首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
新型日光温室节能结构设计及其标准的研制和保温材料的选择在广泛调研的基础上,结合辽沈Ⅰ型日光温室的基本设计原理,制定了12m跨度日光温室的设计方案。从温室采光曲面的优化设计到墙体保温结构设计和材料选择,以及配套的加温系统和内外保温材料和装置设计都做了全面改进。通过日光温室采光曲面的优化设计,保证了新型温室的采光性能不低于辽沈I型日光温室。采用平面析架计算程序(Trus2)对温室骨架进行了计算分析,同时对温室的墙体、基础等进行了计算、分析、设计,取消了最初设计的温室中柱,极大地方便了温室作业,使温室总空间较辽沈I型增…  相似文献   

2.
本文通过比较2种墙体材料日光温室在南疆3个月的平均温度变化趋势、典型天气影响、低温累计时间,分析不同温室保温性能。结果表明:新型柔性材料(面包墙)日光温室的升温速度较新型土墙日光温室快;新型土墙日光温室夜间保温效果优于新型柔性材料(面包墙)日光温室;晴天对2种材料日光温室温度变化影响不明显,阴天新型柔性材料(面包墙)日光温室升温速度高于新型土墙日光温室,夜间温度二者升温速度基本一致;新型柔性材料(面包墙)日光温室低温时间累计为85.25小时,高于新型土墙日光温室30.00小时。  相似文献   

3.
抽奖公告     
由国家科技部组织实施的节水农业重大科技专项经济型温室滴灌系统填补了国内空白,突破了国外技术封锁。开发出以小直径微灌管(带)为核心的具有中国特色的、适合日光温室灌溉的一套经济型微灌系统,建立了高速(达60~80米/分钟)稳定的6毫米滴灌管生产线,滴灌管价格由0.6~1.2元/米降低到0.25元/米,滴灌带价格由0.15~0.2元/米降低到了0.08元/米,使温室微灌系统的造价由目前的每667平方米600~30007元降到350~1000元,成本降低50%以上。产品性能达到世界先进水平。  相似文献   

4.
为评价辽宁地区典型日光温室保温蓄热性能,利用小气候仪观测的气温、太阳辐射等数据,对比分析不同类型日光温室内气温的日变化及逐时温度的变幅,研究低温期2种结构日光温室对蔬菜生长的影响。结果表明,2种结构日光温室内温度差异较大,土墙结构日光温室温度高于复合墙结构日光温室;不同天气条件下最低、最高、平均气温日变化都表现为日照时数越多,气温变化幅度越大;在日照时数大于3 h情况下,土墙温室白天蓄热和午后到夜间散热大于复合墙温室,在日照时数小于3 h的情况下,复合墙温室蓄热能力大于土墙结构温室,午后到夜间保温能力小于土墙温室,在一整天24 h循环过程中,土墙温室内的温度依然高于复合墙温室;不同生长季2种温室温度存在较大差异,土墙温室平均气温差值小于复合墙温室。综上所述,土墙温室保温和蓄热性能好于复合墙温室。  相似文献   

5.
在全钢架日光温室的引进和土墙钢架日光温室设计思路的基础上,分析了全钢架日光温室、优化型二代日光温室和土墙钢架日光温室3种类型温室的特点,从场地选择、墙体建设、骨架安装、扣棚、配套设施建设等方面总结了西北地区改进型土墙钢架日光温室建造技术。  相似文献   

6.
日光温室土墙厚度的优化——以杨凌地区为例   总被引:3,自引:1,他引:2  
为减少日光温室土质墙体成本并满足作物生长,对后墙厚度进行优化。以单位造价的节能量为日光温室节能改造的技术经济评价指标,分析日光温室土墙系统在节能工程中的成本构成;通过分析日光温室的状态系数、墙体传热系数和不变成本,着重研究节能量和土墙厚度的关系。研究结果表明:在杨凌地区,当不变成本为43.08元/m2,单位造价节能量取极大值时,增加厚度为1.18m,实际建造厚度为2.30m。引入性价比将墙体技术参数和经济参数有效连系起来,以杨凌地区为例,得到了日光温室土墙增加厚度优化式。  相似文献   

