首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four steers fitted with a ruminal cannula and chronic indwelling catheters in the mesenteric artery, mesenteric vein, hepatic portal vein, hepatic vein, and the right ruminal vein were used to study the absorption and metabolism of VFA from bicarbonate buffers incubated in the temporarily emptied and washed reticulorumen. Portal and hepatic vein blood flows were determined by infusion of p-aminohippurate into the mesenteric vein, and portal VFA fluxes were calibrated by infusion of isovalerate into the ruminal vein. The steers were subjected to four experimental treatments in a Latin square design with four periods within 1 d. The treatments were Control (bicarbonate buffer) and VFA buffers containing 4, 12, or 36 mmol butyrate/kg of buffer, respectively. The acetate content of the buffers was decreased with increasing butyrate to balance the acidity. The butyrate absorption from the rumen was 39, 111, and 300 +/- 4 mmol/h for the three VFA buffers, respectively. The ruminal absorption rates of propionate (260 +/- 12 mmol/h), isobutyrate (11.4 +/- 0.7 mmol/h), and valerate (17.3 +/- 0.7 mmol/h) were not affected by VFA buffers. The portal recovery of butyrate and valerate absorbed from the rumen increased (P < 0.01) with increasing butyrate absorption and reached 52 to 54 +/- 4% with the greatest butyrate absorption. The liver responded to the increased butyrate absorption with a decreasing fractional extraction of propionate and butyrate, and with the greatest butyrate absorption, the splanchnic flux was 22 +/- 1% and 18 +/- 1% of the absorbed propionate and butyrate, respectively. The increased propionate and butyrate release to peripheral tissues was followed by increased (P < 0.05) arterial concentrations of propionate (0.08 +/- 0.01 mmol/kg) and butyrate (0.07 +/- 0.01 mmol/kg). Arterial insulin concentration increased (P = 0.01) with incubation of VFA buffers compared with Control and was numerically greatest with the greatest level of butyrate absorption. We conclude that the capacity to metabolize butyrate by the ruminal epithelium and liver is limited. If butyrate absorption exceeds the metabolic capacity, it affects rumen epithelial and hepatic nutrient metabolism and affects the nutrient supply of peripheral tissues.  相似文献   

2.
Six steers fitted with a ruminal cannula and chronic indwelling catheters in the mesenteric artery, mesenteric vein, hepatic portal vein, hepatic vein, as well as in the right ruminal vein were used to study metabolism of VFA absorbed from buffers in the emptied and washed reticulorumen. [2-(13)C]Acetate was infused into a jugular vein to study portal-drained visceral (PDV) uptake of arterial acetate, hepatic unidirectional uptake of acetate, and whole-body irreversible loss rate (ILR). Isobutyrate was infused into the right ruminal vein to calibrate VFA fluxes measured in the portal vein. On sampling days, the rumen was emptied and incubated in sequence with a 0-buffer (bicarbonate buffer without VFA), a VFA-buffer plus continuous intraruminal infusion of VFA, and finally another 0-buffer. Ruminal VFA absorption was determined as VFA uptake from the VFA-buffer and metabolic effects determined as the difference between metabolite fluxes with VFA-buffer and 0-buffers. Steady absorption rates of VFA were maintained during VFA-buffer incubations (4 h; 592+/-16, 257+/-5, 127+/-2, 17+/-<1, 20+/-<1 mmol/h, respectively, of acetate, propionate, butyrate, isovalerate, and valerate). The portal flux of acetate corrected for PDV uptake of arterial acetate accounted for 105+/-3% of the acetate absorption from the rumen, and the net portal flux of propionate accounted for 91+/-2% of propionate absorption. Considerably less butyrate (27+/-3%) and valerate (30+/-3%) could be accounted for in the portal vein. The sum of portal VFA and 3-hydroxybutyrate as well as lactate represented 99+/-3% of total VFA acetyl units and 103+/-2% of VFA propionyl units. Estimates are maximum because no accounting was made for lactate derived from glycolysis in the PDV. The net splanchnic flux of VFA, lactate, 3-hydroxybutyrate, and glucose accounted for 64+/-2% of VFA acetyl units and 34+/-5% of VFA propionyl units. Results indicate that there is a low "first-pass" uptake of acetate and propionate in the ruminal epithelium of cattle, whereas butyrate and valerate are extensively metabolized, though seemingly not oxidized to carbon dioxide in the epithelium but repackaged into acetate, 3-hydroxybutyrate, and perhaps other metabolites. When PDV "second-pass" uptake of arterial nutrients is accounted for, PDV fluxes of VFA, lactate, and 3-hydroxybutyrate represent VFA production in the gastrointestinal tract and thereby VFA availability to the ruminant animal.  相似文献   

