首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
将14日龄雏鸡随机分为3组,A组灌服1 mL的紫锥菊、黄芪合剂,B、C组灌服生理盐水,连续灌服7 d。21日龄时A、B组雏鸡接种传染性法氏囊病病毒(IBDV),用免疫组化法观察雏鸡胸腺、小肠中CD4+、CD8+T淋巴细胞动态分布的变化。结果表明,用药组和攻毒对照组相比较,CD4+T淋巴细胞差异显著(P〈0.05),但是CD8+T淋巴细胞差异不显著(P〉0.05),与空白对照组相比CD4+淋巴细胞显著增多。胸腺、小肠中24日龄时CD4+、CD8+T细胞数量较其他日龄差异显著(P〈0.05)。总试验期胸腺中CD4+、CD8+含量是所测总数的60%。表明紫锥菊、黄芪对机体免疫有显著增强作用,以胸腺中CD4+、CD8+含量多于小肠,能显著降低IBDV对机体造成的损伤。  相似文献   

2.
为探讨紫锥菊、黄芪对感染传染性法氏囊病(IBD)雏鸡免疫的影响,给14日龄雏鸡灌服不同浓度紫锥菊、黄芪合剂(按3∶1比例混匀),其有效成分为菊苣酸和黄芪多糖,连续灌服7 d,21日龄时给雏鸡接种传染性法氏囊病病毒(IBDV)。结果表明,应用紫锥菊、黄芪后可缓解IBDV造成法氏囊的病理损伤,增加免疫器官指数,在攻毒20 d后差异明显;用药组中球蛋白含量在攻毒后11 d升高明显,可以缓解免疫抑制,进而调节机体免疫机能,增强机体的防御功能,有利于该病的防治。  相似文献   

3.
为研究青蒿组方中药对鸡免疫力的影响,试验选取14日龄三黄鸡120只,平均分为4组:感染给药组(1组),感染不给药组(2组),不感染给药组(3组),不感染不给药组(4组).感染组人工接种柔嫩艾美耳球虫孢子化卵囊.接种后第4、7、10 d运用流式细胞仪测定各组鸡血液中CD4^+、CD8^+T淋巴细胞值及二者的比值.结果:1组CD4^+、CD8^+T淋巴细胞值及其比例在接种后第4、7、10 d均高于2组,差异显著(P<0.05);2组CD4^+、CD8^+T淋巴细胞平均比值低于其他3个组.结论:青蒿组方中药可促进鸡血液中CD4^+、CD8^+T淋巴细胞生成,进而增强机体的免疫功能.  相似文献   

4.
给14日龄雏鸡灌服不同浓度紫锥菊、黄芪合剂,连续灌服7d,21日龄时雏鸡接种传染性法氏囊病病毒(IB-DV),来观察雏鸡血液转氨酶活性及脾脏NK细胞活性的变化。结果显示,攻毒后4d和攻毒后11d时用药组与攻毒对照组相比,谷草转氨酶(Ast)、谷丙转氨酶(Alt)均有所降低,差异显著(P<0.05);攻毒后11d时Ast/Alt比值极显著低于攻毒对照组(P<0.01)。脾脏NK细胞活性在感染后14d,高剂量组活性极显著高于攻毒对照组和空白对照组(P<0.01),感染21d后各组差异不显著。结果表明,紫锥菊、黄芪合剂在雏鸡感染IBDV后12d前后一段时间可显著降低传染性法氏囊病病毒对肝脏造成的损伤,促进脾脏NK细胞的活性,增强机体的防御功能,有利于该疾病的防治。  相似文献   

5.
为探讨紫锥菊、黄芪提取物提高雏鸡免疫力的效果,本试验选用紫锥菊、黄芪、紫黄(紫锥菊黄芪)合剂3种组方分别以不同的3种剂量给6日龄雏鸡连续口服7 d,13日龄进行腔上囊疫苗免疫,在20,27,34日龄时ELISA方法检测血清中TNF-α的含量;在13,20,27日龄时流式细胞仪检测外周血中CD4+、CD8+含量并计算CD4+/CD8+比值.结果表明,紫锥菊对外周血CD4+/CD8+ T淋巴细胞亚群的比例以及血清TNF-α的含量均有一定的提高,说明紫锥菊提取物针对IBD疫苗具有明显的免疫促进作用,是一种效果极为明显的免疫增强剂.  相似文献   

