首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The highly weathered, low-carbon, intensively cropped, drought-prone Coastal Plain soils of Georgia are susceptible to runoff and soil loss, especially at certain times of the year when soil water contents are elevated. We quantified the effects of antecedent water content (AWC) on runoff (R) and sediment (E) losses from two loamy sands managed under conventional- (CT), strip- (ST), and/or no-till (NT) systems. Two AWC treatments were evaluated: field moist (FM) and pre-wet (PW), created with and without post pesticide application irrigations (∼12 mm of water added with the rainfall simulated over 30 min) for incorporation. Treatments (5) evaluated were: CT + FM, CT + PW, ST + FM, ST + PW, and NT + PW. Field plots, each 2-m × -3 m, were established on each treatment. Each 6-m2 field plot received simulated rainfall at a variable rainfall intensity (Iv) pattern for 70 min (site 1) or a constant rainfall intensity (Ic) pattern for 60 min (site 2; Ic = 50.8 mm h−1). Adding ∼12 mm of water as herbicide incorporation increased AWCs of the 0-2 (3-9-fold) and 2-15 (23-117%) cm soil depths of PW plots compared to existing field moist soil conditions. Increase in AWC increased R (as much as 60%) and maximum R rates (as much as 62%), and decreased E (at least 59%) and maximum E rates (as much as 2.1-fold) for corresponding tillage treatments. Compared to CT plots, ST and NT plots decreased R (at least 2.6-fold) and maximum R rates (as much as 3-fold), and decreased E (at least 2.7-fold) and maximum E rates (at least 3.2-fold). Runoff curves for pre-wetted CT and ST plots were always higher than corresponding FM curves, whereas E curves for field moist CT and ST plots were always higher than corresponding PW curves. Changes in AWC and tillage affected detachment and transport processes controlling runoff and sediment yields. A more accurate measure of rainfall partitioning and detachment and transport processes affecting R and E losses was obtained when commonly occurring field conditions (increased AWC with irrigation; Iv pattern derived from natural rainfall; commonly used tillage systems) were created and evaluated.  相似文献   

2.
In eastern India, farmers grow rice during rainy season (June-September) and land remains fallow after rice harvest in the post-rainy season (November-May) due to lack of sufficient rainfall or irrigation facilities. But in lowland areas of eastern India, sufficient carry-over residual soil moistures are available in rice fallow in the post-rainy season (November-March), which can be utilized for growing second crops in the region. During the post-rainy season when irrigation facilities are not available and rainfall is meager, effective utilization of carry-over residual soil moisture and conservation agriculture become imperative for second crop production after rice. Implementation of suitable tillage/seeding methods and other agro-techniques are thus very much important to achieve this objective. In this study four pulse crops (lathyrus, blackgram, pea, and greengram) were sown utilizing carry-over residual soil moisture and with different tillage/seeding methods viz. relay cropping (RC)/farmers’ practice, reduced tillage (only two ploughing) (RT), conventional tillage (CT) and zero tillage (ZT). Study revealed that the highest grain yields of 580, 630, 605 and 525 kg ha−1 were obtained from lathyrus, blackgram, pea and green gram, respectively, with RT treatment. On the other hand, with conventional tillage, 34-44% lower yields were obtained than that of RT. Crops with reduced tillage performed better than that with zero tillage or relay cropping also. Impacts of different tillage methods on important soil physical properties like infiltration, bulk density were also studied after harvesting first crop (rice) and before growing second crops (pulses) in rice fallow. The lowest mean bulk density (1.42) was recorded in the surface soils of CT treatment while the corresponding value under ZT treatment was 1.54 Mg m−3.  相似文献   

3.
In the semi-humid to arid loess plateau areas of North China, water is the limiting factor for rain-fed crop yields. Conservation tillage has been proposed to improve soil and water conservation in these areas. From 1999 to 2005, we conducted a field experiment on winter wheat (Triticum aestivum L.) to investigate the effects of conservation tillage on soil water conservation, crop yield, and water-use efficiency. The field experiment was conducted using reduced tillage (RT), no tillage with mulching (NT), subsoil tillage with mulching (ST), and conventional tillage (CT). NT and ST improved water conversation, with the average soil water storage in 0–200 cm soil depth over the six years increased 25.24 mm at the end of summer fallow periods, whereas RT soil water storage decreased 12 mm, compared to CT. At wheat planting times, the available soil water on NT and ST plots was significantly higher than those using CT and RT. The winter wheat yields were also significantly affected by the tillage methods. The average winter wheat yields over 6 years on NT or ST plots were significantly higher than that in CT or RT plots. CT and RT yields did not vary significantly between them. In each study year, NT and ST water-use efficiency (WUE) was higher than that of CT and RT. In the dry growing seasons of 1999–2000, 2004–2005 and the low-rainfall fallow season of 2002, the WUE of NT and ST was significantly higher than that of CT and RT, but did not vary significantly in the other years. For all years, CT and RT showed no WUE advantage. In relation to CT, the economic benefit of RT, NT, and ST increased 62, 1754, and 1467 yuan ha−1, respectively, and the output/input ratio of conservation tillage was higher than that of CT. The overall results showed that NT and ST are the optimum tillage systems for increasing water storage and wheat yields, enhancing WUE and saving energy on the Loess Plateau.  相似文献   