3.
To investigate the metabolism of 1,2-propanediol (PPD) in lactating cows independently of normal rumen microbial metabolism, three ruminally cannulated lactating Holstein cows were subjected to three experimental infusion protocols under washed reticulo-ruminal conditions in a Latin square design. Reticulo-ruminal absorption rates were maintained for 420 min by continuous intraruminal infusion of VFA and PPD. With the control treatment, 1,246 +/- 39 mmol/ h of acetate and 213 +/- 5 mmol/h of butyrate were absorbed from the reticulorumen. With the propionate treatment, 1,148 +/- 39 mmo/h of acetate, 730 +/- 23 mmol/h of propionate and 196 +/- 5 mmol/h of butyrate were absorbed from the reticulorumen. With PPD treatment, 1,264 +/- 39 mmol/h of acetate, 220 +/- 5 mmol/h of butyrate and 721 +/- 17 mmol/h of PPD were absorbed from the reticulorumen. Glucose irreversible loss rate (ILR), as well as the relative enrichment of plasma lactate and alanine, were determined by primed continuous infusion of [U-13C]glucose in a jugular vein. Treatments did not affect (P > 0.10) the plasma concentrations of glucose (4.2 +/- 0.1 mmoVL), alanine (0.14 +/- 0.01 mmol/L), or insulin (80 +/- 25 pmol/L). The plasma concentration of lactate was higher (P < 0.05) with both propionate (0.84 +/- 5 mmol/L) and PPD treatment (0.81 +/- 5 mmol/ L) compared with the control treatment (0.29 +/- 0.5 mmol/L). The plasma concentration of pyruvate was higher (P < 0.05) with the propionate treatment (0.09 +/- 0.01 mmol/L) compared with the control treatment (0.03 +/- 0.01 mmol/L). The plasma concentration of 3-hydroxybutyrate was lower (P < 0.05) with the propionate treatment (0.15 +/- 0.03 mmol/L) compared with the control treatment (0.40 +/- 0.03). With the PPD treatment, the plasma concentrations of pyruvate and 3-hydroxybutyrate were in between the other treatments and tended (P < 0.10) to be different from both. The plasma concentration of PPD increased throughout the infusion period with the PPD treatment and reached a concentration of 4.9 +/- 0.6 mmol/L at 420 min. The ILR of glucose was not affected (P > 0.10) by treatments (441 +/- 35 mmol/h). The relative 13C enrichment of plasma lactate compared with that of glucose decreased (P < 0.05) with the PPD treatment compared with the control treatment (44 to 21 +/- 3%). It was concluded that PPD has a low rate of metabolism in cows without a normal functioning rumen, although about 10% of the absorbed PPD was metabolized into lactate.  相似文献   

4.
An experiment was performed using lambs fitted with chronic indwelling catheters in appropriate blood vessels for portal-drained visceral (PDV) flux measurements. The objective of the experiment was to evaluate PDV nutrient flux in alfalfa-fed and intragastrically infused lambs and to evaluate the effects of amount of energy and N infused on PDV nutrient metabolism. Lambs were fed alfalfa or infused with 1.64 and 10.9; 1.82 and 12.3; or 2.37 and 15.0 Mcal GE and g N/d, respectively. Arterial concentrations and PDV fluxes of glucose, L-lactate, acetate and portal blood flow were not different (P greater than .10) between alfalfa-fed and infused lambs. Net flux of alpha-amino N, ammonia N and branched-chain VFA were lower (P less than .05) and net flux of propionate, butyrate and total VFA were higher for intragastric infusion vs alfalfa. No consistent differences in PDV fluxes were noted among the three levels of energy and N infused, although the energy and N levels tested were near maintenance requirements. Nitrogen retention increased as level of energy and N infusion increased. Approximately 47, 70 and 22% of ruminally infused acetate, propionate and butyrate, respectively, were found on a net basis in portal blood as VFA. Measurements of net nutrient utilization by the PDV that eliminate the influence of ruminal fermentation are possible. How the changes in PDV tissues due to intragastric infusion influence these estimates is unknown.  相似文献   