6.
本实验目的是为了研究中药组方紫石散对肉鸡免疫效果的影响。试验用6日龄同一品种,体重接近,健康肉雏鸡作为实验动物150羽,随机分为5个处理组,饲喂低(1.0%)、中(1.5%)、高(3.0%)三种剂量浓度紫石散,连续灌服药物一星期。在13日龄、20日龄、27日龄、34日龄翅静脉采血,检测IBDV抗体含量,以及应用流式细胞仪(Flow Cytometry,FCM)检测外周血中CD4+,CD8+的含量。结果表明,在用药一周后IBDV抗体含量增加,CD4+,CD8+和CD4CD8均有明显提高,中高剂量组提高显著P<0.05,并且体现出明显的剂量依赖性。说明中药方剂紫石散具有明显促进免疫的作用。  相似文献   

7.
外源性核酸对感染IBDV雏鸡免疫功能和抗氧化能力的影响   总被引:4,自引:0,他引:4  
300只20日龄健康海兰白雏鸡随机分为6组,Ⅰ组为对照组,Ⅱ~Ⅵ为试验组,Ⅱ、Ⅴ组饲料中分别添加0.1%核酸,Ⅲ和Ⅵ组分别添加0.2%核酸,Ⅳ、Ⅴ和Ⅵ组于27日龄感染传染性法氏囊病毒(IBDV),分别于30,33,36,39,42日龄心脏采血测定T淋巴细胞转化率,白细胞的吞噬率,SOD、GSH-Px和CAT活性,用流式细胞仪测定鸡脾脏T淋巴细胞亚群的变化;时处死雏鸡,测定免疫器官法氏囊和脾脏指数,观察其组织结构.结果表明,日粮中添加不同剂量的核酸均可提高T淋巴细胞转化率和T淋巴细胞数,法氏囊和脾脏的相对质量均明显增加,并能促进法氏囊和脾脏的快速发育,提高脾淋巴细胞中CD3+、CD4+和CD8+T细胞百分率,改变CD4+/CD8+比值促进对机体免疫系统的调控,增强白细胞的吞噬功能;可显著提高鸡血清中SOD、GSH-Px和CAT活性.IBDV感染组与病毒感染加核酸组之间上述指标差异显著,感染IBDV组可使上述指标明显下降,感染IBDV加核酸组的上述指标接近正常对照组,说明核酸能补偿IBDV对雏鸡免疫系统的抑制作用,具有一定的抗氧化能力,而且能促进雏鸡修复组织损伤.  相似文献   

8.
以SPF雏鸡为研究对象,应用细胞培养、MTT及流式细胞检测技术,通过T淋巴细胞对刀豆蛋白A的增殖能力及其CD4+和CD8+T淋巴细胞亚型数量的检测,较全面系统的研究了传染性法氏囊病病毒(IBDV)感染21日龄SPF雏鸡后,其免疫器官(胸腺、脾脏、法氏囊)T细胞增殖能力及其亚型的动态变化,结果发现:IBDV感染SPF雏鸡后,其胸腺和脾脏T淋巴细胞增殖能力于病毒感染后3~7 d显著降低,CD4+和CD8+T淋巴细胞数量于病毒感染初期明显低于对照雏鸡;法氏囊中CD4+和CD8+T淋巴细胞数量在病毒感染初期迅速增加,而后持续低于对照雏鸡.表明SPF雏鸡感染IBDV后,其免疫器官细胞免疫功能受抑制,而作为病毒侵袭的主要靶器官,法氏囊在病毒感染初期有大量T细胞浸润,该项研究为进一步阐明IBDV的免疫致病机制提供了重要的参考依据.  相似文献   