4.
Furrow diking in conservation tillage   总被引:2,自引:0,他引:2  
Crop production in the Southeastern U.S. can be limited by water; thus, supplemental irrigation is needed to sustain profitable crop production. Increased water capture would efficiently improve water use and reduce supplemental irrigation amounts/costs, thus improving producer's profit margin. We quantified infiltration (INF), runoff (R), and sediment (E) losses from furrow diked (+DT) and non-furrow diked (−DT) tilled conventional (CT) and strip tillage (ST) systems. In 2008, a field study (Tifton loamy sand, Typic Kandiudult) was established with DT, ST, and CT systems. In 2009, a field study (Faceville loamy sand, Typic Kandiudult) was established with DT and ST systems. Treatments (6) included: CT − DT, CT + DT, ST1 (1-year old) − DT, ST1 + DT, ST10 (10-year old) − DT, and ST10 + DT. Simulated rainfall (50 mm h−1 for 1 h) was applied to each 2-m × 3-m plots (n = 3). Runoff and E were measured from each 6-m2 plot. ST1 + DT plots had 80-88% less R than ST1 − DT plots. Any disturbance associated with DT in ST1 systems did not negatively impact E values. For both soils, CT − DT plots represented the worst-case scenario in terms of measured R and E; ST + DT plots represented the best-case scenario. Trends for R, E, and estimated plant available water (PAW) values decreased in order of CT − DT, CT + DT, ST1 − DT, ST1 + DT, ST10 − DT, and ST10 + DT treatments. From a hydrology standpoint, ST1 − DT plots behaved more similarly to CT plots than to other ST plots; from a sediment standpoint, ST1 − DT plots behaved more similarly to other ST plots than to CT plots. DT had no effect on ST10 plots. CT − DT and ST10 + DT plots resulted in 5.9 (worst-case) and 8.1 (best-case) days of water for crop use, a difference of 2.2 days of water for crop use or 37%. Compared to the CT − DT treatment, an agricultural field managed to CT + DT, ST1 − DT, ST1 + DT, ST10 − DT, and ST10 + DT would save a producer farming the CT − DT field $5.30, $9.42, $13.55, $14.14, and $14.14 ha−1, respectively, to pump the amount of water lost to R and not saved as INF back onto the field. The most water/cost savings occurred for CT and ST1 plots as a result of DT. Savings for CT + DT, ST1 − DT, and ST1 + DT treatments represent 27%, 47%, and 68% of the cost of DT ($20 ha−1) and 37%, 67%, and 96% of the savings a producer would have if managing the field to ST for 10 years without DT (ST10 − DT) in a single 50-mm rainfall event. For row-crop producers in the Southeastern U.S. with runoff producing rainfall events during the crop growing season, DT is a management practice that is cost-effective from a natural resource and financial standpoint for those producers that continue to use CT systems and especially those that have recently adopted ST systems into their farming operations.  相似文献   

5.
Depleting groundwater resources in Indian Punjab call for diversifying from rice to crops with low evapo-transpiration needs and adopting water-saving technologies. Soybean offers a diversification option in coarse- to medium-textured soils. However, its productivity in these soils is constrained by high soil mechanical resistance and high soil temperature during early part of the growing season. These constraints can be alleviated through irrigation, deep tillage and straw mulching. This 3-years field study examines the individual and combined effects of irrigation, deep tillage, and straw mulching regimes on soybean yield and water productivity (WP) in relation to soil texture. Combinations of two irrigation regimes viz., full irrigation (If), and partial irrigation (Ip) in the main plot; two tillage regimes viz., conventional-till (CT)-soil stirring to 0.10 m depth, and deep tillage (DT)-chiseling down to 0.35 m depth followed by CT in the subplot; and two mulch rates viz., 0 (M0) and 6 t ha−1 (M) in the sub-subplot on two soils differing in available water capacity were evaluated.Seed yield was greater in the sandy loam than in the loamy sand reflecting the effects of available water capacity. Irrigation effects were greater on loamy sand (40%) than on sandy loam (5%) soil. Deep tillage benefits were also more on loamy sand (14%) compared to sandy loam (5%) soil. Yield gains with mulching were comparable on the two soils (19%). An evaluation of interaction effects showed that mulching response was slightly more in Ip (20%) than in If regimes (17%) in the sandy loam; while in the loamy sand, mulching gains were comparable (18-19%) in both irrigation regimes. Benefits of deep tillage in the loamy sand soil were more in Ip (20%) than in If regimes (17%). Deep tillage and straw mulching enhanced WP (ratio of seed yield/water use) from 1.39 to 1.97 kg ha−1 mm−1 in Ip regime, and from 1.87 to 2.33 kg ha−1 mm−1 in If regime in the loamy sand soil. These effects on WP were less in the sandy loam soil with greater available water capacity. Yield and WP gains are ascribed to deeper and denser rooting due to moderation of soil temperature and water conservation with straw mulching and tillage-induced reduction in soil mechanical resistance. Root mass in CTM0, CTM, DTM0 and DTM was 2.79, 5.88, 5.34 and 5.58 mg cm−2 at pod-filling in the loamy sand soil. Comparable yield responses to deep tillage or mulching in the loamy sand soil suggest that either of the options, depending on their cost and availability considerations, can be employed for improving soybean yield and water productivity.  相似文献   