5.
The net portal appearance of volatile fatty acids (VFA) was investigated in four ruminally fistulated and multicatheterized sheep. During the experiments, the sheep were fed once every hour for 14 h and intraruminally infused with mixtures of VFA for the 12 h commencing 2 h after the initiation of the hourly feeding protocol. Paired arterial and portal blood samples were obtained hourly during the last 6 h of the experiments. In the control treatment (1), only water was infused intraruminally. In Treatments 2 through 4, the intraruminal infusion rates of propionate (40 mmol/h), isobutyrate (5 mmol/h), and valerate (5 mmol/h) were unchanged. In Treatments 2, 3, and 4, the acetate infusion rate was 100, 60, and 20 mmol/h, respectively, and the butyrate infusion rate was 10, 30, and 50 mmol/h, respectively. Thus, the infusion rate of VFA carbon was constant across Treatments 2 through 4. Portal recovery estimated from the increased net portal appearance in Treatments 2 through 4 compared to the control treatment was 85% for propionate and 60% for isobutyrate, and these recoveries were unaffected by treatment. The portal recovery of butyrate increased (from 21 to 32%) with increasing infusion rate of butyrate and decreasing infusion rate of acetate, as did the portal recovery of valerate (from 14 to 31%). The portal recovery of acetate was 55%, when measured as net portal appearance. Thus, it seems that the capacity for beta-oxidation in ruminal epithelium is limited, which would explain the increasing portal recovery of butyrate and valerate with increasing infusion rate of butyrate, when infusion rate of VFA carbon is unchanged.  相似文献   

6.
Three sheep fitted with a ruminal cannula and an abomasal catheter were used to study water kinetics and absorption of VFA infused continuously into the rumen. The effects of changing VFA concentrations in the rumen by shifting VFA infusion rates were investigated in an experiment with a 3 x 3 Latin square design. On experimental days, the animals received the basal infusion rate of VFA (271 mmol/h) during the first 2 h. Each animal then received VFA at a different rate (135, 394, or 511 mmol/h) for the next 7.5 h. Using soluble markers (polyethylene glycol and Cr-EDTA), ruminal volume, liquid outflow, apparent water absorption, and VFA absorption rates were estimated. There were no significant effects of VFA infusion rate on ruminal volume and water kinetics. As the VFA infusion rate was increased, VFA concentration and osmolality in the rumen were increased and pH was decreased. There was a biphasic response of liquid outflow to changes in the total VFA concentration in the rumen, as both variables increased together up to a total VFA concentration of 80.1 mM, whereas, beyond that concentration, liquid outflow remained stable at an average rate of 407 mL/h. There were significant linear (P = 0.003) and quadratic (P = 0.001) effects of VFA infusion rate on the VFA absorption rate, confirming that VFA absorption in the rumen is mainly a concentration-dependent process. The proportion of total VFA supplied that was absorbed in the rumen was 0.845 (0.822, 0.877, and 0.910 for acetate, propionate, and butyrate, respectively). The molar proportions of acetate, propionate, and butyrate absorbed were affected by the level of VFA infusion in the rumen, indicating that this level affected to a different extent the absorption of the different acids.  相似文献   

7.
To investigate the impact of rumen microbial sequestration of VFA carbon on estimates of acetate availability based on intraruminal infusion of [2-(13)C] acetate, three nonlactating or low-yielding dairy cows were continuously intraruminally infused with [2-(13)C]acetate for 26 h. The 13C content of ruminal VFA, duodenal carbon, and fatty acids (FA) and AA isolated from liquid-associated ruminal microbes and duodenal DM was measured by an isotope ratio mass spectrometer interfaced to an elemental analyzer or a gas-liquid chromatograph. The ruminal gross production of acetate was 38 +/- 4 mol/d and could account for about 38% of the DE intake. Of the intraruminally infused 13C in [2-(13)C]acetate, 7.6 +/- 0.9% was recovered at the duodenum. The 13C content of ruminal propionate, butyrate, and valerate increased (P < 0.05) with intraruminal infusion of [2-(13)C]acetate. It was estimated that about 28% of the 13C intraruminally infused in [2-(13)C]acetate could be accounted for by duodenal 13C flow and absorption of non-acetate VFA. A number of FA isolated from liquid-associated ruminal microbes (C6, C12, C14, anteiso C15, and iso C15) were enriched with 13C (P < 0.05) at a level comparable to the enrichment of ruminal butyrate. Any absorption of these FA from the rumen would further contribute to non-acetate 13C uptake. A maximum of 72% of the ruminal gross production of acetate represented acetate absorption from the rumen in the present study. Consequently, previously used models using intraruminal isotope dilution techniques seem not to be appropriate for measuring acetate availability in ruminants. The number of metabolites exchanging carbon with acetate was found to be so high that assessments of the entire range of inter conversions seem to be practically impossible. Portal absorption studies are discussed as an alternative method of estimating VFA availability to the metabolism in ruminants.  相似文献   

