首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of salinity on water stress, growth, and yield of maize and sunflower   总被引:10,自引:0,他引:10  
Maize and sunflower were grown in tanks filled with loam and clay, and were irrigated with water of three different levels of salinity. Predawn leaf-water potential and stomatal conductance were used as parameters for water stress. The predawn leaf-water potential of maize was higher than that of sunflower, but the effect of salinity and soil texture on the predawn leaf-water potential was the same for both crops. The stomatal conductance of sunflower was much higher and more severely affected by salinity and soil texture than the stomatal conductance of maize.

Although salinity had a more serious effect on the development of leaf area and canopy dry matter of sunflower, its effect on evapotranspiration and grain yield was the same for both crops. Soil texture had a stronger effect on the development of leaf area and canopy dry matter of sunflower, which also appeared in the evapotranspiration and grain yield, indicating that sunflower is more sensitive to drought than maize.  相似文献   


2.
The need for salt-tolerant turfgrasses is ever-increasing. Rapid urban population growth has put enormous pressures on limited freshwater supplies. Many state and local governments have reacted by placing restrictions on the use of potable water for irrigating turfgrass landscapes, instead requiring use of reclaimed, or other secondary saline water sources. In coastal areas, overpumping, and resultant salt water intrusion of coastal wells used for irrigating turfgrass facilities has widely occurred. The nature and extent of the salinity problem, followed by basic salinity issues and available management choices, will be discussed. Issues facing the turf manager using saline water sources are soil salinization, resulting in direct salt injury to turf, and secondary problems of loss of soil structure ensuing from sodium and bicarbonate effects, resulting in loss of salt leaching potential and soil anaerobiosis. Management choices for the turf manager using saline water are limited. Soil salinity must be maintained below the level deemed detrimental to the turf, by maintaining sufficient leaching. Sodium/bicarbonate affected soils must be managed to maintain sufficient permeability to permit adequate leaching. Finally, salt tolerant turf species/cultivars must be used. Long-term solutions to the salinity problem will require development of improved salt-tolerant turfgrasses. Progress in cultivar development, and future development of potential alternative halophytic turfgrass species will also be discussed.  相似文献   

3.
The hydraulics of pitcher irrigation in saline water condition was studied in laboratory conditions in terms of flow behaviour of pitcher, soil moisture distribution, wetting front advance and distribution of salt concentration in the soil using different pitcher making materials. The Pitcher Type 1 (PT1) made up of local soil and sand yielded the lowest mean hourly depletion ranging from 0.42 to 0.62% depending on salinity of the water used. It was followed by PT2 made up of local soil, sand and resinous material with a mean hourly depletion of 0.51-0.69% and PT3 with local soil, saw dust and sand with a mean hourly depletion of 0.91-1.02%. In all cases, with the increase in salinity level of the water used (ranging from 5 to 20 dS/m), the depletion rate and moisture content in the soil profile were found to decrease.Similarly, it was found that PT1 yielded the lowest wetting front advance and salt movement followed by PT2 and PT3. It was observed that the wetting front advance in the soil decreased with increasing salinity level of the water. The salt concentration in the soil was minimum near the pitcher and maximum at the soil surface and periphery of the wetted zone. In case of PT1, the maximum salt concentration in the soil profile ranged between 1.09 and 3.88 dS/m using water with a salinity ranging from 5 to 20 dS/m, respectively. Similarly, for PT2 the maximum salt concentration in the soil profile also ranged from 1.09 to 3.88 dS/m and for PT3 from 2.30 to 6.07 dS/m. A paired t-test revealed that the moisture as well as the salt distribution of PT3 differed significantly from PT1 and PT2 at α = 0.05. Even, if the salt concentration remained the same and the moisture content remained within field capacity for PT1 and PT2, PT1 is preferred in comparison to PT2 and PT3 as the pitcher material of PT1 is locally economically available.  相似文献   

