首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dendroclimatological studies in a dry inner Alpine environment (750 m a.s.l.) revealed different growth response of co-occurring coniferous species to climate, which is assumed to be caused by a temporal shift in wood formation among species. The main focus of this study therefore was to monitor intra-annual dynamics of radial increment growth of mature deciduous and evergreen coniferous species (Pinus sylvestris, Larix decidua and Picea abies) during two consecutive years with contrasting climatic conditions. Radial stem growth was continuously followed by band dendrometers and modelled using Gompertz functions to determine time of maximum growth. Histological analyses of tree ring formation allowed determination of temporal dynamics of cambial activity and xylem cell development. Daily fluctuations in stem radius and radial stem increments were extracted from dendrometer traces, and correlations with environmental variables were performed. While a shift in temporal dynamics of radial growth onset and cessation was detected among co-occurring species, intra-annual radial growth peaked synchronously in late May 2011 and early June 2012. Moist atmospheric conditions, i.e. high relative air humidity, low vapour pressure deficit and low air temperature during the main growing period, favoured radial stem increment of all species. Soil water content and soil temperature were not significantly related to radial growth. Although a temporal shift in onset and cessation of wood formation was detected among species, synchronous culmination of radial growth indicates homogenous exogenous and/or endogenous control. The close coupling of radial growth to atmospheric conditions points to the importance of stem water status for intra-annual growth of drought-prone conifers.  相似文献   

2.
Monitoring cambial phenology and intra-annual growth dynamics is a useful approach for characterizing the tree growth response to climate change. However, there have been few reports concerning intra-annual wood formation in lowland temperate forests with high time resolution, especially for the comparison between deciduous and coniferous species. The main objective of this study was to determine how the timing, duration and rate of radial growth change between species as related to leaf phenology and the dynamics of non-structural carbohydrates (NSC) under the same climatic conditions. We studied two deciduous species, Fagus sylvatica L. and Quercus petraea (Matt.) Liebl., and an evergreen conifer, Pinus sylvestris L. During the 2009 growing season, we weekly monitored (i) the stem radial increment using dendrometers, (ii) the xylem growth using microcoring and (iii) the leaf phenology from direct observations of the tree crowns. The NSC content was also measured in the eight last rings of the stem cores in April, June and August 2009. The leaf phenology, NSC storage and intra-annual growth were clearly different between species, highlighting their contrasting carbon allocation. Beech growth began just after budburst, with a maximal growth rate when the leaves were mature and variations in the NSC content were low. Thus, beech radial growth seemed highly dependent on leaf photosynthesis. For oak, earlywood quickly developed before budburst, which probably led to the starch decrease quantified in the stem from April to June. For pine, growth began before the needles unfolding and the lack of NSC decrease during the growing season suggested that the substrates for radial growth were new assimilates of the needles from the previous year. Only for oak, the pattern determined from the intra-annual growth measured using microcoring differed from the pattern determined from dendrometer data. For all species, the ring width was significantly influenced by growth duration and not by growth rate, which differs from previous studies. The observed between-species difference at the intra-annual scale is key information for anticipating suitability of future species in temperate forests.  相似文献   

3.
  • ? Within the alpine treeline ecotone tree growth is increasingly restricted by extreme climate conditions. Although intra-annual stem growth recorded by dendrometers can be linked to climate, stem diameter increments in slow-growing subalpine trees are masked by changes in tree water status.
  • ? We tested the hypothesis that intra-annual radial stem growth in Pinus cembra is influenced by different climate variables along the treeline ecotone in the Austrian Alps. Dendrometer traces were compared with dynamics of xylem cell development to date onset of cambial activity and radial stem growth in spring.
  • ? Daily fluctuations in stem radius reflected changes in tree water status throughout the treeline ecotone. Extracted daily radial increments were significantly correlated with air temperature at the timberline and treeline only, where budburst, cambial activity and enlargement of first tracheids also occurred quite similarly. A close relationship was detected between radial increment and number of enlarging tracheids throughout the treeline ecotone.
  • ? We conclude that (i) the relationship between climate and radial stem growth within the treeline ecotone is dependent on a close coupling to atmospheric climate conditions and (ii) initiation of cambial activity and radial growth in spring can be distinguished from stem re-hydration by histological analysis.
  •   相似文献   