8.
A novel macro in vitro system was used to test the theory that rumen proportions of acetate, propionate and butyrate are not representative of their respective net production rates. Whole rumen content (10–16 kg) from two cows was mixed with a bicarbonate buffer and incubated separately in two 40‐l in vitro vessels for 3 h. A total of six experimental periods were used. In this study, a total of six cows were used and fed 1/8 of the daily ration by hand every 3 h. To obtain differences in rumen volatile fatty acids (VFA) composition, 1 l of acetate (416 mm ), propionate (108 mm ), butyrate (79 mm ), lactic acid (300 mm ) or nothing was infused during 24 h into the rumen before collection of representative samples of rumen contents. Infusions of acids were then continued during the in vitro incubations in exact proportion to the digesta removed from the rumen. In Periods 1 and 2, the cows were alternatively infused with acetate or nothing. In Periods 3 and 4, the infusions consisted of propionate or butyrate and in Periods 5 and 6 of lactate or nothing. Nine liquid samples were obtained between 3 and 180 min after the start of incubation and analysed for concentrations of VFA. Changes in proportions of individual VFA were estimated by linear regression. No differences in VFA proportions were observed in the absence of infusion (p > 0.5) over time, but when individual VFA were infused, their respective proportions increased. This was interpreted as the result of a decreased in vitro fermentation rate of digesta substrates compared with that in the rumen. Lactate infusion increased butyrate proportion in vitro. It is concluded that this study could not provide any evidence that ruminal VFA proportions are unrepresentative of the proportions of net production.  相似文献   

9.
Three lambs were used in a repeated Latin square design to determine the influence of isoenergetic infusions of propionate or glucose on portal-drained visceral flux (PDV) of nutrients and concentrations of insulin, glucagon, growth hormone and prolactin. Lambs were fitted with appropriate catheters for blood sampling and maintained on total intragastric infusion of nutrients. Basal VFA, casein, mineral and vitamin infusions (isocaloric and isonitrogenous) were supplemented with an additional 22 +/- .5 kcal/h from propionate, glucose or a combination of propionate plus glucose. Ruminal fluid proportion and arterial blood concentration and PDV flux of propionate increased (P less than .10) by 17 mol/100 mol, .02 mM and 40 mmol/h, respectively, with infusion of an additional 61 mmol/h of propionate. Regression equations predicted that, on a net basis, 67% of ruminally infused propionate and 43% of abomasally infused glucose appeared in portal blood. Arterial L-lactate, beta-hydroxybutyrate and acetate concentrations, and beta-hydroxybutyrate flux were increased (P less than .10) by .34 mM, .20 mM, .50 mM and 4.2 mmol/h, respectively, with infusion of 33 mmol/h of added glucose. Net utilization of glucose by the PDV was approximately 4.4 mmol/h when no glucose was infused. Increased infusion of propionate resulted in a 22.2-micrograms/h increase in PDV flux of insulin (P less than .08) but had no effect on arterial insulin, glucagon and prolactin concentrations (P greater than .10). Arterial growth hormone increased by 3.8 ng/ml with increasing glucose infusion (P less than .08).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Four Holstein heifers (360 +/- 22 and 450 +/- 28 kg of BW in Exp. 1 and 2, respectively) fitted with ruminal trocars were used in 4 x 4 Latin square designs to evaluate the effects on ruminal microbial fermentation of the following: Exp. 1, no additive, alfalfa extract (30 g/d, AEX), a mixture of cinnamaldehyde (0.18 g/d) and eugenol (0.09 g/d; CIE1), and AEX and CIE1 in combination; and Exp. 2, no additive, anise oil (2 g/d), capsicum oil (1 g/d), and a mixture of cinnamaldehyde (0.6 g/d) and eugenol (0.3 g/d). Heifers were fed a 90:10 concentrate:barley straw diet (16% CP; 25% NDF) for ad libitum intake. Each period consisted of 15 d for adaptation and 6 d for sampling. On d 16 to 18, DM and water intakes were measured. On d 19 to 21 ruminal contents were sampled at 0, 3, 6, 9, and 12 h after feeding to determine ruminal pH and the concentrations of VFA, L-lactate, large peptides, small peptides plus AA (SPep+AA), and ammonia N. On d 20 and 21, samples of ruminal fluid were collected at 0 and 3 h after feeding to determine protozoal counts. In Exp. 1, CIE1 and AEX decreased (P < 0.05) total DMI, concentrate DMI, and water intake. The increase (P < 0.05) in SPep+AA and the decrease (P < 0.05) in ammonia N when supplementing CIE1 suggest that deamination was inhibited. Treatment AEX increased (P < 0.05) the acetate to propionate ratio, which is less efficient for beef production. Treatment CIE1 increased (P < 0.05) counts of holotrichs. Effects of AEX and CIE1 were not additive for many of the measured metabolites. In Exp. 2, treatments had no effect on ruminal pH, total VFA concentration, and butyrate proportion. The capsicum oil treatment increased (P < 0.05) DMI, water intake, and SPep+AA N concentration and decreased (P < 0.05) acetate proportion, branched-chain VFA concentration, and large peptide N concentration. The cinnamaldehyde (0.6 g/d) and eugenol (0.3 g/d) treatment decreased (P < 0.05) water intake, acetate proportion, branched-chain VFA, L-lactate, and ammonia N concentrations and increased (P < 0.05) propionate proportion and SPep+AA N concentration. The anise oil treatment decreased (P < 0.05) acetate to propionate ratio, branched-chain VFA and ammonia N concentrations, and protozoal counts. The results indicate that at the doses used a mixture of cinnamaldehyde and eugenol, anise oil, and capsicum oil may be useful as modifiers of rumen fermentation in beef production systems.  相似文献   