7.
不同围护结构材料日光温室的多目标模糊优选   总被引:4,自引:0,他引:4  
在日光温室设计中既要考虑造价又要考虑综合性能等多项目标。由于日光温室最优结构的评判具有模糊性,采用多目标模糊决策法对辽宁北部3种典型的不同围护结构材料的日光温室进行了优选。结果表明:在跨度7.5m,后坡长度2.0m。后墙高度2.2m,脊高3.5m的高效节能日光温室、土墙钢骨架日光温室及土墙竹木结构日光温室中,高效节能日光温室综合性能表现最优。  相似文献   

8.
赤峰市日光温室厚墙体的建造技术   总被引:4,自引:2,他引:4  
近几年.赤峰市日光温室建设速度很快,日光温室生产在农民增收中发挥了重要作用。农民从生产实践中又摸索出了许多技术成果,涌现出许多好典型。特别是机械建筑土墙体日光温室,已成为赤峰市日光温室建设的一大特色,也是我国北方高寒地区日光温室建设的一种新模式,该类温室的墙体厚、隔热保温效果好,使用年限长,成本低,建设速度快,而且还具有白天吸热,晚间放热的功能。农户在温室内进行一大茬黄瓜栽培生产.获得了平均8000元/667m^2以上的收入。目前,  相似文献   

9.
研究背景
  日光温室是我国特有的栽培设施,是我国设施农业发展的主要载体。我国温室设施面积超过205.84万hm2,在保供给、促增收等方面做出巨大贡献。近年来,辽宁设施农业得到了突飞猛进的发展,设施总面积39.94万hm2,居全国前列,尤其是日光温室面积25.84万hm2更是居全国首位,为增加农民收入、农村稳定、促进农民就业起到了积极作用。从20世纪五六十年代到现在,日光温室发展经历了由简易设施到原始节能日光温室,在此基础上出现了以鞍II型为代表的第一代节能日光温室、辽沈I型为代表的第二代节能日光温室,这些温室改进主要集中在对采光曲面的优化、墙体材料及骨架结构的改进等方面。目前采光曲面的优化理论与实践已十分成熟;墙体由土、砖、石的单一材料,向复合异质墙体(如聚苯板夹心墙体)转变,大大改善了墙体的保温、蓄热性能;骨架结构由竹木、有支柱结构逐渐被无支柱的钢桁架结构所代替,承载能力、耐久年限、抵御自然灾害能力明显提高。然而从根本上讲,日光温室并没有实质意义的发展:南坡面采光、永久的围护结构墙体和后坡,依靠南坡面骨架、墙体承重,同时通过围护结构墙体材料保温、蓄热。  相似文献   

10.
为了研究组装式日光温室墙体材料对温室环境的影响,选取了3种不同稻草墙体组合的组装式日光温室进行试验,以普通土墙日光温室为对照,结果表明:1月份复合稻草墙组装日光温室最低温度较土墙对照温室低2.88~6.31℃,组装温室之间最低温度相差3.43℃,组装温室由于墙体蓄热能力差,表现出升温快、降温也快的特点;晚间复合稻草墙日光温室墙体温度向外逐层降低,均表现为向外持续放热;复合稻草墙温室在墙体厚度基本相同的情况下,墙体热稳定性越好,温室的保温性能越好;在组装温室的设计建造时,应合理进行墙体材料的搭配组合,才能起到良好的保温蓄热效果。  相似文献   

11.
全聚苯乙烯泡沫板墙体日光温室的应用效果   总被引:3,自引:0,他引:3  
为了探究聚苯乙烯泡沫板轻质墙体对日光温室保温效果的影响,对栽培种植管理相同的全聚苯乙烯泡沫板墙体(200 mm)日光温室(简称EPS温室)和传统夯土墙墙体日光温室的室内热环境进行了对比研究。结果表明:白天(保温被开启阶段)晴天、阴天情况下,EPS温室室内温度比土墙温室室内温度平均低1.6℃和3.2℃,雨天、雪天特殊天气情况下,EPS温室室内温度比土墙温室室内温度平均低0.5℃和0.6℃,不影响作物正常生长的情况下,可以有效减少高温高湿病虫害的发生;夜间(保温被遮蔽阶段)晴天、阴天情况下,EPS温室比土墙温室的室内温度平均低0.6℃和0.4℃,在雨天和雪天特殊天气下,EPS温室比土墙温室的室内温度平均低0.1℃和高0.2℃,其保温效果与土墙温室基本一样。EPS温室在节省土地、大幅度提高土地利用率、建造简便的同时,夜间达到了较好的保温效果,在一些暖冬地区可以进行建造使用,但要注意特殊天气及时采取应对措施。  相似文献   

