首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Genotypes of Phaseolus vulgaris differ in their level of resistance to Empoasca kraemeri, but the speed with which these differences can be accumulated into a resistant variety will depend on whether they can be detected in single F2 plants, and on whether the genetic control of resistance is additive. Thirty-eight homozygous genotypes were therefore grown in small plots with and without insecticidal protection, and also in simulated F2 populations containing one plant of each genotype. In addition, the F2 and F3 generations of crosses were studied. Both generations of a 13 parent diallel were grown with and without insecticidal protection. Six crosses, involving some of the parents in the diallel and two additional genotypes, were studied in more detail. Protected and unprotected F2 plants from these crosses were harvested individually, and the resulting F3 families were grown with and without protection. In all the expriments, the level of damage to the unprotected plants and the vigour of the protected plants was assessed visually by means of a numerical score, and the seed yield was measured.The performance of a single homozygous plant was a reasonable predictor of the performance of the same genotype in a small plot, but in the six crosses studies in detail, the correlations between F2 and F3 performance were low. In the analysis of the diallel cross, the significant differences among crosses were due to specific combining ability and not general combining ability. These results indicate that the genetic control of resistance is largely non-additive, and that F2 selection will probably be ineffective. However, F3 selection should be effective, and transgressive segregants for resistance should be obtainable.In some of the six crosses, the F3 families differed both in general vigour and in narrow-sense resistance to E. kraemeri, as defined by Galwey & Evans (1982). The visual assessment of damage symptoms in each plot was related to the subsequent seed yield of the plot, but was more heritable than yield. The relationship between these two variables was investigated by the genetic correlation coefficient and by an alternative method, and was found to be partly genetically determined, but partly due to the influence of environmental factors on both variables. This indicates that screening for E. kraemeri resistance should be done by means of a visual damage score in a carefully chosen, uniform environment.  相似文献   