11.
Four steers fitted with a ruminal cannula and chronic indwelling catheters in the mesenteric artery, mesenteric vein, hepatic portal vein, hepatic vein, and the right ruminal vein were used to study VFA absorption from bicarbonate buffers incubated in the washed reticulorumen, and metabolism by splanchnic tissues. Portal and hepatic vein blood flows were determined by infusion of p-aminohippurate into the mesenteric vein. The steers were subjected to four experimental treatments in a Latin square design. The treatments were Control (ruminal bicarbonate buffer with [mmol/kg]: acetate = 72; propionate = 30; isobutyrate = 2.1; butyrate = 12; valerate = 1.2; caproate = 0; and heptanoate = 0); Val (same as control except for valerate = 8 mmol/kg); Cap (same as control except for caproate = 3.5 mmol/kg); and Hep (same as control except for heptanoate = 3 mmol/kg). All buffers were incubated for 90 min in the rumen, and ruminal VFA absorption rates were maintained by continuous intraruminal infusion of VFA. The arterial concentrations of valerate and heptanoate showed a small increase (< or = 1 micromol/L; P < 0.05) with inclusion of the respective acid in the ruminal buffer, but no change (P = 0.57) in arterial concentration of caproate was detected. Valerate increased (P < 0.05) the net portal flux of butyrate and valerate, as well as the net splanchnic flux of propionate, butyrate, and valerate. With Cap and Hep, the net portal flux of caproate and heptanoate accounted for 54 and 45% of ruminal disappearance rates, respectively, indicating that these acids were extensively metabolized by the ruminal epithelium. Caproate was ketogenic both in the ruminal epithelium and in the liver, and Cap increased (P < 0.05) the arterial concentration, ruminal vein minus arterial concentration difference, net hepatic flux, and net splanchnic flux of 3-hydroxybutyrate. The net hepatic flux of glucose decreased (P = 0.02) with Cap and Hep compared with Control and Val; however, no effect (P = 0.14) on the net splanchnic flux of glucose could be detected. We conclude that the strong biological activity of valerate, caproate, and heptanoate warrant increased emphasis on monitoring their ruminal presence and their potential systemic effects on ruminant metabolism.  相似文献   

12.
Two trials were conducted to evaluate the effects of short- (Trial 1) or long-term (Trial 2) intraruminal isocaloric infusions of acetate or propionate on secretion of LH, insulin, and selected metabolites in short- or long-term energy-restricted beef heifers. In Trial 1, 16 Angus heifers were assigned on d 6 to 12 of a synchronized estrous cycle (estrus = d 0) to a body weight-maintenance (BWM; n = 4) or an energy-restricted, body weight-loss (BWL; n = 12) treatment. On d 12 of a synchronized estrous cycle, heifers received PGF2alpha to synchronize estrus, and 12 h later BWL heifers received intraruminal, isocaloric infusions of acetate, propionate, or vehicle for 6 h and BWM heifers received vehicle concurrently. Mean plasma LH and LH pulse frequencies and amplitudes were not affected by treatment (P > .05). In contrast, infusion of propionate increased plasma insulin (P < .05) and reduced plasma concentration of NEFA (P < .05). In Trial 2, six ovariectomized Angus heifers were energy-restricted for 30 d. On d 14 and 26 of restriction, heifers began receiving intraruminal isocaloric infusions of acetate or propionate for 96 h in a switchback approach. Intraruminal infusions of vehicle for 6 h preceded infusions of acetate or propionate. Jugular blood was collected at 12-min intervals during infusions of vehicle and during the last 6 h of infusion of acetate or propionate. Mean concentration of LH and amplitude of pulses of LH were lower during acetate vs propionate or vehicle infusion (P < .05). Infusion of propionate increased insulin relative to acetate or vehicle infusion (P < .05). Plasma NEFA were reduced by infusion of propionate (P < .05) and increased by infusion of acetate (P < .05).  相似文献   