4.
This study examines whether there are any beneficial effects of magnetic treatment of different irrigation water types on water productivity and yield of snow pea, celery and pea plants. Replicated pot experiments involving magnetically treated and non-magnetically treated potable water (tap water), recycled water and saline water (500 ppm and 1000 ppm NaCl for snow peas; 1500 ppm and 3000 ppm for celery and peas) were conducted in glasshouse under controlled environmental conditions during April 2007 to December 2008 period at University of Western Sydney, Richmond Campus (Australia). A magnetic treatment device with its magnetic field in the range of 3.5-136 mT was used for the magnetic treatment of irrigation water. The analysis of the data collected during the study suggests that the effects of magnetic treatment varied with plant type and the type of irrigation water used, and there were statistically significant increases in plant yield and water productivity (kg of fresh or dry produce per kL of water used). In particular, the magnetic treatment of recycled water and 3000 ppm saline water respectively increased celery yield by 12% and 23% and water productivity by 12% and 24%. For snow peas, there were 7.8%, 5.9% and 6.0% increases in pod yield with magnetically treated potable water, recycled water and 1000 ppm saline water, respectively. The water productivity of snow peas increased by 12%, 7.5% and 13% respectively for magnetically treated potable water, recycled water and 1000 ppm saline water. On the other hand, there was no beneficial effect of magnetically treated irrigation water on the yield and water productivity of peas. There was also non-significant effect of magnetic treatment of water on the total water used by any of the three types of vegetable plants tested in this study. As to soil properties after plant harvest, the use of magnetically treated irrigation water reduced soil pH but increased soil EC and available P in celery and snow pea. Overall, the results indicate some beneficial effect of magnetically treated irrigation water, particularly for saline water and recycled water, on the yield and water productivity of celery and snow pea plants under controlled environmental conditions. While the findings of this glasshouse study are interesting, the potential of the magnetic treatment of irrigation water for crop production needs to be further tested under field conditions to demonstrate clearly its beneficial effects on the yield and water productivity.  相似文献   

5.
咸水灌溉对土壤水盐分布和小麦产量的影响   总被引:1,自引:0,他引:1  
在石羊河流域中游开展田间灌溉试验,试验设置3种灌水量,灌溉定额分别为355,280,205 mm(W1,W2和W3);4种灌水矿化度0.7,3.0,5.0和7.0 g/L(S1,S2,S3和S4),共12个处理,每个处理3组重复.研究结果表明:淡水灌溉条件下,土壤积盐率不超过15%,当灌水矿化度在3.0 g/L以上时,土壤剖面盐分积累峰值在20~40 cm层,灌溉水带入的盐分有40%~80%积累在60 cm深度.当灌水矿化度为3.0 g/L时,盐分胁迫造成春小麦减产在10%以下;灌水矿化度为5.0 g/L和7.0 g/L时,春小麦减产严重,最高可达28%.相同灌水矿化度条件下,与充分灌溉(W1)相比,W2和W3分别减产10%和15%左右.拔节期-灌浆期是春小麦需水关键期,灌水要及时,3种灌水量均可以保证春小麦根区含水量维持在田间持水量的60%~80%.因此,3.0 g/L的微咸水灌溉不会造成春小麦大幅减产,合理调控灌水时间,灌水量为205~355mm可以保证春小麦土壤含水量维持在适宜的水平.  相似文献   

6.
A great challenge for the agricultural sector is to produce more food from less water, particularly in arid and semi-arid regions which suffer from water scarcity. A study was conducted to evaluate the effect of three irrigation methods, using effluent versus fresh water, on water savings, yields and irrigation water use efficiency (IWUE). The irrigation scheduling was based on soil moisture and rooting depth monitoring. The experimental design was a split plot with three main treatments, namely subsurface drip (SSD), surface drip (SD) and furrow irrigation (FI) and two sub-treatments effluent and fresh water, which were applied with three replications. The experiment was conducted at the Marvdasht city (Southern Iran) wastewater treatment plant during 2005 and 2006. The experimental results indicated that the average water applied in the irrigation treatments with monitoring was much less than that using the conventional irrigation method (using furrows but based on a constant irrigation interval, without moisture monitoring). The maximum water saving was obtained using SSD with 5907 m3 ha−1 water applied, and the minimum water saving was obtained using FI with 6822 m3 ha−1. The predicted irrigation water requirements using the Penman-Monteith equation (considering 85% irrigation efficiency for the FI method) was 10,743 m3 ha−1. The pressure irrigation systems (SSD and SD) led to a greater yield compared to the surface method (FI). The highest yield (12.11 × 103 kg ha−1) was obtained with SSD and the lowest was obtained with the FI method (9.75 × 103 kg ha−1). The irrigation methods indicated a highly significant difference in irrigation water use efficiency. The maximum IWUE was obtained with the SSD (2.12 kg m−3) and the minimum was obtained with the FI method (1.43 kg m−3). Irrigation with effluent led to a greater IWUE compared to fresh water, but the difference was not statistically significant.  相似文献   

