首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anticipating, or forecasting near-term irrigation demands is a requirement for improved management of conveyance and delivery systems. The most important component of a forecasting regime for irrigation is a simple, yet reliable, approach for forecasting crop water demands, which in this paper is represented by the reference or potential evapotranspiration (ETo). In most cases, weather data in the area is limited to a reduced number of variables measured, therefore current or future ETo estimation is restricted. This paper summarizes the results of testing of two proposed forecasting ETo schemes under the mentioned conditions. The first or “direct” approach involved forecasting ETo using historically computed ETo values. The second or “indirect” approach involved forecasting the required weather parameters for the ETo calculation based on historical data and then computing ETo. An statistical machine learning algorithm, the Multivariate Relevance Vector Machine (MVRVM) is applied to both of the forecastings schemes. The general ETo model used is the 1985 Hargreaves Equation which requires only minimum and maximum daily air temperatures and is thus well suited to regions lacking more comprehensive climatic data. The utility and practicality of the forecasting methodology is demonstrated with an application to an irrigation project in Central Utah. To determine the advantage and suitability of the applied algorithm, another learning machine, the Multilayer Perceptron (MLP), is used for comparison purposes. The robustness and stability of the proposed schemes are tested by the application of the bootstrap analysis.  相似文献   

2.
In humid regions, the timing and quantity of a complementary irrigation regime is challenging because of the irregularity of rainfalls events. In this study, we tested the use of a thermal infrared derived empirical crop water stress index (CWSIe) as an in situ measurement of the water status of sugarcane, to better monitor the irrigation scheduling. To do this, we set up a 2-year experiment in Reunion Island, on a trial with plots under different water conditions (rainfed and irrigated). Crop surface temperature was measured daily with infrared radiometers (Apogee Instruments) installed above the canopy, and soil moisture and drainage measurements were used to derive the ratio between actual and maximum evapotranspiration (AET/MET) values that were then averaged on “hydrically homogeneous” time periods (between 7 and 25 days). Only the thermal data acquired on clear days and 1 h after noon in 2007 were used to define the empirical lower and upper baselines required for the calculation of empirical CWSI. The data set acquired in 2008 was used to test the robustness of the method as we used the upper and lower baselines defined in 2007 to calculate CWSIe. The linear regression between AET/MET and (1 − CWSIe) averaged on the same periods (values ranging between 0.4 and 1) showed a significant correlation for both experimental years (global R2 = 0.75 and RMSE = 0.12). This result indicates the effectiveness of the CWSIe to measure the water status of the sugarcane crop, even in humid conditions with a vapor pressure deficit (VPD) between 0.5 and 2.1. We conclude the study by discussing the complementarity of this remote water stress index (CWSIe) with OSIRI water balance modelling tool currently used in Reunion Island for monitoring sugarcane crop irrigation.  相似文献   

3.
Irrigation management strategy invites the quantification of crop response to irrigation frequencies. Conventionally, mulches increase the yield and water use efficiency (WUE) to a great extent by augmenting the water status in the root zone profile. A field study was carried out during the winter season (November-March) of 2003-2004 and 2004-2005 at the Central Research Farm of Bidhan Chandra Krishi Viswavidyalaya (Latitude 22°58′N, Longitude 88°31′E and altitude 9.75 m amsl), Gayeshpur, India, to evaluate the effect of irrigation frequencies and mulches on evapotranspiration rate from tomato crop field as well as leaf area index (LAI), fruit yield and WUE of the crop. The experiment was laid out in a split-plot design where three irrigation treatments {rainfed (RF); CPE50 and CPE25 where irrigation was given at 50 and 25 mm of cumulative pan evaporation (CPE)} were kept in the main plots and the subplots contained four mulch managements {no mulch (NM), rice straw mulch (RSM), white polyethylene mulch (WPM) and black polyethylene mulch (BPM)}. Under CPE25, tomato crop recorded significantly higher leaf area index (LAI) over CPE50 and rainfed condition. LAI value under BPM was 9-30% more over other mulches. Maximum variation of LAI among different treatments was recorded at 60 days after transplanting (DAT). Fruit yield under CPE25 was 39.4 Mg ha−1; a reduction of 7 and 30% has been obtained under CPE50 and RF condition. The use of mulch increased 23-57% yield in comparison to NM condition. Actual evapotranspiration rate (ETR) was 1.82 mm day−1 under CPE25 and declined by 15 and 31% under CPE50 and RF condition, respectively. The variation of ETR among different mulches became more prominent under maximum water stressed (RF) condition, whereas the variation was negligible under CPE25 frequency. Irrespective of mulching WUE was highest under moderately wet (CPE50) soil environment. Among different mulches, BPM was responsible for attaining the highest WUE value (25.1 kg m−3), which declined by 22, 21 and 39% under WPM, RSM and NM, respectively.  相似文献   