    4.
    To date, models for simulating sap flow dynamics in individual trees with a direct link to stem diameter variation include only the diameter fluctuation driven by a change in stem water storage. This paper reports results obtained with a comprehensive flow and storage model using whole-tree leaf transpiration as the only input variable. The model includes radial stem growth based on Lockhart's equation for irreversible cell expansion. It was demonstrated that including growth is essential to obtaining good simulation results. To model sap flow dynamics, capacitance of storage tissues was assumed either constant (i.e., electrical analogue approach) or variable and dependent on the water content of the respective storage tissue (i.e., hydraulic system approach). These approaches resulted in different shapes for the desorption curve used to calculate the capacitance of storage tissues. Comparison of these methods allowed detection of specific differences in model simulation of sap flow at the stem base (F(stem)) and stem diameter variation (D). Sensitivity analysis was performed to select a limited subset of identifiable parameters driving most of the variability in model predictions of F(stem) and D Both the electrical analogue and the hydraulic system approach for the flow and storage model were successfully calibrated and validated for the case of a young beech tree (Fagus sylvatica L.). Use of an objective model selection criterion revealed that the flow and storage model based on the electrical analogue approach yielded better predictions.  相似文献   

    5.
    【目的】研究南亚热带大青山林区乡土珍贵树种米老排径向生长日变化特征及对环境因子的响应,为理解米老排生长-气候响应的生理机制、森林培育和保护等提供基础数据。【方法】利用点状树木径向生长变化记录仪对米老排径向生长变化进行连续观测,采用气象站同步测量辐射总量、土壤含水量、相对空气湿度、空气温度等环境因子数据。通过径向生长与环境因子的相关分析,研究米老排生长季第一个高峰期(5月)的不同分化等级径向生长日变化规律、不同天气条件下生长变化及径向生长-环境因子相互关系。【结果】1)不同分化等级米老排5月份的径向生长日变化量优势木(17.08μm)>平均木(13.94μm)>被压木(-1.81μm),差异极显著(P<0.01),且不同阶段的起始时间、阶段时长、变化量也有所不同。2)不同天气条件下,三种分化等级米老排径向日净生长量和日变化幅度均表现为雨天>晴天>阴天,受雨水影响,雨天条件下径向变化量远超其自身生长量;同种天气条件下,径向日净生长量优势木最大,日变化幅度则表现为平均木最大。3)不同分化等级米老排径向生长与相对空气湿度、降雨量呈极显著正相关关系,与气温、总辐射呈极显著负相关关系,而20 cm土壤含水率无显著性相关,且各影响因子均存在不同时间滞后效应。【结论】不同分化等级米老排由于林木生长状况的差异,导致其受到环境因子影响程度的不同,进而使得其径向生长变化量产生差异。  相似文献   

    6.
    We assessed the effects of thinning (0, 20 and 30 % extraction of basal area) and canopy type (pine–beech vs. pine plots, beech accounting for 12 % of total basal area) on radial growth of dominant and codominant Scots pine at inter-annual scale and on microclimatic conditions, radial growth and xylogenesis 9 years after thinning at intra-annual scale. Thinning weakly affected pine growth, which was enhanced 3 years after harvesting. Over time, a gradual reduction in pine growth in mixed canopy relative to pure canopy occurred only in unthinned plots apparently due to beech expansion. Indeed, 9 years after thinning, a higher seasonal radial increment and a greater number of tracheids were produced under pine canopy in the unthinned plots, whereas no differences between canopy types were observed in the thinned plots. Radial increment and tracheid production were mainly affected by tree water status (air and soil humidity, throughfall). The differences of tree water status caused by treatments, and plausibly disparities in tree size and tree-to-tree competition, were the main drivers explaining the patterns observed for radial increment and xylogenesis. Our results suggest that the negative effects of beech competition on Scots pine growth in similar mixed forest may be controlled to some extent by thinning.  相似文献   