7.
A field study was carried out to determine the effects of water stress imposed at different development stages on grain yield, seasonal evapotranspiration, crop-water relationships, yield response to water and water use efficiency of safflower (Carthamus tinctorius L.) for winter and summer sowing. The field trials were conducted on a loam Entisol soil in Thrace Region in Turkey, using Dincer, the most popular safflower variety in the research area. A randomised complete block design with three replications was used. Three known growth stages of the plant were considered and a total of 8 (including rainfed) irrigation treatments were applied. The effect of irrigation or water stress at any stage of development on grain yield per hectare and 1000 kernel weight, was evaluated. Results of this study showed that safflower was significantly affected by water shortage in the soil profile due to omitted irrigation during the sensitive vegetative stage. The highest yield was observed in the fully irrigated control and was higher for winter sowing than for summer sowing. Evapotranspiration calculated for non-stressed production was 728 and 673 mm for winter and summer sowing, respectively. Safflower grain yield of the fully irrigated treatments was 4.05 and 3.74 t ha−1 for winter and summer season, respectively. The seasonal yield response factor was 0.97 and 0.81 for winter and summer sowing, respectively. The highest total water use efficiency was obtained in the treatment irrigated only at vegetative stage while the lowest value was observed when the crop was irrigated only at yield stage. As conclusions: (i) winter sowing is suggested; (ii) if deficit irrigation is to apply at only one or two stages, Y stage or Y and F stages should be omitted, respectively.  相似文献   

8.
为了揭示棉花生长发育对咸水灌溉的响应特征,采用小区对比试验,研究了不同矿化度咸水灌溉对棉花出苗、株高、叶面积、果枝数、地上部干质量等形态指标以及产量构成、耗水量和水分利用率的影响.结果表明,棉花出苗率和成苗率随着灌溉水矿化度的增大而减小,但3 g/L灌水处理与对照间的差异不具有统计学意义,而5,7 g/L处理与对照间差异极具统计学意义.在移栽补全苗情况下,咸水灌溉对棉花形态生长指标产生了一定的抑制效应,灌溉水矿化度愈大,抑制作用愈大;对株高、叶面积和地上部干质量的影响在蕾期最明显,花铃期之后开始逐渐减弱;对果枝数和棉铃生长的影响程度随着棉花生育进程的推进而降低.处理间棉花的耗水量差异不具有统计学意义,籽棉产量和水分利用率的大小顺序,按灌水处理依次为3,1,5,7 g/L,其中7 g/L处理与对照间的差异具有统计学意义.与灌水前初始值相比,试验结束后1,3 g/L灌水处理的0~40 cm土层盐分未增加,5,7 g/L灌水处理则形成了积盐.研究结果可为咸水安全利用提供重要参考.  相似文献   

9.
The use of digital infrared thermography and thermometry to investigate early crop water stress offers a producer improved management tools to avoid yield declines or to deal with variability in crop water status. This study used canopy temperature data to investigate whether an empirical crop water stress index could be used to monitor spatial and temporal crop water stress. Different irrigation treatment amounts (100%, 67%, 33%, and 0% of full replenishment of soil water to field capacity to a depth of 1.5 m) were applied by a center pivot system to soybean (Glycine max L.) in 2004 and 2005, and to cotton (Gossypium hirsutum L.) in 2007 and 2008. Canopy temperature data from infrared thermography were used to benchmark the relationship between an empirical crop water stress index (CWSIe) and leaf water potential (ΨL) across a block of eight treatment plots (of two replications). There was a significant negative linear correlation between midday ΨL measurements and the CWSIe after soil water differences due to irrigation treatments were well established and during the absence of heavy rainfall. Average seasonal CWSIe values calculated for each plot from temperature measurements made by infrared thermometer thermocouples mounted on a center pivot lateral were inversely related to crop water use with r2 values >0.89 and 0.55 for soybean and cotton, respectively. There was also a significant inverse relationship between the CWSIe and soybean yields in 2004 (r2 = 0.88) and 2005 (r2 = 0.83), and cotton in 2007 (r2 = 0.78). The correlations were not significant in 2008 for cotton. Contour plots of the CWSIe may be used as maps to indicate the spatial variability of within-field crop water stress. These maps may be useful for irrigation scheduling or identifying areas within a field where water stress may impact crop water use and yield.  相似文献   

