盆栽试验,发现W LW H的生长和灌溉水利用效率均显著高于W HW L;作物的灌溉水利用效率随施氮量的增大而呈现先增大后减小的趋势,在N L水平下达到最大值;与高水高氮的处理N HW HW H相比,中水低氮处理N LW LW H节约灌溉水27%,节约氮肥使用量50%,小桐子株高减少31%、总干物质量减少35%,灌溉水利用效率减少13%,但茎粗增加13%,根冠比增加20%.可见小桐子在第一阶段处理(40~90 d)幼树期对水分的需求量较小,适度的亏缺灌溉可提高灌溉水利用效率;小桐子在第二阶段处理(90~140 d)处于旺长期,对水分的需求量较大,增大灌水量可大幅度促进小桐子生长及其干物质量的积累.全生育期实施亏缺灌溉,可提高小桐子自身适应外界环境能力,抗干旱胁迫能力也逐渐增强,但W LW L水平下的小桐子生长缓慢.经综合分析,认为处理N LW LW H可作为干旱地区条件下的小桐子灌溉和施氮制度. 相似文献
14.
Partial rootzone irrigation (PRI) can substantially reduce irrigation amount and has been demonstrated as a promising irrigation method for crops in arid or semiarid areas. Many earlier researches have shown that PRI reduces leaf transpiration by narrowing stomatal opening. In this study we verified the hypothesis that PRI can also save irrigation water by substantially reducing soil evaporation. Field experiment was conducted in an arid area where cotton production almost completely relies on irrigation. Water was applied to furrows in the cotton field either alternatively (AFI, alternative furrow irrigation), or evenly to all the furrows (CFI, conventional furrow irrigation), or to one fixed furrow in every two (FFI, fixed furrow irrigation). Our results show that surface evaporation constitutes a large fraction of the irrigation water loss from cropped field (more than 20%), and with the two PRI treatments nearly 40% of the evaporative water loss is saved. Transpiration accounted for 48%, 58% and 57% of the total amount of irrigation respectively for the CFI, AFI and FFI treatments. This result suggests that PRI increases the proportion of applied water that is transpired, and therefore leads to a higher water use efficiency than regular irrigation. Overall, when irrigation was reduced by 30%, the average final yield loss of AFI was only 4.44%, a non-significant reduction statistically. The FFI had a significant reduction in yield of 12.01% in comparison to CFI. Moreover, PRI brings in earlier flowering and a higher economical return due to early harvested cotton. This indicates that the final economical output could compensate for the loss of cotton yield due to water-saving. With very little extra cost to implementation, PRI proves a very promising method in cotton production in arid zone. 相似文献
15.
The impact that different regulated-deficit irrigation (RDI) treatments exert on a 12-year-old orange orchard ( Citrussinensis L. Osbeck, cv. salustiano) was studied from 2004 to 2007. The experiment consisted of a control irrigation treatment which was irrigated at 100% of the crop evapotranspiration (ET c) values for the whole season, and three deficit treatments imposed as a function of the water-stress index (WSI), which is defined as the ratio of the actual volume of water supply to the ET c rate. In our case, these WSI values were 0.75, 0.65, and 0.50, respectively. The stem-water potential at noon (Ψ Stem) was used as a parameter to estimate the water status of the plant. Yield and fruit quality was evaluated at harvest in each treatment (taking into account the temporal variability of the results due to the climatic characteristics of each of the years of this study) and an overall analysis was made using the whole dataset. Significant differences were found in fruit quality parameters (total soluble solids and titrable acidity), which also showed significant regression coefficients with the values of the integrated stem-water potential. These results led us to conclude that in mature orange trees grown under these conditions, regulated-deficit irrigation has important and significant effects on the final fruit quality, but the effects are not so clear-cut in tree yield, where the differences in the case of reducing a 50% of the crop ET c, were not considered to be statistically significant despite an approximate 10% decrease in fruit yield. A global rescaled distance cluster analysis was performed in order to summarize the main relationships between the variables evaluated and to establish a different correlation matrix. Finally, a classification tree was derived and principal-component analysis was undertaken in order to identify and evaluate the variables which had the strongest effect on the crop response to different irrigation treatments. 相似文献
16.