9.
为研究归芪甘草汤对小鼠免疫功能的影响,该药液由黄芪、当归、炙甘草、熟地和党参组成,经传统水煎法获得浓度为1 g/mL药液;以环磷酰胺诱导建立小鼠免疫抑制模型,培健康小鼠和免疫抑制小鼠灌服药液;在试验第15天,应用流式细胞技术、溶血素测定法和腹腔巨噬细胞吞噬功能测定法,检测复方中药对小鼠T淋巴细胞亚群(CD4、CD8)、IgM和腹腔巨噬细胞吞噬功能的影响.结果显示对免疫抑制小鼠,灌服药液和灌服蒸馏水小鼠相比较,CD4+/CD8+、IgM、吞噬功能百分率和吞噬指数差异极显著(P<0 01);对健康小鼠,灌服药液和灌服蒸馏水小鼠相比较,CD4+ /CD8+比值差异不显著(P>0.05),IgM值和吞噬百分率差异显著(P<0.05),吞噬指数差异极显著(P<0.01).表明归芪甘草汤具有增强昆明系小鼠免疫功能的作用,尤其是对免疫抑制小鼠的免疫功能增强更为显著.  相似文献   

10.
为了研究刺五加多糖(ASPS)对雏鸡脾脏中CD4+和CD8+ T淋巴细胞定位分布的影响,从组织学角度评价ASPS对脾脏的免疫调节作用,试验将1日龄海兰褐公雏饲养至7日龄时选取150只,随机分为3组:空白对照组、ASPS低剂量组(ASPSL)和高剂量组(ASPSH),每组50只,所有组每天注射1次,连续注射3天。免疫后的第7、14、21和28天分别取其脾脏制作冰冻切片,采用免疫组织化学方法检测CD4+和CD8+ T淋巴细胞的定位分布。结果显示,与空白对照组比较,免疫注射后21天和28天时ASPSL组和ASPSH组CD4+ T淋巴细胞的数量均显著增加(P<0.05),而且ASPS能够促进红髓中CD4+ T淋巴细胞向动脉周围淋巴鞘迁移,从而使单个动脉周围淋巴鞘面积较对照组明显增加,而ASPS对脾脏中CD8+ T淋巴细胞的数量和分布无明显影响。由此可知,ASPS能够通过影响脾脏中CD4+ T淋巴细胞的定位分布发挥免疫调节作用,这对于进一步揭示ASPS的免疫调节机制具有重要意义。  相似文献   

11.
Swine cell binding analyses of a set of 48 monoclonal antibodies (mAbs), including eleven standards, assigned to the CD44 and CD45 subset group of the Second International Swine CD Workshop yielded 13 clusters. Although none of these corresponded to CD44, seven mAbs formed a cluster which was identified as being specific for restricted epitopes of CD45 (CD45R). In addition, a T-cell subset specific cluster comprised of four mAbs was also identified. Two mAbs (STH106 and SwNL 554.1) reacted exclusively with CD8 bright lymphocytes, the other two (2B11 and F01G9) with a subset of CD4 lymphocytes. The other 10 clusters were either specific for MHC-class I like molecules or overlapped with clusters identified by the adhesion molecule subgroup and are therefore just briefly discussed in this report. The specificity of all the mAbs in the CD45R cluster was verified by their ability to immunoprecipitate distinct proteins and to react with CHO cells expressing individual isoforms of CD45. Three CD45R mAbs (3a56, MIL5, −a2) did react with a 210 kDa isoform(s), while another three (STH267, FG2F9, 6E3/7) only recognized a 226 kDa isoform(s). The remaining one (MAC326) precipitated both a 210 and 226 kDa protein. The specificity of all the mAbs in the CD45R cluster, and of the CD45 common mAbs, was confirmed by their reactivity with CHO cells transfected with cDNAs encoding the extracellular and transmembrane portions of distinct CD45R isoforms. Those mAbs recognizing a 210 kDa protein reacted with CHO cells expressing the CD45RC isoform, while those capable of precipitating a 226 kDa, but not the 210 kDa, polypeptide recognized CHO cells expressing either the CD45RAC and the relatively rare CD45RA isoform. MAC326 was unique in its inability to react with CHO cells engineered to produce the CD45RC and CD45RAC isoforms. Thus, three mAbs (6E3/7, STH267, and FG2F9) appear to be specific for an epitope(s) encoded by the A exon, while one (MAC326) recognizes a determinant encoded by the C exon. The remaining three mAbs (3a56, −a2, MIL5) are apparently specific for an epitope(s) which results from the fusion of the C exon to the invariant leader sequence and is destroyed by inclusion of the A exon. All three CD45 common mAbs, K252.1E4, MAC323 and 74.9.3, did react with the CHO cells lines expressing either the CD45RA, CD45RC, CD45RAC or CD45RO isoforms, but not with untransfected CHO cells. When the natural expression of CD45 isoforms was examined by reacting lymphocytes with CD45R mAbs, a high level expression of isoforms containing the A exon-generated domain was detected in all B cells while the majority of CD4+ T cells had undetectable or lower expression density of this protein than B cells. In contrast, the density of expression of the CD45 isoform(s) containing the C exon-generated domain ranged from undetectable to high in CD4+ T cells whereas the amounts were approximately ten-fold lower in B cells. Overall this panel of CD45 mAbs will be very useful in analyzing the maturation and differentiation of swine lymphoid cells subsets.  相似文献   