2.
Genotype × environment interactions for tea yields   总被引:1,自引:0,他引:1  
Several methods were used to evaluate phenotypic stability in 20 tea (Camellia sinensis) genotypes, many of which are cultivated widely in East Africa. The genotypes were evaluated for annual yields at two sites over a six year period. Data obtained were used to compare methods of analysis of G × E interactions and yield stability in tea. A standard multi-factor analysis of variance test revealed that all first order interactions (genotypes × sites; genotypes × years; sites × years) as well as second order interactions (sites × genotype × years) were significant. Regression analysis was used to assess genotype response to environments. Regression coefficients (bi) obtained ranged from 0.78 to 1.25. Deviations from regression (S2d) were significant (p < 0.05) from 0.0 for all the test genotypes. Analysis for sensitivity to environment change (SE2 i) revealed that the test genotypes differed in their level of sensitivity. The hierarchical cluster analysis method was used to assemble the test genotypes into groups with similar regression coefficients (bi) and mean yield, which proved useful for the identification of high yielding genotypes for breeding purposes as well as for commercial exploitation. Rank correlation between yield and some stability parameters were significant. Mean yield was significantly correlated to bi (r = 0.80***) and SE2 i(0.74***) which is an indication that selection for increased yield in tea would change yield stability by increasing bi and SE2 i leading to development of genotypes that are specifically adapted to environments with optimal growing conditions. Genotypes differed in response to years and sites. As stand age increased, genotype yields generally increased though annual yield fluctuations were more pronounced in some genotypes than others. This response was not consistent across the sites for all genotypes indicating the need to test clones at multiple sites over longer periods of time. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Selective herbicides are valuable weed control tools; however, selectivity is not always complete, resulting in crop damage. Stem breakage, lodging, and enlarged hypocotyls (brittle bean syndrome) limit yields of soybean [Glycine max (L.) Merr.] genotypes treated with pendimethalin [N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine]. Developing genotypes with resistance to pendimethalin injury would eliminate or reduce this problem. Genetic studies were conducted to determine the inheritance of resistance to pendimethalin induced stem damage. The F2:3 progeny of crosses involving resistant ('Asgrow A4715' and 'Flyer') and susceptible (`Essex' and K87-7-95) genotypes were screened in a greenhouse. Each genotype was treated with 1.68 kg ha-1 pendimethalin preemergence and irrigated as needed. Plants were scored at V4 for stem breakage. Progeny distributions indicated that resistance to brittle bean syndrome damage behaved as a quantitative trait. Dominance for stem breakage was expressed in the population of A4715 × Essex. Flyer was more sensitive to herbicide damage than Asgrow A4715 because it has fewer genes for resistance or different alleles. The F2:3 variance component heritability estimates ranged from 0.19 to 0.52. Gain from selection for resistance to pendimethalin injury is possible, and resistant progeny can be recovered from segregating populations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Ascochyta blight is a major fungal disease affecting chickpea production worldwide. The genetics of ascochyta blight resistance was studied in five 5 × 5 half-diallel cross sets involving seven genotypes of chickpea (ICC 3996, Almaz, Lasseter, Kaniva, 24B-Isoline, IG 9337 and Kimberley Large), three accessions of Cicer reticulatum (ILWC 118, ILWC 139 and ILWC 184) and one accession of C. echinospermum (ILWC 181) under field conditions. Both F1 and F2 generations were used in the diallel analysis. The disease was rated in the field using a 1–9 scale. Almaz, ICC 3996 and ILWC 118 were the most resistant (rated 3–4) and all other genotypes were susceptible (rated 6–9) to ascochyta blight. Estimates of genetic parameters, following Hayman’s method, showed significant additive and dominant gene actions. The analysis also revealed the involvement of both major and minor genes. Susceptibility was dominant over resistance to ascochyta blight. The recessive alleles were concentrated in the two resistant chickpea parents ICC 3996 and Almaz, and one C. reticulatum genotype ILWC 118. The wild Cicer accessions may have different major or minor resistant genes compared to the cultivated chickpea. High narrow-sense heritability (ranging from 82% to 86% for F1 generations, and 43% to 63% for F2 generations) indicates that additive gene effects were more important than non-additive gene effects in the inheritance of the trait and greater genetic gain can be achieved in the breeding of resistant chickpea cultivars by using carefully selected parental genotypes.  相似文献   

5.
L. E. Marsh  D. W. Davis 《Euphytica》1985,34(2):431-439
Summary The effect of short term high temperature exposure on the performance of five Phaseolus species and of long term (continuous) exposure on the performance of P. vulgaris was studied at three growth stages. Phaseolus species subjected to 26.7, 32.2 or 37.3°C for two days showed small differences in the number of pods produced and in visual leaf damage, but large differences in leaf heat killing time, as measured by conductivity. P. coccineus had the shortest heat killing time (20–60 minutes) and P. acutifolius and P. lunatus the longest times (180 and 153 minutes), respectively. The P. vulgaris genotypes were intermediate in killing times to P. acutifolius and P. coccineus. Species response was not consistent with temperature within developmental stage. On average, the number of pods decreased as temperature increased from 32.2 to 37.3°C. Heat killing time and leaf damage also increased with temperature. CO2 exchange rates of plants grown at prolonged high temperatures (30–40°C/20–30°C, day/night) decreased with the age of the plant. Shoot lenght was decreased as high temperature. P. vulgaris genotypes differed on the basis of either short term exposure or of continuous exposure. These results suggest that there may be useful germplasm in Phaseolus for improving heat tolerance.Scientific Journal Series Paper Number 13,8000 of the Minnesota Agricultural Experiment Station, USA.  相似文献   