6.
Potato production accounts for ∼24% of the cultivated land-use in Prince Edward Island, Canada. The island often experiences prolonged dry periods interspersed with excessive rainfall events throughout the growing season. Thus, water retention is important for maximum crop production while sediment and nutrient loading to surface water systems are also concerns. Therefore, agronomic practices that reduce the environmental impact of potato production are being sought. Basin tillage (BT) is a potential option in which small dams are created in the furrows (row middles), resulting in basins that enhance infiltration, reduce runoff, minimize contaminant loads, and increase yields.This on-farm study compared BT against two types of ‘conventional’ hilling treatments with replicated plots on four field sites over two growing seasons. Field sites had sandy loam soils with topography slopes ranging from 3% to 5%. Within each field, nine 25 m long and 3.66 m wide (4 rows) plots were established, including three plots of each hilling treatment (CT = conventional tillage; RS = row shaper tillage; BT = basin tillage). Runoff volume, nutrient (phosphate, ammonium, nitrate) and suspended solids loads were measured using collection barrels on the down slope end of each furrow.Basin tillage had 78% and 75% less runoff than CT and RS, respectively (P < 0.05). Runoff differences between BT and CT were significant at all sites while runoff differences between BT and RS were significant at three of four sites. Reductions for each parameter (on a mass basis) averaged across all sites were: sediment 89%, nitrate 45%, ammonium 38%, and phosphate 15%; although, treatment effect was not significant for some mass loads in some fields. No significant effect on marketable potato yield was observed at any site; soil water was not limiting in either growing season. Overall, basin tillage was effective at reducing runoff and nutrient losses without affecting yield and appears to be an effective tool for decreasing environmental risks.  相似文献   

7.
Improved water capture and erosion reduction through furrow diking   总被引:2,自引:0,他引:2  
Crop production in Georgia and the Southeastern U.S. can be limited by water; thus, supplemental irrigation is often needed to sustain profitable crop production. Increased water capture would efficiently improve water use and reduce irrigation amounts and other input costs, thus improving producer's profit margin. We quantified water capturing and erosional characteristics of furrow diking by comparing runoff (R) and soil loss (E) from furrow diked (DT) and non-furrow diked tilled (CT) systems. A field study (Faceville loamy sand, Typic Kandiudult) was established (2006 and 2007) near Dawson, GA with DT and CT systems managed to irrigated cotton (Gossypium hirsutum L.). Treatments included: DT vs. CT; DT with and without shank (+/− S); and rainfall simulation performed (0, 60 days after tillage, DAT). Simulated rainfall (50 mm h−1 for 1 h) was applied to all 2 m × 3 m plots (n = 3). All runoff and E were measured from each flat, level sloping 6-m2 plot (slope = 1%). Compared to CT, DT decreased R and E by 14-28% and 2.0-2.8 times, respectively. Compared to DT − S, DT + S decreased R and E by 17-56% and 26% to 2.1 times, respectively. Compared to sealed/crusted soil conditions at 60 DAT, simulating rainfall on a freshly tilled seedbed condition (DAT = 0) decreased R by 69% to 3.4 times and increased E by 27%. DT0 + S + RF0 plots (best-case scenario) had 2.8 times less R, and 2.6 times less E than CT − S + RF60 plots (worst-case). Based on $1.17 ha-mm−1 to pump irrigation water and $18.50 ha−1 for DT, a producer in the Coastal Plain region of Georgia would recover cost of DT by saving the first 16 ha-mm of water. The DT + S system is a cost-effective management practice for producers in Georgia and the Southeastern U.S. that positively impacts natural resource conservation, producer profit margins, and environmental quality.  相似文献   