    7.
    8.
    A dendroclimatological study was carried out in the 80-year-old Fernow Experimental Forest of the U.S. Forest Service near Parsons, West Virginia (39°20′N, 79°40′W). The relationship between radial and basal area increments and corresponding monthly, seasonal, and yearly mean air temperature and precipitation were obtained over 53 years for four species: black cherry (Prunus serotina Ehrh.), northern red oak (Quercus rubra L.), white ash (Fraxinus americana L.), and yellow poplar (Liriodendron tulipifera L.). These species show positive growth responses to rainfall of previous summer, autumn, and current summer. They show significantly inverse correlation to air temperature of the current growing season. The indices of radial increment show a close correlation to those of basal area increment. However, in our analyses, basal area increment indices are more sensitive to climatic variations than radial growth indices.  相似文献   

    9.
    Silvopastoral systems may overyield compared to monocultures as a result of higher resource capture and/or facilitation effects of the trees on the pastures. Festuca pallescens (St. Ives) Parodi, a forage species of Patagonia, is vulnerable to water deficit, suggesting that it may benefit from the facilitative effects of trees. Radiation (PPFD), temperature, relative humidity (RH) and soil water distribution during the growing season were measured under different tree cover levels in ponderosa pine-based silvopastoral systems. PPFD decreased with increasing tree cover, and the decrease was lower in the positions under than between tree crowns. No significant differences were observed for temperature, RH nor for soil water content between treatments. Pre-dawn water potential of grasses during the growing season showed similar high values in all treatments. However, cumulative water stress was slightly lower in high tree cover treatments than in open situations. Leaf water potential of the grasses during the day was always lower in open grassland than in forested plots. The growth of the grasses showed no significant differences between treatments, but mean growth tended to decrease in the more densely planted treatments. We concluded that F. pallescens is a species that is biologically sound for use in silvopastoral systems, because the balance between facilitation and competition can be positive under the semiarid conditions of Patagonia.  相似文献   

    10.
    Japanese cypress (Chamaecyparis obtusa Endl.) and Japanese cedar (Cryptomeria japonica D. Don) are common species for plantation forestry in Japan. Cypress is conventionally planted on sites of low fertility whereas for cedar high fertility sites are used. Objectives of this study were to compare the productivities of cypress and cedar plantations grown on adjacent sites where common properties of soils, such as pH values and C and N contents, were similar, and to relate the N cycling at their site with productivities. The stem diameter of trees, aboveground litter production and fine root biomass were measured as indices of forest productivity. Parameters of N cycling included pools of total N and mineral N (ammonium + nitrate), annual N leaching, and potentially mineralizable N. The radial stem increment of the two tree species was similar. However, cedar site had higher total basal area and annual basal increment than cypress site reflecting higher tree density on the cedar site. Aboveground litter, fine root biomass, soil organic matter, and N turnover were higher on the cedar site than on the cypress site. However, litter production and fine root biomass per unit basal area was greater at the cypress site. Phenological pattern of stem growth and periodical litter production were similar for both species during the study period (1992–2000), but showed distinct annual variations caused by the fluctuation in the ambient temperature and precipitation. Mineral N content and the N mineralization potential were greater on the cedar site, indicating greater N availability and higher total tree productivity at the cedar site than those at the cypress site. When provided with more space in the canopy to expand more needles and in the soil to develop more fine roots to exploit sufficient resources, the individual cypress trees have the potential to grow faster. On fertile site and at lower tree density, thicker logs of cypress might be yielded.  相似文献   