6.
Summary The Tobacco cut worm (Spodoptera litura Fab.), a polyphagous defoliating insect is a major pest on groundnut in Asia. Screening germplasm for resistance to Spodoptera litura in the field under high infestation revealed significant genotypic variation. Low damage was observed on Mutant (28-2), NC Ac 343, ICGV 86031, R 9227 and TAG 24. In the laboratory rearing of insect, the resistant genotypes, NC Ac 343, Mutant 28-2 and R 9227 affected larval growth and survival, pupal development, adult emergence and fecundity indicating antibiosis as the principal mechanism of resistance. The reduction in larval weight reared on ICGV 86031 could be due to the toughness of leaves. Though the genotype TAG 24 suffered low damage in the field, the larval and pupal development was normal in the laboratory revealing avoidance/non-preference as the mechanism of resistance. Based on the insight gained from the growth and development of the insect on resistant genotypes, the gain in weight (GIW) of the pre-starved larvae was assessed for its suitability in rapid screening. GIW in 24 h by III instar larvae fed with fully expanded II leaf was found suitable in screening for resistance based on antibiosis. The method could be adopted for screening large breeding populations in a short time under laboratory conditions. The resistant genotypes with different mechanisms of resistance could be hybridized to pool the resistant genes for enhancing the level and effectiveness of resistance in the management of the pest.  相似文献   

7.
Summary A Japanese leading cultivar ‘Konafubuki’ has an extreme resistance gene Ry chc to Potato virus Y (PVY) in a simplex fashion. To reduce complexity of the highly heterozygous autotetraploid genome and map the Ry chc gene, haploid plants were parthenogenetically induced from ‘Konafubuki’. The ratio of 7 resistant: 5 susceptible haploids confirmed the single dominant, simplex genotype of ‘Konafubuki’. A selected resistant haploid 98H20-5 was crossed with a susceptible diploid, resulting in 119 F 1 plants. Using RFLP and RAPD markers, Ry chc was mapped to the most distal end of the chromosome 9 where the recovery of recombinant genotypes was extremely reduced in this mapping population possibly due to the linked inferiority factor. The location of Ry chc is different from those of the other extreme resistance genes to PVY, but possibly resides in one of resistance gene clusters.  相似文献   

8.
Summary The inheritance of resistance in cabbage (Brassica oleracea var.capitata) to damage caused byThrips tabaci Lindeman was studied in progeny from four crosses between resistant and susceptible inbred lines. In two families sharing the same susceptible parent, the narrow-sense heritability was calculated to be high (>90%), using the Warner method of calculation (Warner, 1952). The other two families, also sharing a susceptible parent, had very low narrow-sense heritability (0–11%). In three of the four families, however, the validity of the Warner calculations were called into question due to significant epistatic interactions. In all four families, the F1 populations approached or exceeded the susceptibility of the susceptible parent, indicating that susceptibility is generally dominant. The importance of epistasis and dominance suggests that tests of hybrid combinations to determine combining ability for thrips resistance may be required, rather than selecting only on the basis of thrips damage to the inbred lines. The technique of planting wheat upwind from the cabbage test plot did generate adequate levels of thrips pressure, but the infestation was uneven in two of the four blocks, so that reasonable replication of tests is required.  相似文献   

9.
Wheat breeders in South Asia are attempting to develop wheat (Triticum aestivum L.) cultivars resistant to Helminthosporium leaf blight (HLB), which occurs mainly as a complex of spot blotch caused by Cochliobolus sativus (Ito & Kuribayashi) Drechs. ex Dastur, and tan spot caused by Pyrenophora tritici-repentis (Died.) Drechs. Information on the combining ability for HLB resistance in wheat cultivars of South Asia is not available. This study was undertaken to examine the resistance to HLB in nine genetically diverse wheat parents, and to evaluate their general combining ability (GCA) and specific combining ability (SCA) effects toward determining the genetic basis of disease resistance. Nine parents were crossed in a half-diallel mating design to produce 36 populations. The F1 and F2 progenies, and the parents were evaluated in replicated field tests at Rampur, Nepal. Multiple disease scores were recorded, and area under the disease progress curve (AUDPC) was calculated to measure disease severity over time. The combining ability analysis was performed using Griffing's Method 2, Model 1. The parents chosen showed wide variation for resistance to HLB. They and the F1 and F2 progenies differed significantly for AUDPC. GCA and SCA effects were significant in both generations suggesting that additive as well as non-additive genetic mechanisms were involved in the expression of resistance in these parents. Wheat genotypes 'SW89-5422', 'G 162', 'NL 781'and 'Chirya 7' had significantly negative GCA effects for AUDPC in both F1 and F2 generations, suggesting their prime suitability for use in wheat breeding programs to improve resistance to HLB. The estimate of narrow-sense heritability was 0.77 in both generations suggesting that selection for HLB resistance should be effective in these crosses. The results indicate a predominance of additive gene action in the inheritance of HLB resistance in spring wheat.  相似文献   