8.
Summary Rapid drying of surface layers of coarse-textured soils early in the growth season increases soil strength and restricts root growth. This constraint on root growth may be countered by deep tillage and/or early irrigation. We investigated tillage and irrigation effects on root growth, water use, dry matter and grain yield of wheat on loamy sand and sandy loam soils for three years. Treatments included all combinations of two tillage systems i) conventional tillage (CT) — stirring the soil to 10 cm depth, ii) deep tillage (DT) — subsoiling with a single-tine chisel down to 35–40 cm, 40 cm apart followed by CT; and four irrigation regimes, i) I0 — no post-seeding irrigation, ii) I1 — 50 mm irrigation 30 days after seeding (DAS), iii) I2 — 50 mm irrigation 30 DAS and subsequent irrigations of 75 mm each when net evaporation from USWB class A open pan (PAN-E) since previous irrigation accumulated to 82 mm, and iv) I3 — same as in I2 but irrigation applied when PAN-E accumulated to 62 mm. The crop of wheat (Triticum aestivum L. HD 2329) was fertilized with 20kg P, 10kg K and 5kg Zn ha–1 at seeding. The rate of nitrogen fertilization was 60 kg ha–1 in the unirrigated and 120 kg ha–1 in the irrigated treatments. Tillage decreased soil strength and so did the early post-seeding irrigation. Both deep tillage and early irrigation shortened the time needed for the root system to reach a specified depth. Subsequent wetting through rain/irrigation reduced the rate of root penetration down the profile and also negated deep tillage effects on rooting depth. However, tillage/irrigation increased root length density in the rooted profile even in a wet year. Better rooting resulted in greater profile water depletion, more favourable plant water status and higher dry matter and grain yields. In a dry year, the wheat in the DT plots used 46 mm more water, remained 3.3 °C cooler at grain-fill and yielded 68% more grain than in CT when unirrigated and grown in the loamy sand. Early irrigation also increased profile water depletion, more so in CT than DT. Averaged over three years, grain yield in DT was 12 and 9% higher than in CT on loamy sand and sandy loam, respectively. Benefits of DT decreased with increase in rainfall and irrigation. Irrigation significantly increased grain yield on both soils, but the response was greatly influenced by soil type, tillage system and year. The study shows that soil related constraints on root growth may be alleviated through deep tillage and/or early irrigation.  相似文献   

9.
Rain-fed lowland rice is by far the most common production system in south eastern Tanzania. Rice is typically cultivated in river valleys and plains on diverse soil types although heavy soil types are preferred as they can retain moisture for a longer period. To assess the effects of soil bunds on the production of rain-fed lowland rice, the crop was cultivated in bunded and non-bunded farmers’ plots under the common agronomic practices in the region, in three successive seasons on Grumic Calcic Vertisols (Pellic). For the three seasons and for the two plot types, crop transpiration was simulated with the BUDGET soil water balance model by using the observed weather data, soil and crop parameters. Comparison between the observed yields and the simulated crop transpiration yielded an exponential relationship with a determination factor of 0.87 and an RMSE of 0.15 tonnes ha−1. With the validated soil water balance model crop yields that can be expected in bunded and non-bunded fields were subsequently simulated for wet, normal and dry years and various environmental conditions. Yield comparison shows that soil bunds can appreciably increase the production of rain-fed lowland rice in south eastern Tanzania in three quarters of the years (wet and normal years) when the soil profile is slow draining (KSAT equal to or less than 10 mm day−1). In normal years a minimum yield increase of 30% may be expected on those soil types. In wet years and when the soil hardly drains (drainage class of 0–5 mm day−1), the yield may even double. In dry years the yield increase will be most of the time less than 10% except for plots with a percolation rate of 0–5 mm day−1.  相似文献   