4.
The effects of high crop load (unthinned trees, 22-23 fruits cm−2 of trunk cross-sectional area (TCSA)), commercial crop load (3-4 fruits cm−2 of TCSA), and no crop load (all fruitlets removed) on maximum daily trunk shrinkage (MDS), trunk growth rate (TGR) and stem water potential (Ψstem) were studied during the fruit growth period and 20 days following harvest in fully irrigated early maturing peach trees, Prunus persica (L.) Batsch, cv. Flordastar. Even though crop load did not affect plant water status, the MDS and TGR values increased and decreased, respectively, as a result of the crop load effect. In this sense, for the same Ψstem value, there was a linear increase in MDS with crop load, with a slope of 6.6 μm MPa−1 per unit of crop load increment. The effects of environmental conditions on daily MDS values were also dependent on crop load, suggesting that MDS reference values should be obtained by representing the relations between MDS and the climatic variables (daily mean air temperature, daily mean vapour pressure deficit and daily crop reference evapotranspiration) for a given crop load. The constancy of the relation between MDS and Ψstem across crop load underlined the constancy of the elastic properties of the bark tissues.  相似文献   

5.
The seasonal and annual variability of sensible heat flux (H), latent heat flux (LE), evapotranspiration (ET), crop coefficient (Kc) and crop water productivity (WPET) were investigated under two different rice environments, flooded and aerobic soil conditions, using the eddy covariance (EC) technique during 2008-2009 cropping periods. Since we had only one EC system for monitoring two rice environments, we had to move the system from one location to the other every week. In total, we had to gap-fill an average of 50-60% of the missing weekly data as well as those values rejected by the quality control tests in each rice field in all four cropping seasons. Although the EC method provides a direct measurement of LE, which is the energy used for ET, we needed to correct the values of H and LE to close the energy balance using the Bowen ratio closure method before we used LE to estimate ET. On average, the energy balance closure before correction was 0.72 ± 0.06 and it increased to 0.99 ± 0.01 after correction. The G in both flooded and aerobic fields was very low. Likewise, the energy involved in miscellaneous processes such as photosynthesis, respiration and heat storage in the rice canopy was not taken into consideration.Average for four cropping seasons, flooded rice fields had 19% more LE than aerobic fields whereas aerobic rice fields had 45% more H than flooded fields. This resulted in a lower Bowen ratio in flooded fields (0.14 ± 0.03) than in aerobic fields (0.24 ± 0.01). For our study sites, evapotranspiration was primarily controlled by net radiation. The aerobic rice fields had lower growing season ET rates (3.81 ± 0.21 mm d−1) than the flooded rice fields (4.29 ± 0.23 mm d−1), most probably due to the absence of ponded water and lower leaf area index of aerobic rice. Likewise, the crop coefficient, Kc, of aerobic rice was significantly lower than that of flooded rice. For aerobic rice, Kc values were 0.95 ± 0.01 for the vegetative stage, 1.00 ± 0.01 for the reproductive stage, 0.97 ± 0.04 for the ripening stage and 0.88 ± 0.03 for the fallow period, whereas, for flooded rice, Kc values were 1.04 ± 0.04 for the vegetative stage, 1.11 ± 0.05 for the reproductive stage, 1.04 ± 0.05 for the ripening stage and 0.93 ± 0.06 for the fallow period. The average annual ET was 1301 mm for aerobic rice and 1440 mm for flooded rice. This corresponds to about 11% lower total evapotranspiration in aerobic fields than in flooded fields. However, the crop water productivity (WPET) of aerobic rice (0.42 ± 0.03 g grain kg−1 water) was significantly lower than that of flooded rice (1.26 ± 0.26 g grain kg−1 water) because the grain yields of aerobic rice were very low since they were subjected to water stress.The results of this investigation showed significant differences in energy balance and evapotranspiration between flooded and aerobic rice ecosystems. Aerobic rice is one of the promising water-saving technologies being developed to lower the water requirements of the rice crop to address the issues of water scarcity. This information should be taken into consideration in evaluating alternative water-saving technologies for environmentally sustainable rice production systems.  相似文献   