13.
Five ram lambs (average body mass: 25 kg) were given, through a catheter inserted into the left ruminal vein, a total of 28.8 mM sodium acetate, 14.4 mM sodium propionate and 4.8 mM sodium butyrate per kg body mass as a 2-hour infusion. During and at 0, 1, 2, 4, 6, 10 and 24 h after the infusion blood samples were taken from the jugular vein and the blood plasma was assayed for free amino acid (FAA) and immunoreactive insulin (IRI) concentrations. Volatile fatty acid (VFA) infusion significantly decreased the blood plasma concentrations of all FAA but cystine. The lowest FAA concentrations were measured in plasma samples taken at the end of the 2-h infusion. Subsequently the level of all amino acids rose and by 24 h after the infusion the blood plasma concentration of all FAA came close to the preinfusion value. The largest differences were observed in the concentration of glutamate, glycine, leucine and isoleucine. In contrast to FAA, IRI concentration was increased significantly (almost fivefold) by VFA infusion. By 10 h after the infusion IRI concentration returned to the initial level. The results reported here indicate that energy supply given in the form of VFA infusion significantly affects blood plasma FAA profiles, supposedly as a result of changes induced in protein synthesis in tissues. Insulin presumably plays a role in the regulation of these changes.  相似文献   

14.
Simmental x Angus weanling heifers (n = 96; 239 +/- 2.3 kg) were used in four replications to evaluate three dietary treatments in Trial 1. Treatments were cracked corn-hay diets supplemented with one of three corn milling industry coproducts: dry corn gluten feed (DCGF), dried distillers grains (DDG), and a new modified corn fiber (MCF). In Trial 2, ruminally cannulated mature crossbred beef steers (n = 4; 606 +/-60 kg) were used in a 4 x 4 Latin square with 11-d periods to determine digestibility and ruminal metabolism of limit-fed cracked corn-alfalfa haylage diets supplemented with cornstarch (CON), DCGF, DDG, or MCF. During Periods 3 and 4, an in situ study was conducted to compare the rate and extent of CP degradation of DCGF, DDG, and MCF. In Trial 1, there were no differences (P > .10) in initial weights or DM intake. Average daily gain and feed efficiency (G/F) were improved (P < .01) for heifers fed DCGF or DDG vs heifers fed MCF. In Trial 2, no differences (P > . 10) in digestibilities of any nutrients or in ruminal VFA concentrations were observed for steers fed coproducts. The CON supplementation decreased (P < .05) total dietary fiber (TDF) digestibility, improved (P < .10) digestibilities of DM and OM, increased (P < .05) total VFA concentrations and concentrations of propionate and valerate, and decreased (P < .05) concentrations of butyrate, isobutyrate, and isovalerate when compared with the coproducts. Dry corn gluten feed increased (P < .05) and DDG tended (P < .10) to increase percentages of the immediately soluble fraction of CP, and both had increased (P < .05) rates (Kd) and greater (P < .05) extent of ruminal CP degradation than MCF. These data suggest that DCGF and DDG may be utilized in limit-fed high-energy diets without sacrificing performance. Feeding of MCF resulted in poorer performance of heifers, suggesting a limited feeding value that results from high ADIN content and slow in situ protein digestion.  相似文献   

15.
本试验旨在研究高谷物日粮对山羊瘤胃上皮形态结构及单羧酸转运蛋白(monocarboxylate transporter, MCT)和钠钾ATP酶mRNA表达的影响。将10头装有永久性瘤胃瘘管的健康阉割公山羊随机分为饲喂全粗料日粮的对照组(Hay,0%谷物,n=5)和饲喂高谷物日粮的处理组(HG,65%谷物,n=5),试验期为7周。试验开始后,于每周晨饲后的0、2、3、4、6、8和12 h连续采集瘤胃液监测瘤胃pH值的变化,收集其中第0、3、6和12 h的瘤胃液待测挥发性脂肪酸(volatile fatty acid, VFA)浓度。试验的第50天,屠宰采集瘤胃上皮用于形态学及基因定量分析。研究结果显示:与全粗料组山羊相比,高谷物组山羊瘤胃pH值、乙酸浓度及乙丙比都显著下降(P<0.001),而瘤胃丙酸浓度、丁酸浓度及其他VFA浓度都显著升高(P<0.001);高谷物日粮组的瘤胃乳头长度显著高于对照组(P=0.001),瘤胃乳头宽度显著低于对照组(P<0.001),但是两组间的瘤胃乳头表面积并无显著差异;透射电镜结果显示,长期饲喂高谷物日粮导致瘤胃上皮细胞线粒体发生降解;实时定量PCR结果表明,与对照组相比,高谷物日粮显著升高了MCT1(P<0.001)和钠钾ATP酶(P=0.001)的mRNA表达量,显著降低了MCT4的mRNA表达量(P=0.041),但对MCT2的表达没有显著影响(P=0.305);进一步分析这些基因的mRNA表达量与pH值和VFA浓度之间的相关性,结果显示,MCT1和钠钾ATP酶的mRNA表达量与瘤胃pH值和乙酸浓度呈显著负相关,与总VFA、丙酸、丁酸的含量呈显著正相关,而MCT4的mRNA表达量与pH值呈显著正相关,与总VFA、丙酸、丁酸的含量呈显著负相关。以上结果提示:高精料引起的瘤胃pH值下降和VFA的变化可能与瘤胃上皮MCT和钠钾ATP酶表达量的变化相关。研究结果对深入认识高谷物饲喂引发的瘤胃功能紊乱具有重要意义。  相似文献   