10.
Fresh water shortages are severally restricting sustainable agriculture development in the North China Plain. The scarcity of fresh water has forced farmers to use brackish water from shallow underground sources, which helps to overcome drought and increase crop yields but also increases the risk of soil salinization. To identify safe and effective ways of using brackish water in this region, field experiments were conducted to evaluate the effect of brackish water irrigation and straw mulching on soil salinity and crop yield in a winter wheat-summer maize double cropping system. The experiment was in a split-plot design. Six rates of straw mulching (0, 4.5, 6.0, 7.5, 15.0 and 30.0 Mg/ha) were assigned to the main plots and two irrigation water qualities (i.e. brackish water with salt content of 3.0-5.0 g/L and fresh water with only 1.27 g salt/L) were applied to subplots. The brackish water irrigation significantly increased the salt content at different soil depths in the upper 1 m soil layer during the two growing seasons. Straw mulching affected the vertical distribution of salt in the brackish water irrigation plots and the average salt content of straw mulch treatments (4.5, 6.0, 7.5, 15.0 and 30.0 Mg/ha) within the 0-20, 20-40 and 0-100 cm soil depths was 10.2, 14.0 and 1.8% lower than that without straw mulch (A0). No salt accumulation occurred to a depth of 1 m in the brackish water irrigation plots and there was no correlation between the value of SAS (salt accumulated in 1 m of soil) and straw mulch rate. In 2000 and 2001, the salt content within the 0-40 cm soil layer in brackish water irrigation plots increased due to high evaporation rates during April-June, and then decreased up to September as salts were leached by rain. For the fresh water irrigation plots, the salt content remained relatively stable. Straw mulching affected the salt content in the 0-40 cm soil layer in brackish water irrigation plots in different periods of 2000 and 2001, but no correlation between salt content and straw mulch rates was observed except in September of 2000. Unlike for wheat, the yield of maize increased as the straw mulch rate increased according to the equation, y = 0.1589x + 5.3432 (R2 = 0.6506). Our results would be helpful in adopting brackish water irrigation and straw mulching in ways that enhance crop yields and reduce the risk of soil salinization. However, long-term effects of brackish water irrigation and straw mulching on soil salinity and crop yield need to be further evaluated for sustainability of the system.  相似文献   

11.
Oilseed and pulse crops have been increasingly used to replace conventional summer fallow and diversify cropping systems in northern high latitude areas. The knowledge of water use (WU) and its distribution profile in the soil is essential for optimizing cropping systems aimed at improving water use efficiency (WUE). This study characterized water use and distribution profile for pulse and oilseed crops compared to spring wheat (Triticum aestivum L.) in a semiarid environment. Three oilseeds [canola (Brassica napus L.), mustard (Brassica juncea L.) and flax (Linum usitatissimum L.)], three pulses [chickpea (Cicer arietinum L.), dry pea (Pisum sativum L.) and lentil (Lens culinaris Medik.)], and spring wheat were seeded in removable 100 cm deep × 15 cm diameter lysimeters placed in an Aridic Haploboroll soil, in southwest Saskatchewan in 2006 and 2007. Crops were studied under rainfed and irrigated conditions where lysimeters were removed and sampled for plant biomass and WU at various soil depths. Wheat yields were greater than pulse crop yields which were greater than oilseed yields, and WUE averaged 4.08 kg ha−1 mm−1 for pulse crops, 3.64 kg ha−1 mm−1 for oilseeds, and ranged between 5.5 and 7.0 kg ha−1 mm−1 for wheat. Wheat used water faster than pulse and oilseed crops with crop growth. Pulse crops extracted water mostly from the upper 60 cm soil depths, and left more water unused in the profile at maturity compared to oilseeds or wheat. Among the three pulses, lentil used the least amount of water and appeared to have a shallower rooting depth than chickpea and dry pea. Soil WU and distribution profile under canola and mustard were generally similar; both using more water than flax. Differences in WU and distribution profile were similar for crops grown under rainfall and irrigation conditions. A deep rooting crop grown after pulses may receive more benefits from water conservation in the soil profile than when grown after oilseed or wheat. Alternating pulse crops with oilseeds or wheat in a well-planned crop sequence may improve WUE for the entire cropping systems in semiarid environments.  相似文献   

12.
Surface irrigation analysis and design require the knowledge of the variation of the cumulative infiltration water Z (L) (per unit area) into the soil as a function of the infiltration time t (T). The purpose of this study is to evaluate water infiltration and storage under surface irrigation in an alluvial clay soil cultivated with grape yield, and to determine if partially wetted furrow irrigation has more efficient water storage and infiltration than traditional border irrigation. The two irrigation components considered were wet (WT) and dry (DT) treatments, at which water applied when available soil water reached 65% and 50%, and the traditional border irrigation control. Empirical power form equations were obtained for measured advance and recession times along the furrow length during the irrigation stages of advance, storage, depletion and recession. The infiltration (cumulative depth, Z and rate, I) was functioned to opportunity time (to) in minute for WT and DT treatments as: ZWT = 0.528 to0.6, ZDT = 1.2 to0.501, IWT = 19 to−0.4, and IDT = 36 to−0.498. The irrigation efficiency and soil water distribution have been evaluated using linear distribution and relative schedule depth. Coefficient of variation (CV) was 5.2 and 9.5% for WT and DT under furrow irrigation system comparing with 7.8% in border, respectively. Water was deeply percolated as 11.88 and 19.2% for wet and dry furrow treatments, respectively, compared with 12.8% for control, with no deficit in the irrigated area. Partially wetted furrow irrigation had greater water-efficiency and grape yield than both dry furrow and traditional border irrigations, where application efficiency achieved as 88.1% for wet furrow irrigation that achieved high grape fruit yield (30.71 Mg/ha) and water use efficiency 11.9 kg/m3.  相似文献   