6.
The experiment aimed at evaluating the yield and quality response of broccoli (Brassica oleracea L. var. italica) to applied irrigation water and nitrogen by drip irrigation method during the spring and autumn cultivation periods of 2007. Irrigation water was applied based on a ratio of Class A pan evaporation (kcp = 0.50, 0.75, 1.00 and 1.25) with 7 days interval. Also, the effect of four nitrogen levels (0 kg ha−1, 150 kg ha−1, 200 kg ha−1 and 250 kg ha−1) was compared with each treatment. The seasonal evapotranspiration in the treatments varied from 233 mm to 328 mm during the spring period and from 276 mm to 344 mm during the autumn period. The highest broccoli yield was obtained in the spring period as 11.02 t ha−1 and in the autumn period as 4.55 t ha−1. In general, there were statistical differences along nitrogen does with respect to yield and yield components while there were no statistically significant differences in the yield and yield components among irrigation regimes. Both yield and yield parameters in the spring period were found to be higher than that of the autumn period due to the low temperature and high rainy days in autumn. Irrigation water use efficiency (IWUE) ranged from 3.78 kg m−3 to 14.61 kg m−3 during the spring period and from 1.89 kg m−3 to 5.93 kg m−3 during the autumn period. On the other hand, nitrogen use efficiency (NUE) changed as 37.32-73.13% and 13.08-22.46% for spring and autumn season, respectively.  相似文献   

7.
Grass reference evapotranspiration (ETo) is an important agrometeorological parameter for climatological and hydrological studies, as well as for irrigation planning and management. There are several methods to estimate ETo, but their performance in different environments is diverse, since all of them have some empirical background. The FAO Penman-Monteith (FAO PM) method has been considered as a universal standard to estimate ETo for more than a decade. This method considers many parameters related to the evapotranspiration process; net radiation (Rn), air temperature (T), vapor pressure deficit (Δe), and wind speed (U); and has presented very good results when compared to data from lysimeters populated with short grass or alfalfa. In some conditions, the use of the FAO PM method is restricted by the lack of input variables. In these cases, when data are missing, the option is to calculate ETo by the FAO PM method using estimated input variables, as recommended by FAO Irrigation and Drainage Paper 56. Based on that, the objective of this study was to evaluate the performance of the FAO PM method to estimate ETo when Rn, Δe, and U data are missing, in Southern Ontario, Canada. Other alternative methods were also tested for the region: Priestley-Taylor, Hargreaves, and Thornthwaite. Data from 12 locations across Southern Ontario, Canada, were used to compare ETo estimated by the FAO PM method with a complete data set and with missing data. The alternative ETo equations were also tested and calibrated for each location. When relative humidity (RH) and U data were missing, the FAO PM method was still a very good option for estimating ETo for Southern Ontario, with RMSE smaller than 0.53 mm day−1. For these cases, U data were replaced by the normal values for the region and Δe was estimated from temperature data. The Priestley-Taylor method was also a good option for estimating ETo when U and Δe data were missing, mainly when calibrated locally (RMSE = 0.40 mm day−1). When Rn was missing, the FAO PM method was not good enough for estimating ETo, with RMSE increasing to 0.79 mm day−1. When only T data were available, adjusted Hargreaves and modified Thornthwaite methods were better options to estimate ETo than the FAO PM method, since RMSEs from these methods, respectively 0.79 and 0.83 mm day−1, were significantly smaller than that obtained by FAO PM (RMSE = 1.12 mm day−1).  相似文献   