12.
This paper investigates the in vitro effect of dexamethasone on bovine CD25highCD4+, CD25lowCD4+ and CD25CD4+ T cells. Only a small percentage of bovine CD25highCD4+ (2–4%) and CD25lowCD4+ (1–2%) cells expressed Foxp3. Dexamethasone caused considerable loss of CD25CD4+ cells, but it increased the relative and absolute numbers of CD25highCD4+ and CD25lowCD4+ lymphocytes, while at the same time reducing the percentage of Foxp3+ cells within the latter subpopulations. Considering all these, as well as the intrinsically poor Foxp3 expression in bovine CD25+CD4+, it can be concluded that the drug most probably increased the number of activated non-regulatory CD4+ lymphocytes. It has been found that changes in cell number were at least partly caused by proapoptotic effect of the drug on CD25CD4+ cells and antiapoptotic effect on CD25highCD4+ and CD25lowCD4+ cells. The results obtained from this study indicate that the involvement of CD4+ lymphocytes in producing the anti-inflammatory and immunosuppressive effect of dexamethasone in cattle results from the fact that the drug had a depressive effect on the production of IFN-γ by CD25CD4+ cells. Secretion of TGF-β and IL-10 by CD4+ lymphocytes was not involved in producing these pharmacological effects, because the drug did not affect production of TGF-β and, paradoxically, it reduced the percentage of IL-10+CD4+ cells.  相似文献   

13.
鸡CD4和CD8分子研究进展   总被引:11,自引:0,他引:11  
鸡CD4和CD8分子是T细胞表面重要的表面标志,绝大部分胸腺细胞表面都表达CD4和CD8分子,但大多数脾脏和外周血的T细胞表面只表达CD4或CD8分子,或两者都不表达。少数脾脏和外周血中存在的CD4 CD8 T 细胞具有重要的生物学功能。不同品种鸡的CD4 基因具有高度的保守性,而CD8αcDNA 在胞外区表现为多型性。鸡的CD4和CD8分子在组织分布、结构和功能等方面有着很大的相似性。针对鸡CD4 和CD8分子的单克隆抗体为研究这些免疫细胞的生理功能及细胞表面标志的生物学作用等创造了有利条件。  相似文献   