13.
Agriculture in sub-Saharan Africa is a low-input low-output system primarily for subsistence. Some of these areas are becoming less able to feed the people because of land degradation and erosion. The aim of this study is to characterize the potential for increasing levels of soil carbon for improving soil quality and carbon sequestration. A combination of high- and low-resolution imagery was used to develop a land use classification for an area of 64 km2 near Omarobougou, Mali. Field sizes were generally small (10–50 ha), and the primary cultivation systems are conventional tillage and ridge tillage, where tillage is performed by a combination of hand tools and animal-drawn plows. Based on land use classification, climate variables, soil texture, in situ soil carbon concentrations, and crop growth characteristics, the EPIC-Century model was used to project the amounts of soil carbon sequestered for the region. Under the usual management practices in Mali, mean crop yield reported (1985–2000) for maize is 1.53 T ha−1, cotton is 1.2 T ha−1, millet is 0.95 T ha−1, and for sorghum is 0.95 T ha−1. Year-to-year variations can be attributed to primarily rainfall, the amount of plant available water, and the amount of fertilizer applied. Under continuous conventional cultivation, with minimal fertilization and no residue management, the soil top layer was continuously lost due to erosion, losing between 1.1 and 1.7 Mg C ha−1 over 25 years. The model projections suggest that soil erosion is controlled and that soil carbon sequestration is enhanced with a ridge tillage system, because of increased water infiltration. The combination of modeling with the land use classification was used to calculate that about 54 kg C ha−1 year−1 may be sequestered for the study area with ridge tillage, increased application of fertilizers, and residue management. This is about one-third the proposed rate used in large-scale estimates of carbon sequestration potential in West Africa, because of the mixture of land use practices.  相似文献   

14.
Water harvesting is viable alternatives for rainfed agricultural production in semiarid lands. A field experiment was conducted to evaluate the efficiency of a relatively new water harvesting technique, called sand ditch, for moisture and soil conservation. Twelve field plots of 10 m × 2 m were constructed in two adjacent fields having silt loam soils but varied in soil depth, 0.75 m and 2 m, and slope of 10% and 12%. A 130 L barrel was installed at the downslope end of the plots to collect water and sediments at the end of each rainstorm along the rainy season. Three types of treatments were used in duplicates (12 plots in total); sand-ditch plots in which a ditch of 2-m long, 1 m wide and 0.8 m deep was constructed in the middle of plots across the slope (2 in each field), two compacted plots and two plots covered with plastic mulch in addition to four control plots, 2 in each field. The total amount of runoff, sediment concentration, total infiltration and sediment loss for the experimental plots were measured or calculated after each storm during the winter season 2004/2005. Experimental results showed that sand-ditch technique significantly reduced runoff and sediment loss and increased infiltration and soil moisture compared to control or compacted plots. The overall average runoff and sediment reductions in the sand-ditch plots were 46% and 61% compared to control plots. Sediment losses from compacted plots were about 2.2 and 6 folds higher than control and sand-ditch plots, respectively making soil compaction unsuitable technique for rainfall harvesting under the current experimental and climatic conditions. Construction of sand ditch also increased the dry matter yield of native grass by an average of 62% and 40% in the two experimental fields compared to control.  相似文献   

15.
A variety of indices have been used to measure soil and crop drought for irrigation scheduling. However, simple indices with physiological mechanisms from soil water content are still expected. Based on the water flow and supply in a soil-plant continuum, we examined the concepts of soil drought intensity and drought degree and found an empirical correlation between soil water storage and depletion in a given layer. Accordingly, an index of soil drought intensity (I) and degree (D) was established using the soil water data obtained from a field experiment conducted in Xianning, Hubei, China. Corn plants (Zea mays L., Yedan 13) were grown at field plots under a movable rain shelter. From the V6 stage to R1 stage, the corn plants were grown under seven soil water deficit levels, by no irrigation applied for 0-36 days in 2005 and 0-32 days in 2006. At the end of the irrigation withholding period, it was found that soil water below 70 cm still remained at high level, but the soil water was not easily transported to the root zone in the upper layer. The daily values of I in different soil layers reflected the soil water depletion rates in the drying course. The values of D in different soil layers, which were calculated from I, increased with the progressive soil drying course. The D index in different soil layers not only revealed the drought severity of the layer, but it was also inversely correlated with corn yields when D was less than the threshold values. When D went beyond the thresholds, for example 0.68 in 2005 (soil dried 25 days) and 0.70 in 2006 (soil dried 17 days) in the 0-10 cm soil layer, the corn yield was reduced significantly. Based on soil water changes, index D is the comprehensive result of antecedent soil water condition, crop growth and root development, soil properties, and potential atmospheric evaporation. It is also comparable to the development of drought hazard on a crop. The results suggest that soil drought degree D, together with I, can be an index for monitoring and evaluating soil-crop drought, as well as complementing the crop water stress index (CWSI) in irrigation scheduling.  相似文献   