Six-year old apple trees were selected for field experiment. The objective of this study was to obtain the reasonable arrangement of surge-root irrigation emitters in apple orchards. There were three factors: the buried depth H( 25,40,55 cm),the horizontal distance L( 30,40,60 cm) between the emitters and the trunk of the experimental tree,and the number of the irrigation emitters N( 1,2,4). The effect of the arrangement of surge-root irrigation emitters on the growth,yield and irrigation water use efficiency( IWUE) of apple trees were studied in Northern Shaanxi where the irrigation quota takes 60%-75% of the field water capacity. The results showed that the arrangement of emitters for surge-root irrigation had a significant effect on apple tree yield and IWUE,especially,the yield and IWUE reached 28 388. 17 kg/hm2 and 16. 83 kg/m3 in treatment T3,respectively. At the same L and N levels( T1,T2,and T3),the yield and IWUE in treatment T3 were the highest,and the yields in treatments T1 and T2 were decreased by 26.22% and 31.48%,while IWUE is reduced by14.02% and 18.12% compared with T3,respectively. At the same H and N levels( T3,T4,and T5),the yield and IWUE of apple trees were decreased with increasing L level. Especially,when L was 30 cm( T3),the yield and IWUE were the highest. The same L and H levels( T3,T6,and T7) could promote the growth of apple trees when N was 2( T3). Compared with treatment T3,it was found that the increment of new shoots was decreased by 8.07%-18.71%,and the fruit diameter was decreased by 5.41%-9.11%. Therefore,two emitters should be arranged symmetrically on both sides of an apple tree,each was buried at a 40 cm depth and 30 cm away from the trunk of the tree to effectively improve the yield and IWUE of the apple tree in mountainous areas in Northern Shaanxi. 相似文献
17.
Deficit irrigation occurrence while maintaining acceptable yield represents a useful trait for sunflower production wherever irrigation water is limited. A 2-year experiment (2003–2004) was conducted at Tal Amara Research Station in the Bekaa Valley of Lebanon to investigate sunflower response to deficit irrigation. In the plots, irrigation was held at early flowering (stage F1), at mid flowering (stage F3.2) and at early seed formation (stage M0) until physiological maturity. Deficit-irrigated treatments were referred to as WS1, WS2 and WS3, respectively, and were compared to a well-irrigated control (C). Reference evapotranspiration (ET rye-grass) and crop evapotranspiration (ET crop) were measured each in a set of two drainage lysimeters of 2 m × 2 m × 1 m size cultivated with rye grass ( Lolium perenne) and sunflower ( Helianthus annuus L., cv. Arena). Crop coefficients ( Kc) in the different crop growth stages were derived as the ratio (ET crop/ET rye-grass). Lysimeter measured crop evapotranspiration (ETcrop) totaled 765 mm in 2003 and 882 mm in 2004 for total irrigation periods of 139 and 131 days, respectively. Daily ETcrop achieved a peak value of 13.0 mm day−1 at flowering time (stage F3.2; 80–90 days after sowing) when LAI was >6.0 m2 m−2. Then ETcrop declined to 6.0 mm day−1 during seed maturity phase. Average Kc values varied from 0.3 at crop establishment (sowing to four-leaf stage), to 0.9 at late crop development (four-leaf stage to terminal bud), to >1.0 at flowering stage (terminal bud to inflorescence visible), then to values <1.0 at seed maturity phase (head pale to physiological maturity). Measured Kc values were close to those reported by the FAO. Average across years, seed yield at dry basis on the well-irrigated treatment was 5.36 t ha−1. Deficit irrigation at early (WS1) and mid (WS2) flowering stages reduced seed yield by 25% and 14% (P < 0.05), respectively, in comparison with the control. However, deficit irrigation at early seed formation was found to increase slightly seed yield in WS3 treatment (5.50 t ha−1). We concluded that deficit irrigation at early seed formation (stage M0) increased the fraction of assimilate allocation to the head, compensating thus the lower number of seeds per m2 through increased seed weight. In this experiment, while deficit irrigation did not result in any remarkable increase in harvest index (HI), water use efficiency (WUE) was found to vary significantly (P < 0.05) among treatments, where the highest (0.83 kg m−3) and the lowest (0.71 kg m−3) values were obtained from WS3 and WS1 treatments, respectively. Finally, results indicate that irrigation limitation at early flowering (stage F1) and mid flowering (stage F3.2) should be avoided while it can be acceptable at seed formation (stage M0). 相似文献
18.