10.
为了研究枯草芽孢杆菌菌剂在盐胁迫下对冬小麦生长与土壤水氮分布的影响,以盆栽冬小麦种植为试验手段,在8 g/kg的盐分质量比下,设置枯草芽孢杆菌菌剂质量比为0(CK),1(G1),3(G3),5(G5)和7(G7)g/kg等5种施加梯度处理,分析了冬小麦株高、叶面积、生物量以及土壤水分和硝态氮含量的变化情况.结果表明:①...  相似文献   

11.
Remote sensing combined with an ability to look deeper than the soil surface is currently high in demand. This study was conducted through scaling down the amount of soil data from a saline irrigation water experiment to see if one can still capture the essential soil salinity depth trends within the data, to a level that can enhance the ability of remote methods. A saline irrigation experiment with 6 water qualities was conducted for 8 years on 1.2 ha of vineyard land near Robertson in the Western Cape Province of South Africa. Soil water was sampled at regular intervals at 5 depths between 0.15 and 1.2 m with suction cup lysimeters at a fixed time following each irrigation. Electrical conductivity of the soil water (ECsw) was determined after sampling. Data collected over the full 8-year period were investigated for depth trends in ECsw, seeking trend lines with lowest polynomial order that were still significantly predict the salinity profile. At all treatment levels a first order polynomial equation, fitted to the salinity profiles, significantly predicted the salinity trends. The ECsw value at only two depths could therefore be used to calculate total salt accumulation and soil water quality below the root zone. The implication is that considerable value can be obtained from minimal measurements both in estimating salt accumulation in the soil profile and predicting water quality in return flow from saline irrigation.  相似文献   

12.
A 3-year experiment was conducted in an extremely dry and saline wasteland to investigate the effects of the drip irrigation on salt distributions and the growth of cotton under different irrigation regimes in Xinjiang, Northwest China. The experiment included five treatments in which the soil matric potential (SMP) at 20 cm depth was controlled at −5, −10, −15, −20, and −25 kPa after cotton was established. The results indicated that a favorable low salinity zone existed in the root zone throughout the growing season when the SMP threshold was controlled below −25 kPa. When the SMP value decreased, the electrical conductivity of the saturation paste extract (ECe) in the root zone after the growing season decreased as well. After the 3-year experiment, the seed-cotton yield had reached 84% of the average yield level for non-saline soil in the study region and the emergence rate was 78.1% when the SMP target value was controlled below −5 kPa. The average pH of the soil decreased slightly after 3 years of cultivation. The highest irrigation water use efficiency (IWUE) values were recorded when the SMP was around −20 kPa. After years of reclamation and utilization, the saline soil gradually changed to a moderately saline soil. The SMP of −5 kPa at a depth of 20 cm immediately under a drip emitter can be used as an indicator for cotton drip irrigation scheduling in saline areas in Xinjiang, Northwest China.  相似文献   

13.
为探究不同微咸水水质对土壤水力特性和作物生长的影响,在日光温室条件下,以生菜为供试作物开展2季盆栽试验.以CaSO4的饱和溶液为对照(CK),向去离子水中添加不同氯化盐形成电导率相同而阳离子组成不同的微咸水处理(分别为Na+∶TNa;Na+/K+比为1∶1:TNa-K;K+∶TK),研究连续灌溉下土壤容重、持水性能、水盐运移,以及生菜生长响应,并采用van Genuchten模型对水分特征曲线相关参数进行拟合分析.结果表明:与CK相比,微咸水灌溉均增加了土壤容重,降低了土壤孔隙度;随着微咸水持续灌溉,土壤孔隙分布明显改变,微小孔隙比例增加,土壤持水能力显著提高,以处理TNa最为显著.连续微咸水灌溉下,灌溉水钠吸附比、土壤结构稳定性阳离子比与土壤进气值参数存在负相关关系(R2均为0.78).土壤中盐分逐渐积累,表现为第2季生菜生长季末(播后80 d)各处理0~20 cm土壤饱和提取液电导率较第1季显著升高,其中CK显著低于其他处理(P<0.05),且表层土壤(0~10 cm)中盐分积累更为明显.生长季末土壤表层含水量较高,与盐分分布基本一致.与CK相比,处理TNa,TNa-K和TK显著降低了生菜生物量的积累(P<0.05),其中TNa最低.  相似文献   