    11.
    We assessed the pools of non-structural nitrogen compounds (NSNC) through a year, thereby addressing the question of whether mature sessile oak [Quercus petraea (Matt.) Liebl.] and beech (Fagus sylvatica L.), which differ in wood anatomy and growth patterns, exhibit contrasting seasonal dynamics of NSNC pools as previously shown for non-structural carbohydrate (NSC) pools. Seasonal fluctuations of NSNC (amino acids and soluble proteins) and NSC (starch and soluble sugars) pools were analyzed in the inner and the outer stem sapwood. In oak, NSC showed marked seasonal variation within the stem sapwood (accumulation during winter and decrease during bud burst and early wood growth), whereas in beech seasonal fluctuations in NSC were of minor amplitude. Even if the distribution and intensity of the NSNC pools differed between the two species, NSNC of the stem sapwood did not show seasonal variation. The most significant change in NSNC pools was the seasonal fluctuation of protein composition. In both species, two polypeptides of 13 kDa (PP13) and 26 kDa (PP26) accumulated during the coldest period in parallel with starch to sugar conversion and disappeared with the onset of spring growth. The absence of seasonal changes in total soluble protein concentration suggests that the polypeptides are involved in the internal nitrogen (N) cycling of the stem rather than in N storage and remobilization to the other growing organs of the tree.  相似文献   

    12.
    In the present context of global climate changes and the continuous development of forest management strategies based on the concept of sustainable use, it is important to develop a better understanding of the climatic factors controlling the growth of boreal forests. In this study, we report the results of a five-year field research within which day-to-day balsam fir (Abies balsamea (L.) Mill.) stem diameter variation was measured with dendrometers and examined in relation with various daily climatic variables. A model built with data from three growing seasons that included solar radiation, relative humidity, temperature and precipitation explained 84% of the variance in day-to-day stem diameter variation from June to September. The model has approximately the same predictive capability when validated with independent daily data from two other growing seasons. The model captured both the cumulative increment associated with the irreversible growth and the high frequency variation of day-to-day fluctuations associated to changes in the stem water content. In general, rainy days during which relative humidity was high and solar radiation was low favored stem diameter expansion (growth and swelling) while stem diameter decreased during periods of low relative humidity and high solar radiation. Similar models were obtained when the June-September period was divided into two parts (June-July and August-September) to better represent the period during which most of the cumulative annual stem increment is observed (June-July). Inter-annual variation in stem growth computed from the modeled day-to-day variation in stem diameter was significantly correlated to the inter-annual variation in annual growth determined from tree core measurements over a 10 year period (p = 0.023). The model was notably able to capture a particularly poor growing year (2006) presumably due to a short-term heat stress period. Results suggest that the inclusion of daily data in growth-climate models may contribute to improve predictions of the potential tree growth response to climate by identifying particular climatic events that may escape to a classical dendroclimatic approach.  相似文献   

    13.
    尖峰岭绿楠树生长过程的研究   总被引:4,自引:0,他引:4  
    对海南尖峰岭地区30年生的热带乡土树种———绿楠人工林进行了样地调查,并进行了样木横剖树干解析,研究其生长规律及与环境的关系。研究结果表明:(1)绿楠是比较速生的树种,地径、胸径、树高和材积的年生长都呈多峰态曲线;(2)胸径年生长高峰值出现在第11年,而树高年生长量高峰期晚于地径和胸径生长高峰值出现的年份;(3)在生长初期(8a前),材积生长极缓慢,年生长量<00009m3,其后开始较快增长,到第17年出现最大值000868m3;(4)从平均生长量看,地径变化比较平缓;胸径在14a前呈稳态上升趋势,14a后呈平稳发展状态并略有下降;树高在19a前基本呈稳态上升趋势,19a后保持在050m/a左右,并呈缓慢地下降趋势;材积一直是随着年龄的增加而增加;(5)不同坡位的水肥等条件不同,因而影响了绿楠树的生长,离水沟最近的下坡地的树高和胸径比上坡分别大375%和291%;(6)绿楠树地径、胸径和树高的连年生长变化趋势基本上与降雨蒸发比(R/E)变化趋势相一致,说明水分状况是影响绿楠生长的一个重要环境因子。  相似文献   