14.
This paper investigates the in vitro effect of dexamethasone on bovine CD25(high)CD4(+), CD25(low)CD4(+) and CD25(-)CD4(+) T cells. Only a small percentage of bovine CD25(high)CD4(+) (2-4%) and CD25(low)CD4(+) (1-2%) cells expressed Foxp3. Dexamethasone caused considerable loss of CD25(-)CD4(+) cells, but it increased the relative and absolute numbers of CD25(high)CD4(+) and CD25(low)CD4(+) lymphocytes, while at the same time reducing the percentage of Foxp3(+) cells within the latter subpopulations. Considering all these, as well as the intrinsically poor Foxp3 expression in bovine CD25(+)CD4(+), it can be concluded that the drug most probably increased the number of activated non-regulatory CD4(+) lymphocytes. It has been found that changes in cell number were at least partly caused by proapoptotic effect of the drug on CD25(-)CD4(+) cells and antiapoptotic effect on CD25(high)CD4(+) and CD25(low)CD4(+) cells. The results obtained from this study indicate that the involvement of CD4(+) lymphocytes in producing the anti-inflammatory and immunosuppressive effect of dexamethasone in cattle results from the fact that the drug had a depressive effect on the production of IFN-γ by CD25(-)CD4(+) cells. Secretion of TGF-β and IL-10 by CD4(+) lymphocytes was not involved in producing these pharmacological effects, because the drug did not affect production of TGF-β and, paradoxically, it reduced the percentage of IL-10(+)CD4(+) cells.  相似文献   

15.
CD Review     
  相似文献   

16.
17.
18.
采用流式细胞仪检测1、3、5、7、14、21、28、35、42、49日龄AA肉鸡血液中的CD3、CD4、CD8阳性T细胞比例。研究结果表明:1~5日龄T细胞逐渐进入血液参与细胞免疫,7、21日龄注射疫苗起免疫应答作用,28日龄后基本形成稳固的细胞免疫水平。  相似文献   

19.
The replication of porcine reproductive and respiratory syndrome virus (PRRSV) in lungs and lymphoid tissues of PRRSV-infected pigs is already strongly reduced before the appearance of neutralizing antibodies, indicating that other immune mechanisms are involved in eliminating PRRSV at those sites. This study aimed to determine whether PRRSV Lelystad virus (LV)-specific cytotoxic T-lymphocytes (CTL) can efficiently eliminate PRRSV-infected alveolar macrophages. Therefore, CTL assays were performed with PRRSV-infected alveolar macrophages as target cells and autologous peripheral blood mononuclear cells (PBMC) from PRRSV-infected pigs as a source of PRRSV-specific CTL. PBMC of 3 PRRSV-infected pigs were used either directly in CTL assays, or following restimulation in vitro. CTL assays with pseudorabies virus (PRV) Begonia-infected alveolar macrophages and autologous PBMC, from 2 PRV Begonia-inoculated pigs, were performed for validation of the assays. In freshly isolated PBMC, derived from PRRSV-infected pigs, CTL activity towards PRRSV-infected macrophages was not detected until the end of the experiment (56 days post infection – dpi). Restimulating the PBMC with PRRSV in vitro resulted in proliferation of CD3+CD8high cells starting from 14 dpi. Although CD3+CD8high cells are generally considered to be CTL, CTL activity was not detected in PRRSV-restimulated PBMC of the 3 pigs until 49 dpi. A weak PRRSV-specific CTL activity was observed only at 56 dpi in PRRSV-restimulated PBMC of one pig. In contrast, a clear CTL activity was observed in PRV Begonia-restimulated PBMC, derived from PRV Begonia-infected pigs, starting from 21 dpi. This study indicates that PBMC of PRRSV-infected pigs contain proliferating CD3+CD8high cells upon restimulation in vitro, but these PBMC fail to exert CTL activity towards PRRSV-infected alveolar macrophages.  相似文献   

20.
胸腺依赖性细胞即 T细胞具有多种重要的免疫功能 ,不同的免疫功能与其细胞膜上的分化抗原 (CD)的种类相关联。其中 CD4和 CD8是关键的分化抗原。 CD4分子是单链糖蛋白 ,是自身主要组织相容性复合体 (MHC) 类抗原的受体。研究表明 ,其功能性分子可能是低聚体 [1 ] 。CD8分子也是糖蛋白 ,包含α链和β链 ,是 MHC 类抗原的受体。 CD4和 CD8与相应 MHC抗原结合是 T细胞在胸腺外发挥免疫功能的生化基础 ,也与 T细胞在胸腺微环境中的分化有关。来自骨髓的前 T细胞表面无任何 CD标志 ,在胸腺微环境中先后表达CD2、CD7、CD3抗原和 T…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号