为探究开花坐果期调亏灌溉对南疆绿洲区灰枣树品质和产量的影响,以大田生长7年的成龄灰枣树为试验试材,在开花坐果期进行轻度调亏处理T1(80%ET 0,其中ET 0为阶段水面蒸发量)、中度调亏处理T2(60%ET 0)、重度调亏处理T3(40%ET 0)、对照处理CK(100%ET 0),探究开花坐果期调亏灌溉对灰枣树枣吊生长、果实品质、产量、经济效益等影响.结果表明:开花坐果期调亏对枣吊生长速率有显著影响,且随着水分胁迫的加剧,对枣吊生长的抑制作用越大;调亏灌溉对提高单果重、可溶性固形物、糖酸比影响显著,其中,中度处理T2灰枣最终产量提高了9.6%,经济效益增加33.92%.因此,开花坐果期中度调亏有利于提高灰枣品质、产量及经济效益. 相似文献
19.
Rapid urbanization and industrialization have increased the pressure on limited existing fresh water to meet the growing needs for food production. Two immediate responses to this challenge are the efficient use of irrigation technology and the use of alternative sources of water. Drip irrigation methods may play an important role in efficient use of water but there is still limited information on their use on sugar beet crops in arid countries such as Iran. An experiment was conducted to evaluate the effects of irrigation method and water quality on sugar beet yield, percentage of sugar content and irrigation water use efficiency (IWUE). The irrigation methods investigated were subsurface drip, surface drip and furrow irrigation. The two waters used were treated municipal effluent (EC = 1.52 dS m −1) and fresh water (EC = 0.509 dS m −1). The experiments used a split plot design and were undertaken over two consecutive growing seasons in Southern Iran. Statistical testing indicated that the irrigation method and water quality had a significant effect (at the 1% level) on sugar beet root yield, sugar yield, and IWUE. The highest root yield (79.7 Mg ha −1) was obtained using surface drip irrigation and effluent and the lowest root yield (41.4 Mg ha −1) was obtained using furrow irrigation and fresh water. The highest IWUE in root yield production (9 kg m −3) was obtained using surface drip irrigation with effluent and the lowest value (3.8 kg m −3) was obtained using furrow irrigation with fresh water. The highest IWUE of 1.26 kg m −3 for sugar was obtained using surface drip irrigation. The corresponding efficiency using effluent was 1.14 kg m −3. Irrigation with effluent led to an increase in the net sugar yield due to an increase in the sugar beet root yield. However, there was a slight reduction in the percentage sugar content in the plants. This study also showed that soil water and root depth monitoring can be used in irrigation scheduling to avoid water stress. Such monitoring techniques can also save considerable volumes of irrigation water and can increase yield. 相似文献
20.
在大棚滴灌条件下对厚皮甜瓜伊丽莎白不同生育期进行不同程度的亏缺灌溉,研究调亏灌溉对其植株生长、产量、品质及水分利用效率的影响.以土壤相对含水量为标准,在营养生长期和生殖生长期分别设置不同的土壤水分灌溉下限处理,分别是T1(75%~75%),T2(75%~55%),T3(65%~65%),T4(55%~75%),T5(55%~55%)5个试验处理.结果表明:在营养生长期,随着水分亏缺程度的加大,株高、茎粗、叶面积均呈减小趋势.在果实发育阶段,营养生长期及生殖生长期的水分亏缺对果实的生长、产量都有影响,均随亏缺程度的加大而降低,产量以处理T1和T2的最高,T5的最低,T3的大于T4的,各处理间差异具有统计学意义.水分利用效率为处理T2的最高,T1和T4的较低,T2与T4相比,在灌水基本相同的条件下,产量增加了26.2%,水分利用效率提高了27.7%.品质方面,水分亏缺提高了TSS含量;在营养生长期充分灌溉、生殖生长期亏水灌溉可以提高可溶性蛋白、游离氨基酸、维生素C的含量;而营养生长期亏水灌溉、生殖生长期充分灌溉有利于可滴定酸的合成.经综合分析,认为处理T2的灌溉下限设置可以作为武汉地区大棚滴灌条件下的甜瓜灌溉制度. 相似文献
|