    14.
    A better understanding of the ecophysiological basis of wood formation by monitoring radial growth over the whole vegetation period may help to explain possible discrepancies between long-term average climate–growth relationships and short-term climatic impacts on tree growth. To understand how growth–climate associations of Oriental beech vary throughout a vegetation period, we studied seasonal growth patterns of high-elevation beech trees growing in the north of Iran by collecting wood anatomical micro-cores in 10 to bi-weekly intervals and measuring stem increment with high-resolution electronic dendrometers. Wood formation was for two consecutive years with contrasting inter-annual climate conditions (2011 and 2012). We divided the growing period into three equal time phases and related daily climate variability to the cambial growth in each phase. The pattern of climate–growth relationships varies over a complete growing season and between years: in both study years, trees responded homogenously at the beginning and at the end of the growing season, but showed opposing influence of relative humidity during spring and early summer (June and July). Temperature as the main driver of xylogenesis had a stimulating effect on growth at the beginning of the growing season, but had negative effects on radial increment during late June and July mainly due to the excess of ambient temperatures over an optimum threshold. Higher temperature in late June and July 2011 compared with those of 2012 led to a significantly narrower tree ring in 2011, despite the similar sums/means of annual climate parameters in these two years. Since regional climate change scenarios expect higher temperature and reduced moisture conditions in future, radial growth of beech in the north of Iran may be adversely affected.  相似文献   

    15.
    文中综述了树木径向生长仪监测数据的处理和分析方法,重点对基于树木径向生长仪监测高寒森林生态系统树木生长和水分利用的研究进行了总结归纳,指出目前在探索高纬度北方森林树轮宽度对夏季温度敏感性下降原因的过程中仍缺乏普遍的机制解释,而这一普遍机制可能与高寒地区树轮形成的年内季节动态特征有关。另外,尽管树木径向生长仪能够反映高寒地区的树木水分利用状况,但高寒地区树木水分利用对气候变化的响应仍不清楚。基于目前的研究现状,建议未来加强几个方面的研究,即考虑高寒地区树木径向生长的季节动态特征对树木生长与环境因子关系的潜在影响,加强与其他监测手段的比较研究,开展与生态系统水平观测指标的关联分析。  相似文献   

    16.
    为探讨树干液流速率与气象因子之间的时滞特性,采取PS-TDP8型热耗散式树干液流测定系统持续监测,以掌握树体蒸腾耗水规律,从而为杏李科学灌溉提供理论依据。研究结果表明:杏李生长季液流速率日均最大值在6月18日;决定其第1主成分大小的是温度及水气压亏缺,决定第2主成分大小的是光照强度及空气相对湿度。4—8月液流速率均与1 h前第1、2主成分相关性最大;杏李生长季液流与1 h前光照强度相关性最大,相关系数为0.810,与1 h后的气温、空气相对湿度、水汽压亏缺相关性最大,系数分别为0.757,-0.572,0.736;回归方程中液流与实时气象因子拟合决定系数最大,为0.751。杏李生长季液流速率与实时气象因子回归拟合模型效果最好,体现了杏李在长期树干液流数据模拟中,可以不用考虑液流速率与气象因子的时滞效应。  相似文献   

    17.
    在集约栽培的杨树人工林中作了小区灌溉试验,进行了林木生长指标、水分生理指标与供水量关系的研究。结果表明,供水大大促进了林木生长,其树高、胸径和材积的年增长量均随供水量的提高而增加。1983—1986年其树高、胸径、材积分别比对照增加 17.2—24.6%、10.7—22.1%和22.0—42.6%。供水还影响到树体的结构,有利于同化产物向枝条中运输与积累,促进了树干、枝条、叶数与叶面积的增长。  相似文献   