14.
Remote sensing can allow a more efficient irrigation water management by applying the water when crops require it or when symptoms of water stress appear. In this study, the spatial and temporal distribution of the water deficit index (WDI) and crop evapotranspiration (ET) in wheat were determined through analysis of satellite-based remote sensing images in the Yaqui Valley, Sonora, México. We utilize an empirical model based on the canopy temperature–vegetation cover relationship methodology known as the Moran's trapezoid. We analyze and discuss the spatial and temporal distributions of WDI and ET at the regional and local scales. Results show a linear relationship (R2 = 0.96) between the values of WDI and the number of days elapsed since the last irrigation. The water deficit index could be utilized to estimate the quantity of available water in wheat and to know the degree of stress presented by the crop. Advantages offered by this methodology include obtaining WDI and evapotranspiration values in zones with partial or null vegetation cover and for large irrigation schemes lacking the necessary data for traditional water management.  相似文献   

15.
微咸水灌溉与土壤水盐调控研究进展   总被引:22,自引:0,他引:22  
随着淡水资源短缺的日益加剧,合理开发利用微咸水已成为缓解水资源供需矛盾的重要途径之一。由于微咸水中含有大量盐分,用其灌溉必然增加土壤盐分,影响作物生长和土地质量。因此,采取有效措施调控土壤水盐状况成为微咸水安全利用的基础。本文较详细地回顾了微咸水灌溉条件下土壤水盐运移特征、微咸水入渗模型和水盐运移模型、微咸水灌溉方法、微咸水灌溉对作物生长的影响、土壤水盐调控方法等方面的研究进展,并结合目前研究中关注的核心问题,提出了微咸水安全利用方面需要重点研究的科学和技术问题,为进一步研究微咸水灌溉对土壤和作物生长的影响和其内在机制,以及构建合理利用微咸水灌溉模式提供参考。  相似文献   

16.
Cotton (Gossypium hirsutum L.) is the most important industrial and summer cash crop in Syria and many other countries in the arid areas but there are concerns about future production levels, given the high water requirements and the decline in water availability. Most farmers in Syria aim to maximize yield per unit of land regardless of the quantity of water applied. Water losses can be reduced and water productivity (yield per unit of water consumed) improved by applying deficit irrigation, but this requires a better understanding of crop response to various levels of water stress. This paper presents results from a 3-year study (2004-2006) conducted in northern Syria to quantify cotton yield response to different levels of water and fertilizer. The experiment included four irrigation levels and three levels of nitrogen (N) fertilizer under drip irrigation. The overall mean cotton (lint plus seed, or lintseed) yield was 2502 kg ha−1, ranging from 1520 kg ha−1 under 40% irrigation to 3460 kg ha−1 under 100% irrigation. Mean water productivity (WPET) was 0.36 kg lintseed per m3 of crop actual evapotranspiration (ETc), ranging from 0.32 kg m−3 under 40% irrigation to 0.39 kg m−3 under the 100% treatment. Results suggest that deficit irrigation does not improve biological water productivity of drip-irrigated cotton. Water and fertilizer levels (especially the former) have significant effects on yield, crop growth and WPET. Water, but not N level, has a highly significant effect on crop ETc. The study provides production functions relating cotton yield to ETc as well as soil water content at planting. These functions are useful for irrigation optimization and for forecasting the impact of water rationing and drought on regional water budgets and agricultural economies. The WPET values obtained in this study compare well with those reported from the southwestern USA, Argentina and other developed cotton producing regions. Most importantly, these WPET values are double the current values in Syria, suggesting that improved irrigation water and system management can improve WPET, and thus enhance conservation and sustainability in this water-scarce region.  相似文献   

17.
The ecological process in the Tarim River, Xinjiang, northwest China, has undergone great changes due to human disturbance over the past 50 years. Most notably, alteration in the spatial-temporal pattern of water resources has resulted in a damaged or degraded vegetative ecosystem in the lower reaches of Tarim River, a condition that restricts local economical development. However, after raising the water level by watering to the lower Tarim River, such ecological degradation was obviously reversed within a certain region of the water channel. Both agricultural production and animal husbandry improved greatly as well. Taking the 35th state farm as an example, the areas utilized or available for farming increased greatly; furthermore, the total value of agricultural production is 1293.13 × 104 US$, increased by 128% (the rate between the increased production and the original one) after adoption of new management of water. Livestock population has experienced a growth trend as a result of water transfer compared before water transfer. The results of this investigation suggest that the reversible state of the eco-environment following watering has had a positive effect on local agricultural development. In addition, we analyzed the relationship between ecological change and agricultural development and discuss water resource management and its ecological significance.  相似文献   