16.
This study determined if the insulin and glucose responses to glucose infusion in obese (n = 4) and lean (n = 4) Holstein heifers were affected by stage of the estrous cycle. Glucose (.35 g/kg) was infused within 2 min into the jugular veins of heifers during diestrus (d 15) and at the subsequent estrus (d 0). Concentrations of insulin and glucose were determined in jugular venous serum obtained from blood samples collected at 60, 45, 30, 15 and 1 min before and at 2.5, 5, 10, 15, 20, 30, 40, 50, 60, 80, 100, 120, 140, 160, 180, 210 and 240 min after glucose. Mean (+/- SE) pretreatment concentrations of glucose (mg/100 ml) in obese (68 +/- 1.9) and lean (71 +/- 2.5) heifers were unaffected by body condition and stage of the cycle. Mean (+/- SE) pretreatment concentrations of insulin (microU/ml) were unaffected by stage of the cycle but were higher (P less than .05) in obese (33 +/- 3.6) than in lean (18 +/- 2.7) heifers. Body condition affected the insulin response with greater absolute concentrations (P less than .01) and total (P less than .005) response areas of insulin in obese than in lean heifers. Kinetics of the injected glucose were unaffected by body condition and stage of the cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Six natural plant extracts and three secondary plant metabolites were tested at five doses (0, 0.3, 3, 30, and 300 mg/L) and two different pH (7.0 and 5.5) in a duplicate 9 x 5 x 2 factorial arrangement of treatments to determine their effects on in vitro microbial fermentation using ruminal fluid from heifers fed a high-concentrate finishing diet. Treatments were extracts of garlic (GAR), cinnamon (CIN), yucca (YUC), anise (ANI), oregano (ORE), and capsicum (CAP) and pure cinnamaldehyde (CDH), anethole (ATL), and eugenol (EUG). Each treatment was tested in triplicate and in two periods. Fifty milliliters of a 1:1 ruminal fluid-to-buffer solution were introduced into polypropylene tubes supplied with 0.5 g of DM of a 10:90 forage:concentrate diet (15.4% CP, 16.0% NDF; DM basis) and incubated for 24 h at 39 degrees C. Samples were collected for ammonia N and VFA concentrations. The decrease in pH from 7.0 to 5.5 resulted in lower (P < 0.05) total VFA, ammonia N, branched-chain VFA concentration, acetate proportion, and acetate:propionate, and in a higher (P < 0.05) propionate proportion. The interaction between pH and doses was significant for all measurements, except for ATL and CDH for butyrate, ATL and EUG for acetate:propionate ratio, and ORE for ammonia N concentration. The high dose of all plant extracts decreased (P < 0.05) total VFA concentrations. When pH was 7.0, ATL, GAR, CAP, and CDH decreased (P < 0.05) total VFA concentration, and ANI, ORE, CIN, CAP, and CDH increased (P < 0.05) the acetate:propionate. The CIN, GAR, CAP, CDH, ORE, and YUC decreased (P < 0.05), and EUG, ANI, and ATL increased (P < 0.05) ammonia N concentration. The effects of plant extracts on the fermentation profile when pH was 7.0 were not favorable for beef production. In contrast, when pH was 5.5, total VFA concentration did not change (ATL, ANI, ORE, and CIN) or increased (P < 0.05) (EUG, GAR, CAP, CDH, and YUC), and the acetate:propionate (ORE, GAR, CAP, CDH, and YUC) decreased (P < 0.05), which would be favorable for beef production. Ammonia N (ATL, ANI, CIN, GAR, CAP, and CDH) and branched-chain VFA (ATL, EUG, ANI, ORE, CAP, and CDH) concentrations also were decreased (P < 0.05), suggesting that deamination was inhibited. Results indicate that the effects of plant extracts on ruminal fermentation in beef cattle diets may differ depending on ruminal pH. When pH was 5.5, GAR, CAP, YUC, and CDH altered ruminal microbial fermentation in favor of propionate, which is more energetically efficient.  相似文献   