8.
A research has been carried out to determine the effects of nutrition systems and irrigation programs on soilless grown tomato plants under polyethylene covered unheated greenhouse conditions. Two nutrition systems (open and closed) and three irrigation programs (high, medium and low) based on integrated indoor solar radiation triggering thresholds (1 MJ m−2 [0.4 mm], 2 MJ m−2 [0.8 mm] and 4 MJ m−2 [1.6 mm]) in both nutrition systems have been tested. Applied and discharged nutrient solution, evapotranspiration, total and marketable yield have been measured and water use efficiency has been calculated. The highest total yield has been obtained from the open system with respectively 11% and 7.2% increases in autumn and spring. Applied nutrient solution volume and seasonal ET have been modified between 47.8-180.4 l plant−1 and 41.7-145.5 l plant−1 respectively during both growing seasons. As average of two growing seasons, respectively 826.5 and 330.6 m3 ha−1 nutrient solutions have been discharged from the greenhouse in the open and closed systems. WUE of treatments varied between 33-55 kg m−3 in autumn and 26-35 kg m−3 in spring. Highest WUE values have been determined in 4 MJ m−2 and in the closed system in both growing seasons. Results showed that the closed system and infrequent irrigations increased water use efficiency while decreasing yield and discharged nutrient solution.  相似文献   

9.
Northeast of Brazil is a semi-arid region, where water is a key strategic resource in the development of all sectors of the economy. Irrigation agriculture is the main water consumer in this region. Therefore, policy directives are calling for tools to aid operational monitoring in planning, control and charging of irrigation water. Using Landsat imagery, this study evaluates the utility of a process that measures the level of water use in an irrigated area of the state of Ceará. The experiment, which models evapotranspiration (ET), was carried out within the Jaguaribe-Apodi irrigation scheme (DIJA) during two months of the agricultural season. The ET was estimated with the model Mapping Evapotranspiration at High Resolution and with Internalized Calibration (METRIC). The model uses the residual of the energy balance equation to estimate ET for each pixel in the image. The results of the estimates were validated using measurements of ET from a micrometeorological tower installed within a banana plantation located near the irrigation scheme. After evaluating the ET estimates, the average fraction of depleted water for a set of agricultural parcels combined with the monthly ET mapping estimates by METRIC provided a method for predicting the total water use in DIJA for the study period. The results were then compared against the monthly accumulated flow rates for all the pumping stations provided by the district manager. Finally, this work discusses the potential use of the model as an alternative method to calculate water consumption in irrigated agriculture and the implications for water resource management in irrigated perimeters.  相似文献   

10.
This study was conducted to assess crop water stress index (CWSI) of bermudagrass used widely on the recreational sites of the Mediterranean Region and to study the possibilities of utilization of infrared thermometry to schedule irrigation of bermudagrass. Four different irrigation treatments were examined: 100% (I1), 75% (I2), 50% (I3), and 25% (I4) of the evaporation measured in a Class A pan. In addition, a non-irrigated treatment was set up to determine CWSI values. The status of soil water content and pressure was monitored using a neutron probe and tensiometers. Meanwhile the canopy temperature of bermudagrass was measured with the infrared thermometry. The empirical method was used to compute the CWSI values. In this study, the visual quality of bermudagrass was monitored seasonally using a color scale. The best visual quality was obtained from I1 and I2 treatments. Average seasonal CWSI values were determined as 0.086, 0.102, 0.165, and 0.394 for I1, I2, I3, and I4 irrigation treatments, respectively, and 0.899 for non-irrigated plot. An empirical non-linear equation, Qave=1+⌊6[1+(4.853 CWSIave)2.27]−0.559Qave=1+6[1+(4.853 CWSIave)2.27]0.559, was deduced by fitting to measured data to find a relation between quality and average seasonal CWSI values. It was concluded that the CWSI could be used as a criterion for irrigation timing of bermudagrass. An acceptable color quality could be sustained seasonally if the CWSI value can be kept about 0.10.  相似文献   

11.
A simulation study on alternative water management strategies was carried out for Sirsa Irrigation Circle in Haryana, covering an area of about 4800 km2. Results showed that crop evapotranspiration and soil salinity development under reduction in canal water supply and increase in groundwater use, are largely influenced by the amount and distribution of rainfall. Reduction in canal water supply by 25% during the rainy season is unlikely to have any adverse effect on the salinity development in the study area. Reduction in crop evapotranspiration due to decreased canal water supply can partly be compensated by the increase in groundwater use. Leaching of salts due to monsoon rains in the study area shows that groundwater of even relatively poor quality can be used for irrigation without excessive long-term build up of soil salinity under deep groundwater depth conditions. However, increased groundwater extraction without associated actions will not be very effective to solve the problem of rising groundwater levels.  相似文献   