    18.
    《林业研究》2021,32(5)
    Minquartia guianensis Aubl.is a slow-growing species with several uses.In the juvenile state,it is well-adapted to low light conditions of the forest understory.However,it is still unknown how climate variability affects transpiration of this species,particularly under drought stress.In this study,we aimed to assess the effect of climatic variability on sap flow rates(SFR).SFR and radial growth were measured in six trees(14-50 cm diameter) in 2015 and 2016.Climate(precipitation,irradiance,relative humidity and temperature) and soil water content(SWC) data were also collected.SFR tended to increase in the dry season,with a negative relationship between SFR and SWC and precipitation(p 0.001),while there was a positive association between radial growth and monthly precipitation(p=0.004).Irradiance and temperature were the environmental factors more closely correlated with SFR during daytime(p0.001),whereas relative humidity and vapor pressure deficit were the most important factors at night(p0.001).Although negative SFR were sometimes recorded at night,the mean nocturnal sap flow was positive and across trees the nighttime sap flow accounted for 12.5%of the total daily sap flow.Increased transpiration during the dry season suggests that the root system of Minquartia was able to extract water from deep soil layers.These results widen our understanding of the ecophysiology of Amazonian trees under drought and provide further insight into the potential effect of the forecasted decline in precipitation in the Amazon region.  相似文献   

    19.
    Myers BJ 《Tree physiology》1988,4(4):315-323
    Water stress integral (S(Psi)), the cumulative integral of pre-dawn leaf water potential over any chosen period of time, was estimated from measurements of pre-dawn water potential made every two weeks in a Pinus radiata D. Don plantation near Canberra, Australia. Also measured were final length of current-season needles and annual stem basal area increment. Data were gathered over a 4-year period from a control plot, a fertilized plot, an irrigated plot, and two plots that were both fertilized and irrigated. Among years and treatments, annual basal area increment varied over a threefold range. Of this variation, 91% was accounted for by variation in S(Psi) for the entire year, during every month of which stem diameter growth occurred. Of variation in annual needle elongation, 90% was accounted for by variation in S(Psi) from late August to late February, which was the period of needle growth. In dry years, the annual value of S(Psi) in non-irrigated plots was mainly determined by soil water content, but in wet years in non-irrigated plots, and in all years in irrigated plots, it was closely correlated with tree nutrient status (r(2) = 0.81).  相似文献   

    20.
    《Southern Forests》2013,75(3-4):191-200
    Many eucalypt species do not show distinct growth rings because cambial activity does not show a strong response to seasonal variation in climate. Eucalyptus grandis, one of the most important commercial hardwood species in South Africa, is one such example of a species that does not have well-defined growth rings. The light and dark bands visible on the cross-section of the wood of E. grandis do not always correspond with the growing season, which makes it difficult to resolve wood property data into annual increments. A method was developed to separate growth rings on wood density profiles of E. grandis into annual increments using bark-to-pith density profiles and annual measurements of diameter at breast height (DBH) from permanent sample plot (PSP) datasets. Using the PSP data, it was possible to assess the annual pattern of stem diameter growth at a compartment level by calculating the radial increment (RI) per year and expressing that value as a percentage of the radius at the end of the increment for that year. Mean radial increment percentage (%MRI) was calculated for each year and used to predict annual RI at an individual tree level. Predicted RI values for each tree were expressed as cumulative distances from the bark end and superimposed onto their respective density profiles. Predicted RI corresponded well with latewood density peaks and these separation points were considered a reliable guide to divide the density profile into annual increments closer to the bark end and into broader age classes closer to the pith. By assessing the pattern of variation in radial density within the context of the growth history of a compartment by means of annual PSP data, it was possible to confirm that growth rings on density profiles of E. grandis closer to the bark end can serve as a reliable representation of annual growth.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号