18.
本试验旨在探讨不同精粗比日粮对奶山羊瘤胃液pH值、VFA以及血液中VFA含量的影响。选择8只安装永久性瘤胃瘘管的奶山羊作为试验动物,采用完全随机分组试验设计随机分为2组,分别饲喂精粗比为6∶4和4∶6的日粮,预饲期15 d,采样期3 d。结果表明,高精料组(HC组)瘤胃液pH值显著低于低精料组(HR组)(P<0.05);在采食后3 h,HC组与HR组瘤胃液pH值均下降至最低值,分别为5.71和6.08。除了乙酸含量外,HC组瘤胃液丙酸、异丁酸、丁酸、异戊酸、戊酸以及总挥发性脂肪酸(TVFA)含量分别比HR组提高4.99%、5.58%、21.81%、17.95%、18.27%、1.66%。HC组血浆中各种VFA的含量均高于HR组,其中丙酸、丁酸含量两组间差异达到显著水平(P<0.05)。HC组瘤胃液以及血浆中乙酸与丙酸比值均低于HR组,但两组间差异均不显著(P>0.05)。HC组瘤胃液乙酸、丙酸、TVFA浓度在采食后2 h达到最大值,HR组在采食后3 h达到最大值,两组日粮血浆中VFA浓度均在采食后2 h达到最大值,然后逐渐恢复到采食前水平。结论:高精料日粮导致瘤胃液pH值显著降低,瘤胃液和血浆中VFA含量增加;瘤胃液VFA生成速率HC组高于HR组。  相似文献   

19.
Batch culture fermentations were used to determine the effects of avoparcin, lasalocid, monensin, narasin, salinomycin, thiopeptin, tylosin, virginiamycin, monensin + tylosin combination, and two new ionophore compounds (RO22-6924/004 and RO21-6447/009) on lactic acid and volatile fatty acid (VFA) production. Ruminal fluid from cattle fed a high alfalfa hay diet was incubated with glucose for 12 h in a buffered medium to determine the effect of antimicrobial compounds on lactic acid concentration. Fermentations treated with antimicrobial compounds had higher final pH and lower L(+) lactic acid concentration. Narasin and salinomycin were more inhibitory than other ionophore compounds. Monensin and tylosin in combination was more effective than monensin alone. Among the nonionophore compounds, avoparcin was the least effective and thiopeptin, tylosin and virginiamycin were extremely effective in reducing lactic acid concentration. Ruminal fluid from cattle fed a diet of alfalfa hay and grain (50:50) was incubated with a mixture of sugars, casein and urea for 12 h in a buffered medium to determine the effect of antimicrobial compounds on VFA production. Generally, total VFA concentration was not affected by antimicrobial compounds except RO22-6924/004, tylosin and virginiamycin, which caused a reduction at high concentrations. Tylosin, monensin and tylosin mixture, thiopeptin and virginiamycin at high concentrations (greater than 6.0 micrograms/ml) increased the acetate proportion. All compounds increased the molar proportion of propionate. Tylosin and virginiamycin at high concentrations (greater than 6.0 micrograms/ml) decreased the proportion of propionate. Monensin and tylosin in combination had no effect on propionate proportion. Among the compounds tested, narasin and salinomycin were the most effective in enhancing propionate proportion. Ionophore compounds were more inhibitory to butyrate production than the nonionophore compounds. Batch culture fermentations may be used to quantitate the relative efficacy of antimicrobial compounds to alter ruminal fermentation characteristics.  相似文献   

20.
研究山羊瘤胃内放入装有不同种类牧草的尼龙袋后,瘤胃挥发性脂肪酸浓度的动态变化规律。选用带有瘤胃瘘管的山羊为实验动物,结合尼龙袋法测定3类牧草在山羊瘤胃中的挥发性脂肪酸浓度。结果表明,添加装有不同牧草的尼龙袋后,山羊瘤胃乙酸、丙酸、丁酸、总挥发性脂肪酸(TVFA)浓度及乙酸/丙酸值均呈先上升后下降的规律,并在4h达到峰值,其中乙酸浓度约为70.49%、丙酸浓度约为15.38%,瘤胃的发酵类型总体上偏向于乙酸-丙酸型.3类牧草均适用于山羊的科学饲养。由此可见,添加装有不同种类牧草的尼龙袋均会对山羊瘤胃挥发性脂肪酸产生影响,其原因主要与原料的蛋白质含量有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号