12.
为了研究杨凌地区日光温室土质墙体发生失效的原因,将其失效形式总结为墙体表面不均匀脱落、墙体发生开裂变形与墙体失稳发生滑移三种类型,对杨凌地区发生失效的日光温室土质墙体取样,对土样进行含水率试验、直剪试验与无侧限抗压试验,并通过设计杨凌地区代表性日光温室进行受力分析并进行验算。经试验测定含水率低于5%时墙体表面较易发生不均匀脱落现象,后墙土坡下部含水率相较于中部与上部高2%左右。验算结果表明在含水率为15%、20%时后墙土坡摩尔-库伦曲线与土样抗剪强度曲线均为相离,当含水率为15%时,后墙土坡中部也有发生剪切破坏的危险;含水率在18%以上时,墙体容易在荷载下发生破坏。土质墙体日光温室发生较多的失效形式为表面不均匀脱落与剪切破坏,通过控制墙体的含水率来防止墙体失效是一种有效的方法,本研究对杨凌地区日光温室土质墙体的建造和使用与对温室内作物生长环境的保护具有一定的指导意义。  相似文献   

13.
日光温室墙体一维导热的MATLAB模拟与热流分析   总被引:1,自引:0,他引:1  
为探明日光温室墙体层间温度变化及热量传递动态规律,采用有限差分法建立墙体一维非稳态导热模型,利用MATLAB编制相应的模拟程序,计算出日光温室墙体各点的温度和热流。结果表明:该模型能够比较准确模拟日光温室土墙的温度。墙体内侧存在有效蓄热层,它对日光温室室内热环境有积极的作用。墙体有效蓄热层的热流白天指向墙体外侧,夜间指向墙体内侧,因此它的厚度直接根据热流的方向确定。有效蓄热层与天气、墙体总厚度以及墙体热特性参数有关。2012-12—2013-01期间有效蓄热层厚度为0.26~0.45m不等,最大值出现在连续雪天。同时从理论上验证了3.0m厚的温室土墙内部存在热流相对稳定的"热稳定层"。  相似文献   

14.
Solar greenhouse with trapezoidal soil wall is widely used due to its good heat retaining property and cost efficiency.In this study, solar irradiance, heat flux and the temperature 0.05 and 0.3 m from the inner surface of the wall at the upper,middle and lower measured positions were determined to study the thermal condition of the trapezoidal soil wall in solar greenhouse. The results showed: first, both the solar irradiance and the temperature increased from the upper to the lower measured position. Second, the heat absorption also increased from the upper to the lower measured position. In clear day, the heat absorption at the three measured positions accounted for 31.4%, 32.6% and 36.0% of the total amount of heat absorption of the whole wall. In cloudy day, the heat absorption at the three measured positions were 0.249, 0.370 and 0.440 MJ/m~2, which accounted for 23.5%, 35.0% and 41.4% of the total amount of heat absorption of the whole wall. When P0.05, the heat fluxes were strikingly different between the upper and lower measured positions. But when P0.01, the heat flux had no big difference among the three measured positions. Third, in clear day, the heat emission was the biggest at the middle measured position and smallest at the upper measured position. The heat emission at the three measured positions accounted for 27.5%, 36.7%and 35.8% of the total amount of heat emission of the whole wall. And the heat emission between the middle and lower measured position was not strikingly different. In cloudy day, the heat emission was the biggest at the lower measured position and smallest at the upper measured position. The average heat emission at the three measured positions accounted for 26.1%,36.4% and 37.4% of the total amount of heat emission of the whole wall. Fourthly, correlativity, the solar irradiance directly influenced the heat absorption and had close relation with heat emission. And heat emission again had close relation with the temperature in the greenhouse. Solar irradiance directly influences the thermal condition of a solar green house. It is hoped that this study can be referred to optimize trapezoidal structure and to improve the thermal conditions of the solar greenhouse.  相似文献   

15.
新疆砌块复合墙体和砖墙日光温室的传热数值模拟分析   总被引:1,自引:0,他引:1  
[目的]研究建立新的二维传热模型来模拟和优化日光温室,为日光温室墙体的设计、建设和维护提供科学合理的方法和依据.[方法]采用ansys软件进行温度场和流场模拟,使用UG软件对日光温室造型,将顶部保温被等结构适当简化,计算域分为内部与外部空气两部分.运用DO辐射模型和湍流模型模拟,采用CFX-Post计算处理,得到温度云...  相似文献   