16.
InfoCrop, a generic crop model, simulates the effects of weather, soils, agronomic management (planting, nitrogen, residues and irrigation) and major pests on crop growth, yield, soil carbon, nitrogen and water, and greenhouse gas emissions. This paper presents results of its evaluation in terms of its validation for rice and wheat crops in contrasting agro-environments of tropics, sensitivity to the key inputs, and also illustrates two typical applications of the model. Eleven diverse field experiments, having treatments of location, seasons, varieties, nitrogen management, organic matter, irrigation, and multiple pest incidences were used for validation. Grain yields in these experiments varied from 2.8 to 7.2 ton ha−1 in rice and from 3.6 to 5.5 ton ha−1 in wheat. The results indicated that the model was generally able to explain the differences in biomass, grain yield, emissions of carbon dioxide, methane and nitrous oxides, and long-term trends in soil organic carbon, in diverse agro-environments. The losses in dry matter and grain yield due to different pests and their populations were also explained satisfactorily. There were some discrepancies in the simulated emission of these gases during first few days after sowing/transplanting possibly because of the absence of tillage effects in the model. The sensitivity of the model to change in ambient temperature, crop duration and pest incidence was similar to the available field knowledge. The application of the model to quantify multiple pests damage through iso-loss curves is demonstrated. Another application illustrated is the use of InfoCrop for analyzing the trade-offs between increasing crop production, agronomic management strategies, and their global warming potential.  相似文献   

17.
A field study was conducted from 2002 to 2007 to investigate the influence of row spacing of winter wheat (Triticum aestivum L.) on soil evaporation (E), evapotranspiration (ET), grain production and water use efficiency (WUE) in the North China Plain. The experiment had four row spacing treatments, 7.5 cm, 15 cm, 22.5 cm, and 30 cm, with plots randomly arranged in four replicates. Soil E was measured by micro-lysimeters in three seasons and ET was calculated from measurements of soil profile water depletion, irrigation, and rainfall. The results showed that E increased with row spacing. Compared with the 30-cm row spacing (average E = 112 mm), the reduction in seasonal E averaged 9 mm, 25 mm, and 26 mm for 22.5 cm, 15 cm, and 7.5 cm row spacings, respectively. Crop transpiration (T) increased as row spacing decreased. The seasonal rainfall interception and seasonal ET were relatively unchanged among the treatments. In three out of five seasons, the four different treatments showed similar grain yield, yield components and WUE. We conclude that for winter wheat production in the North China Plain, narrow row spacing reduced soil evaporation, but had minor improvements on grain production and WUE under irrigated conditions with adequate nutrient levels.  相似文献   

18.
This study compares the effects of different irrigation regimes on seed yield and oil yield quality and water productivity of sprinkler and drip irrigated sunflower (Helianthus annus L.) on silty-clay-loam soils in 2006 and 2007 in the Mediterranean region of Turkey. In sprinkler irrigation a line-source system was used in order to create gradually varying irrigation levels. Irrigation regimes consisted of full irrigation (I1) and three deficit irrigation treatments (I2, I3 and I4), and rain-fed treatment (I5). In the drip system, irrigation regimes included full irrigation (FI-100), three deficit irrigation treatments (DI-25, DI-50, DI-75), partial root zone drying (PRD-50) and rain-fed treatment (RF). Irrigations were scheduled at weekly intervals both in sprinkler and drip irrigation, based on soil water depletion within a 0.90 m root zone in FI-100 and I1 plots. Irrigation treatments influenced significantly (P < 0.01) sunflower seed and oil yields, and oil quality both with sprinkler and drip systems. Seed yields decreased with increasing water stress levels under drip and sprinkler irrigation in both experimental years. Seed yield response to irrigation varied considerably due to differences in soil water contents and spring rainfall distribution in the experimental years. Although PRD-50 received about 36% less irrigation water as compared to FI-100, sunflower yield was reduced by an average of 15%. PRD-50 produced greater seed and oil yields than DI-50 in the drip irrigation system. Yield reduction was mainly due to less number of seeds per head and lower seed mass. Soil water deficits significantly reduced crop evapotranspiration (ET), which mainly depends on irrigation amounts. Significant linear relationships (R2 = 0.96) between ET and oil yield (Y) were obtained in each season. The seed yield response factors (kyseed) were 1.24 and 0.86 for the sprinkler and 1.19 and 1.06 for the drip system in 2006 and 2007, respectively. The oil yield response factor (kyoil) for sunflower was found to be 1.08 and 1.49 for both growing seasons for the sprinkler and 1.36 and 1.25 for the drip systems, respectively. Oil content decreased with decreasing irrigation amount. Consistently greater values of oil content were obtained from the full irrigation treatment plots. The saturated (palmitic and stearic acid) and unsaturated (oleic and linoleic acid) fatty acid contents were significantly affected by water stress. Water stress caused an increase in oleic acid with a decrease in linoleic acid contents. The palmitic and stearic acid concentrations decreased under drought conditions. Water productivity (WP) values were significantly affected by irrigation amounts and ranged from 0.40 to 0.71 kg m−3 in 2006, and from 0.69 to 0.91 kg m−3 in 2007. The PRD-50 treatment resulted in the greatest WP (1.0 kg m−3) and irrigation water productivity (IWP) (1.4 kg m−3) in both growing seasons. The results revealed that under water scarcity situation, PRD-50 in drip and I2 in sprinkler system provide acceptable irrigation strategies to increase sunflower yield and quality.  相似文献   