18.
This study aims at validating the methodology proposed by Allen et al. (1998) to calculate the stress coefficient Ks (ratio between actual and maximal evapotranspiration) under saline environment conditions not affected by soil water shortage. Validation was performed in Mediterranean region (Bari, southern Italy) on two crops: a winter crop (broad bean) and a spring crop (potato) grown in lysimeters, on clay and loam soils, having different levels of salinity. Preliminary observations were carried out to verify that the conditions established by Allen et al. (1998) for applying this Ks calculation methodology were fulfilled.The measured Ks values showed an evolution during the growing cycle. Ks values were close to 1 after emergence, and decreased at the end of the growing cycle. Contrarily, the calculated Ks values showed steady values during the whole crop cycle, being lower than the measured Ks. Only at the end of the crop cycle the calculated Ks values approached those measured. The various causes of differences between measured and calculated values of Ks are analyzed in this study.The observed differences between calculated and measured values of Ks led to an underestimation of calculated actual evapotranspiration (AET), at different stages in the crop growing cycle, by an average of 12%. The analysis of seasonal evapotranspiration as a function of soil salinity allows for a modulation of this mean value. The underestimation was quite negligible (close to 4%), if the average value of ECe during the crop cycle was close or lower than 3 dS m−1. On the contrary, the underestimation in evapotranspiration was close to 20% when the ECe raised up to 6 dS m−1.An underestimation of calculated AET in saline environment conditions, by the methodology proposed by Allen et al. (1998), causes the appearance of an additional water stress, mainly when soil salinity, increases due to the combined effect of soil water shortage and water quality. Different solutions are proposed to improve the calculation of AET in this condition.  相似文献   

19.
The plant module of the EPIC model (Erosion Productivity Impact Calculator) has been modified to simulate the effects of water and nitrogen (N) stress on biomass production and grain yield, taking account of the sensitivity of the crops to water and N stress during the course of their developmental cycle. This French version of the model, EPICphase, was validated with maize (Zea mays L.), sunflower (Helianthus annuus L.), sorghum (Sorghum bicolor L. Moench), soybean (Glycine max L.), and winter wheat (Triticum aestivum L.) over 9 years, using experimental data from a long-term cropping system experiment carried out at three levels of cropping intensity. The results have been compared with those from a normal version of EPIC. The two versions use the same input files. The results show that EPIC overestimates crop production by comparison with the measured data, notably under conditions of severe moisture stress. The additional crop parameters introduced into EPICphase concern the water extraction capacities peculiar to each crop, the division of the growth period into four phases, with adjustments to the conversion efficiency of intercepted radiation into biomass, and the drought adaptation of sunflower and soybean. Finally, the sensitivity of the harvest index to water and N stress has been introduced for each phase of growth. These refinements have led to simulations very close to the measured values. Comparison of results from the two versions was done by means of a statistical study of mean biomass production and grain yield, standard deviations, root mean square error, regression lines, and R2 values.  相似文献   

20.
The objective of the study was to determine the effects of different emitter spaces and water stress on crop yield, such that the tomatoes would be suitable for processing and paste output (Lycopersicon esculentum Mill cv. Shasta). Such variables were also analyzed with respect to crop quality characteristics (e.g., mean fruit weight - MFW, fruit diameter - FD, penetration value of fruit - PV, pH, total soluble solids - TSS, and ascorbic acid contents - AA). The experiment was conducted under ecological conditions typical of the Konya Plain, a semi-arid climate, in 2004 and 2005. Drip irrigation laterals were arranged in such a way that every row had one lateral. Emitters were spaced at 25, 50, and 75 cm intervals in the main plots, while four levels of water supply, irrigation at 7-day intervals with enough water to fill the soil depth of 0-60 cm until capacity was reached (I1), and 25, 50, and 75% decreased water supply levels were applied as subplots of the experiment. Results of the field experiments showed that yield suitable for processing (68.7-72.7 t ha−1) and paste output (12.2-12.9 t ha−1) were obtainable under conditions of I1 application (p < 0.01). MFW, FD, PV, and TSS were significantly affected from treatments (p < 0.05). High stress resulted in the highest soluble solids. The total irrigation water amount and water consumptive use of the mentioned application (I1) were determined as 426 and 525 mm in 2004. In 2005, the total irrigation water amount and water consumptive use of the same treatment were 587 and 619 mm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号