12.
Accurate estimation of actual evapotranspiration (ETa) is essential for effective local or regional water management. At a local scale, ET estimates can be made accurately considering a soil-plant-atmospheric system, if adequate meteorological-ground data or ET measurements are available. However, at a regional scale, ETa values cannot be measured directly and the estimates are frequently subject to errors. Although it is possible to extrapolate to the regional scale from local (point) data of meteorological stations, the relative sparse coverage of ground estimate can make this problematic without some spatial analysis to demonstrate the similarity of the climate in the area. The introduction of remote sensing data and techniques offers alternatives both to estimate variables (i.e. radiation) and parameters (i.e. ET) with few spatial restrictions, thus, it provides potential advantages to the regional ETa computation. In particular, the use of remote sensing procedures like the surface energy balance-based algorithms (SEB) have been successfully applied in different climates, enabling the estimation of ETa at local and regional scales. A proper variation of the Surface Energy Balance Algorithm for Land (SEBAL) was applied to 4 years of data for the Flumen District in the Ebro Basin at the N.E. of Spain. Results obtained show that the remote sensing algorithm can provide accurate daily ETa estimations as compared with lysimeter measurements of daily ET values for two crop plots: one with a reference grass and other with maize or wheat as function of the season. Also a comparison between ETa and the reference and crop ET values applying the Penman-Monteith method was carried out. The comparison analysis consider an accepted error difference of 1.0 mm d−1 (20% of error) for local scale, the ETa values for the grass show a bias of 0.30 mm d−1 against the ETgrass and a bias of 0.36 mm d−1 against ETo. Differences between ETmaize or ETwheat and ETa against their average showed an acceptable agreement for the field with sdiff ± 0.6 mm d−1. For the crop fields at regional scale external causes associated to atmospheric and surface variations (i.e. land preparation) rather to the remote sensing algorithm made difficult to determine a percentage of error. Finally, ETa values were obtained at regional scale and it was demonstrated that using the remote sensing improve significantly the crop ET estimations computed in the area using traditional methods.  相似文献   

13.
The analysis of long-term irrigation performance series is a valuable tool to improve irrigation management and efficiency. This work focuses in the assessment of irrigation performance indices along years 1995-2008, and the cause-effect relationships with irrigation modernization works taking place in the 4000 ha surface-irrigated La Violada Irrigation District (VID). Irrigation management was poor, as shown by the low mean seasonal irrigation consumptive use coefficient (ICUC = 51%) and the high relative water deficit (RWD = 20%) and drainage fraction (DRF = 54%). April had the poorest irrigation performance because corn (with low water demand in this month) was irrigated to promote its emergence, whereas winter grains (with high water demands in this month) were not fully irrigated in water-scarce years. Corn, highly sensitive to water stress, was the crop with best irrigation performance because it was preferentially irrigated to minimize yield losses. The construction of a new elevated canal that decreased seepage and drainage fractions, the entrance in operation of six internal reservoirs that would increase irrigation scheduling flexibility, and the on-going transformation from surface to sprinkler irrigation systems are critical changes in VID that should lead to improved ICUC, lower RWD and lower DRF. The implications of these modernization works on the conservation of water quantity and quality within and outside VID is further discussed.  相似文献   

14.
An irrigation study was conducted to determine the effects of implementing different irrigation practices on growth and yields of papaya plants in south Florida. Treatments included using automated switching tensiometers based on soil water status, irrigation based on ET calculated from historic weather data and a set schedule irrigation regime. The study consisted of two trials (2006-2007 and 2008-2009). Water volumes applied, plant height and diameter, leaf gas exchange, leaf petiole nutrient levels, fruit yields and fruit total soluble solids were measured throughout the study. For both trials, significantly more water was applied in the set schedule irrigation treatment than in all other treatments; historic ET and soil water based treatments received only about 31-36% of the water applied in the set schedule irrigation. Trunk diameter and plant height per unit water volume applied values for the set schedule treatment were significantly lower than those from all other treatments during both trials. The set schedule treatment in both trials also had the lowest crop production water use efficiency (CP-WUE); CP-WUE values among all other treatments were generally not significantly different from each other. Soil water and historic ET-based irrigation methods were identified as more sustainable practices compared to set schedule irrigation due to the lower water volumes applied while maintaining plant nutrient content, growth, photosynthetic rates, and fruit yields for this production system.  相似文献   