19.
The increasing scarcity of water for irrigation is becoming the most important problem for producing forage in all arid and semi-arid regions. Pearl millet is a key crop in these regions which needs relatively less water than other crops. In this research, a field study was conducted to identify the best combination of irrigation and nitrogen (N) management to achieve acceptable pearl millet forage both in quantity and quality aspects. Pearl millet was subjected to four irrigation treatments with interaction of N fertilizer (0, 75, 150 and 225 kg ha−1). The irrigation treatments were 40%, 60%, 80% and 100% of total available soil water (I40, I60, I80 and I100, respectively). The results showed that increasing moisture stress (from I40 to I100) resulted in progressively less total dry matter (TDM), leaf area index (LAI), and nitrogen utilization efficiency (NUzE), while water use efficiency (WUE) and the percentage of crude protein (CP%) increased. The highest TDM and LAI were found to be 21.45 t ha−1 and 8.65, in I40 treatment, respectively. TDM, WUE, CP% and profit responses to N rates were positive. The maximum WUE of 4.19 kg DM/m3 was achieved at I100 with 150 kg N ha−1. The results of this research indicate that the maximum profit of forage production was obtained in plots which were fully irrigated (I40) and received 225 kg N ha−1. However, in the situation which water is often limited and not available, application of 150 kg N ha−1 can produce high forage quality and guaranty acceptable benefits for farmers.  相似文献   

20.
Cotton is a perennial plant with an indeterminate growth pattern that is typically produced like an annual, but requires proper management to effectively produce high yields and good fiber quality in a thermally limited environment like the northern Texas High Plains. In 2007 and 2008, we investigated the effect of irrigation scheduling/control method and amount on cotton (Gossypium hirsutum L.) yield and water use efficiency. Methods were automatic irrigation scheduling and control of a center pivot system, and manually scheduled irrigation to replenish soil-water to field capacity. Cotton was irrigated with LEPA (low energy, precision application) drag socks in furrow dikes; three blocks were irrigated manually and three were irrigated automatically. Six replicates of the manual and automatic irrigation treatments were included in the randomized block design. Manual irrigations were based on the weekly replenishment of soil-water to field capacity in the top 1.5 m of the soil profile and included a fully irrigated treatment (I100), and treatments receiving 67% (I67) and 33% (I33) of the I100 amount, plus a non-irrigated treatment (I0). Automatic irrigations were triggered using a time temperature threshold (TTT) algorithm, which was designated as the I100 treatment, and treatments receiving 67%, 33%, and 0% of that amount (I67, I33 and I0, respectively). In 2007, overall mean lint yields (102.3 and 101.6 g m−2, manual and automatic, respectively) were not significantly different. Similarly, yields were not significantly different across automatic and manual treatments in the same treatment level, with the exception of the I67 treatment where the manual treatment yields were 11% greater. In 2008, the mean yields were 70% less than those in 2007 for both methods of irrigation (30.3 and 30.9 g m−2, manual and automatic, respectively) due to harsh climatic conditions at emergence and heavy rainfall and cooler temperatures in the month of August. Yields from the automatically irrigated plots in the I100 and I67 treatments, however, were significantly greater than yields from the corresponding manually irrigated plots; though there was no significant difference between yields in the drier treatments (I33 and I0) plots. These results indicate that the TTT algorithm is a promising method for auto-irrigation scheduling of short season cotton in an arid region. However, further studies are essential to demonstrate consistent positive outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号