16.
磷酸氢二钠相变墙板在温室中的应用效果   总被引:5,自引:0,他引:5  
为改善日光温室热环境,以十二水磷酸氢二钠为相变材料,依据普通温室墙体夜间累计放热量计算出相变材料的用量为16.7kg/m2,在此基础上制备了十二水磷酸氢二钠相变蓄热墙板。建造后墙结构为"80mm相变蓄热板+40mm×60mm×2.5mm方钢+80mm菱镁聚苯保温板"日光温室,与"240mm红砖+100mm聚苯板+240mm红砖"后墙温室比较。结果表明:典型晴天时,相变蓄热板温室的气温波动幅度比对照小4.2℃,最低气温高1.5℃,最高气温低2.7℃,平均气温高1.2℃,相对湿度增加3%,墙体夜间累计放热量略大于对照;典型阴天时,相变蓄热板温室的平均气温比对照高1.6℃,相对湿度提高2.6%,墙体夜间累计放热量增加0.16MJ/m2。与此同时相变蓄热板墙体造价比对照低22元/m2,土地利用率提高4.2%~12.2%。综合保温蓄热性能和建造成本,相变蓄热墙板是一种有推广价值的温室墙体类型。  相似文献   

17.
微生物发酵床人工腐殖质生产园区设计及运行推演   总被引:1,自引:0,他引:1  
微生物发酵床养猪是一种清洁环保的生态养殖模式,使用1年后的垫料富含营养物质,是优质的人工腐殖质,可作为新的生产原料,形成新产品。本文以获得优质人工腐殖质为核心生产目的,构建微生物发酵床养猪、生物基质/有机肥生产、设施蔬菜栽培等生产单元,并设计产业链,分析投资成本及运行管理模式,运营效益等,为实际生产应用提供参考。  相似文献   

18.
针对日光温室土壤温度不均衡的问题,运用传热学非稳态导热理论,测定分析跨度方向上不同测点地面温度变化率和土壤放热量之间的关系,对下挖式日光温室土壤夜间的非稳态导热过程进行研究。结果表明:1)日光温室地面放热量受地面温度和跨度位置综合作用,地面温度越高、跨度位置越大,土壤放热量越多;2)不同测点地面温度变化率和土壤放热量不成比例,土壤存在水平方向上的热量流动;3)土壤边际效是受到后墙下土壤、温室外土壤缓冲作用引起的;4)本试验中,受后墙下土壤缓冲,土壤放热增加量占土壤放热量比例为6.06%~7.34%;受温室外土壤缓冲,土壤放热减少量占土壤放热量比例为31.8%~50.28%;边际效应对土壤温度环境具有不利影响。  相似文献   

19.
为探讨不同种植年限对菜田土壤肥力、盐渍化及酸碱度的影响,采集西安市8个涉农区县露地、大棚和日光温室全部菜田共422个样本0~20 cm土样进行了土壤养分及盐分和p H值分析。结果表明:随种植年限增长,露地蔬菜土壤有机质含量呈显著下降趋势,大棚蔬菜土壤有机质含量无显著变化,日光温室蔬菜土壤有机质含量呈显著增加趋势。露地和大棚蔬菜土壤碱解氮含量无显著变化,日光温室土壤碱解氮含量呈极显著增加趋势。露地蔬菜土壤有效磷含量无显著变化,大棚蔬菜土壤有效磷含量呈显著增加趋势,日光温室蔬菜土壤有效磷含量呈极显著增加趋势。露地蔬菜土壤速效钾含量呈极显著下降趋势,大棚和日光温室蔬菜土壤速效钾含量无显著变化。总的来看,随种植年限增长,设施蔬菜土壤养分含量呈不断增加趋势,养分富集十分明显,这与设施蔬菜化肥投入过高有关,必须控制设施蔬菜化肥用量,从而避免肥料的浪费与环境污染。随种植年限增长,露地和设施蔬菜土壤硝酸盐含量和土壤盐分均无显著变化,但设施蔬菜土壤硝酸盐含量是露地蔬菜的2.2~2.3倍,土壤电导率是露地的2.0~3.3倍,说明设施蔬菜土壤硝酸盐和盐分累积十分明显,对蔬菜生产形成潜在不良影响,应通过控制化肥用量加以防控。随种植年限增长,露地和设施蔬菜土壤p H值均无显著变化,两者之间也无明显差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号