15.
The North China Plain (NCP) is one of the main productive regions for winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) in China. However, water-saving irrigation technologies (WSITs), such as sprinkler irrigation technology and improved surface irrigation technology, and water management practices, such as irrigation scheduling have been adopted to improve field-level water use efficiency especially in winter wheat growing season, due to the water scarcity and continuous increase of water in industry and domestic life in the NCP. As one of the WSITs, sprinkler irrigation has been increasingly used in the NCP during the past 20 years. In this paper, a three-year field experiment was conducted to investigate the responses of volumetric soil water content (SWC), winter wheat yield, evapotranspiration (ET), water use efficiency (WUE) and irrigation water use efficiency (IWUE) to sprinkler irrigation regimes based on the evaporation from an uncovered, 20-cm diameter pan located 0-5 cm above the crop canopy in order to develop an appropriate sprinkler irrigation scheduling for winter wheat in the NCP. Results indicated that the temporal variations in SWC for irrigation treatments in the 0-60-cm soil layer were considerably larger than what occurred at deeper depths, whereas temporal variations in SWC for non-irrigation treatments were large throughout the 0-120-cm soil layer. Crop leaf area index, dry biomass, 1000-grains weight and yield were negatively affected by water stress for those treatments with irrigation depth less than 0.50E, where E is the net evaporation (which includes rainfall) from the 20-cm diameter pan. While irrigation with a depth over 1.0E also had negative effect on 1000-grains weight and yield. The seasonal ET of winter wheat was in a range of 206-499 mm during the three years experiments. Relatively high yield, WUE and IWUE were found for the irrigation depth of 0.63E. Therefore, for winter wheat in the NCP the recommended amount of irrigation to apply for each event is the total 0.63E that occurred after the previous irrigation provided total E is in a range of 30-40 mm.  相似文献   

16.
The hypothesis was tested, whether soil wetness and phosphorus status could regulate the evapotranspiration rate (ETR), which is of special interest in the lower Gangetic Plain. Rajmash was grown during November-February of 2003-2004 and 2004-2005 on a sandy loam soil, and was irrigated when cumulative pan evaporation (CPE) attained the value of 33 mm (CPE33); 44 mm (CPE44) and 66 mm (CPE66). Four levels of phosphate application were 0 kg P2O5 ha−1 (P0); 30 kg P2O5 ha−1 (P30); 60 kg P2O5 ha−1 (P60) and 90 kg P2O5 ha−1 (P90). Seed yield under CPE33 was 1.37 Mg ha−1 and reduced by 18% and 35%, respectively under CPE44 and CPE66. Continuous increasing trend in yield was recorded with an increase in phosphate level (PL). Irrespective of growth stages, similar trends were recorded for leaf area index (LAI). Maximum variation in LAI among the treatments was recorded at 60 days after sowing. On average, actual ETR was 1.37 mm day−1 under CPE33 and declined by 13% and 16% under CPE44 and CPE66, respectively. Variation in ETR under different PL was highest under CPE33 and lowest under CPE44. Except P90, irrespective of PL, highest value of water use efficiency (WUE) was obtained under CPE44. However, magnitude of net evapotranspiration efficiency (WUEET) and irrigation efficiency (WUEI) attained the highest level under CPE33 regime. All water use indices showed an increasing trend with the increase in phosphate level from 0 to 90 kg ha−1. Impact of phosphorus on various parameters was pronounced under CPE33.  相似文献   

17.
A methodology to optimise the amount of energy consumed in pressurized irrigation systems was presented by Jimenez-Bello et al. (2010a). These authors proposed grouping pressurized irrigation network intakes, each of the water turnouts resulting from a shared hydrant, into sectors via a genetic algorithm. In the present research, the methodology was applied and validated in a water users association. Several energy efficiency indicators were calculated and compared during five consecutive seasons (2006–2010). The first two seasons, when the methodology was not employed, were used as reference for the results obtained from 2008 onwards, when the methodology was applied to the management of irrigation network. Results obtained in seasons 2008–2010 showed that the average energy savings were 16% in comparisons to the 2006 season. However, it should be noted that the potential, theoretical savings, could have been as high as 22.3% if the modelled grouping networks would have been accurately followed. There was in fact some discrepancy between the theoretical model outputs and the final groupings due to some intake restrictions. In addition, during the irrigation campaigns, the number of irrigation intakes that operated within each sector was not always equal to the modelled sectoring, a fact that reduced the overall water users association energy efficiency. This occurred particularly during rainy periods, when some users deliberately decided to close their manual irrigation intakes valves. Overall, results showed the potential of the validated methodology for optimising energy use. However, the final overall system efficiency might depend on specific constraints that need to be taken into account when attempting to use model output predictions.  相似文献   

18.
The timely application of irrigation water to a crop is essential for optimizing yield and production efficiency. The Biologically Identified Optimal Temperature Interactive Console (BIOTIC) is an irrigation protocol that provides irrigation scheduling based upon measurements of canopy temperatures and the temperature optimum of the crop species of interest. One of the goals of this paper is to document the gradual development of the method and its implementation. Two threshold values are required to implement BIOTIC irrigation of a crop in a given region, a species-specific temperature threshold and a species/environment-specific time threshold. The temperature threshold, an indication of the thermal optimum for the plant, is derived from the thermal dependence of its metabolism. The time threshold, which represents the average amount of time each day that the canopy temperature of the well-watered crop will exceed the temperature threshold, is calculated from weather data. Interest in the use of BIOTIC for irrigation scheduling for peanut ( Arachis hypogaea L.) resulted in this study in which the temperature and time thresholds for peanut were determined on the Texas Southern High Plains. A temperature threshold value of 27°C was determined from the thermal dependence of the reappearance of photosystem II variable fluorescence (PSII Fv) following illumination. A time threshold of 405 min was calculated from an analysis of weather data collected over the course of the 1999 growing season. The determination of these threshold values for peanut provides the basis for the application of the BIOTIC protocol to irrigation scheduling of peanut on the Southern High Plains of Texas.Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

19.
Available water holding capacity (AWC) and field capacity (FC) maps have been produced using regression models of high resolution apparent electrical conductivity (ECa) data against AWC (adj. R2 = 0.76) and FC (adj. R2 = 0.77). A daily time step has been added to field capacity maps to spatially predict soil water status on any day using data obtained from a wireless soil moisture sensing network which transmitted hourly logged data from embedded time domain transmission (TDT) sensors in ECa-defined management zones. In addition, regular time domain reflectometry (TDR) monitoring of 50 positions in the study area was used to assess spatial variability within each zone and overall temporal stability of soil moisture patterns. Spatial variability of soil moisture within each zone at any one time was significant (coefficient of variation [% CV] of volumetric soil moisture content (θ) = 3-16%), while temporal stability of this pattern was moderate to strong (bivariate correlation, R = 0.52-0.95), suggesting an intrinsic soil and topographic control. Therefore, predictive ability of this method for spatial characterisation of soil water status, at this site, was limited by the ability of the sensor network to account for the spatial variability of the soil moisture pattern within each zone. Significant variability of soil moisture within each ECa-defined zone is thought to be due to the variable nature of the young alluvial soils at this site, as well as micro-topographic effects on water movement, such as low-lying ponding areas. In summary, this paper develops a method for predicting daily soil water status in ECa-defined zones; digital information available for uploading to a software-controlled automated variable rate irrigation system with the aim of improved water use efficiency. Accuracy of prediction is determined by the extent to which spatial variability is predicted within as well as between ECa-defined zones.  相似文献   

20.
Accurate estimation of crop coefficients for evaporation and transpiration is of great importance in optimizing irrigation and modeling water and solute transfers in the soil-crop system. In this study we used inverse modeling techniques on soil sensor measurements at depths from the soil-crop system to estimate crop coefficients. An inverse model was rigorously formulated to infer the crop coefficients and the lengths of growth stages using the measured soil water potential at depths during crop growth. By applying a micro-genetic algorithm to the formulated inverse model, the optimum values of the crop coefficient and the corresponding length of growth stage were successfully deduced. It has been found that the lengths of both the initial and development growth stages of cabbage were 5 d shorter than those from the FAO56 (Irrigation and Drainage Paper by the FAO). The deduced crop coefficient for transpiration at the initial growth stage was 0.11; slightly smaller than 0.15 recommended by the FAO56, while at the mid-season growth stage, the deduced value of 0.95 was identical with the recommended value. Results show that the predictions of soil water potential using the obtained values of crop coefficients agreed well with the measurements throughout the entire growing period, indicating that the deduced crop coefficients were credible and appropriate for cabbage grown under the specific conditions of location and climate. It follows that the strategy presented in the study can enable accurate estimates of crop coefficients to be obtained from soil sensor measurements and inverse modeling techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号