10.
Drought is one of the important factors limiting crop production in arid and semi-arid regions. Four drought resistance criteria, consisting of canopy temperature, stomatal resistance, transpiring area and rate of water loss by excised-leaves were examined in two experiments conducted in optimum and stress moisture conditions in 1995. A randomized complete block design with four replications and six genotypes was used for each experiment. Under optimum moisture conditions, there was a significant difference in canopy temperature at midday between drought resistant and drought sensitive genotypes. A significant linear relationship was also obtained between this criterion and yield reduction ratio as determined by Yr = 1-(Ys/Yp) (Ys and Yp = yield under stress and non-stress conditions, respectively), at the ear emergence stage. The only significant difference between cultivars in respect to stomatal resistance in stress conditions was that of adaxial leaf surface in ear emergence stage. No significant linear relationship was obtained between transpiring area and yield reduction ratio. Cultivars differed in respect to rate of water loss (RWL) and initial water content (IWC) in ear emergence and grain filling in stress environment only. Ultimately, three criteria namely canopy temperature, stomatal resistance and RWL, in explicated conditions were recognized as benificial drought resistance indicators. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Twenty-two improved and local cassava genotypes were evaluated for their bacterial blight symptom types in reaction to infection by Xanthomonas axonopodis pv. manihotis under field conditions in the forest, forest savanna transition and wet savanna zones of Togo. High genotype × environment interactions in development of each symptom type were observed. Combining data on environments and genotypes, spot, blight and wilt symptoms were positively correlated. Analysing genotype reactions across environments, indications for independent mechanisms of resistance on leaf and stem level, varying by genotype, were found. Genotypes Main27 with resistance to spot and blight symptoms and TMS4(2)1425 with resistance to wilt symptoms are recommended to breeders to introgress their resistance characteristics. Significant negative correlations were generally observed between blight and wilt symptom development and root yield across ecozones, with blight being more important under lower, and wilt under higher inoculum pressure. Genotypes TMS30572, CVTM4, TMS92/0429 and TMS91/02316 showed low spot, blight and wilt symptoms combined with high root yield across ecozones.  相似文献   

12.
Resistance to bacterial soft rot caused by Erwinia carotovora subsp. carotovora is a quantitative trait. The narrow-sense heritability was from 42% to 60% in the studied populations. Griffing's diallel analysis and generation mean analysis indicated that additive genetic effects were most significant, and the resistant sources involved in this study appeared to have different genes or alleles. Recurrent phenotypic selection was used for improving the resistance level by combining different resistance genes from the selected genotypes of Chinese cabbage. After 3 cycles of recurrent selection, the level of resistance increased markedly. When the cycle 3 population was compared with the cycle 0 population, the mean disease severity rating was reduced 38% from 6.3 to 3.9, and the percentage of plant survival increased from 65% to 97% based on the mean of two years experiments using mist-chamber seedling inoculation methods. The improvement of resistance was also demonstrated in field assays. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
A series of field experiments was undertaken in order to determine whether resistance to bean common mosaic virus (BCMV) could be incorporated into genotypes of the common bean (Phaseolus vulgaris L.) suitable for cultivation in Zimbabwe without recourse to backcrossing. Six inbred genotypes carrying the resistance-conferring alleles at the loci I and Bc-3 were crossed with five locally-adapted inbred genotypes. The first experiment comprised F3 progeny rows, each derived from a single unselected F2 plant, the second, F3 bulks selected for resistance, and the third, a comparison of selected and unselected F2-derived F4 lines. The number of days to flowering and to maturity, the incidence of mosaic and necrosis symptoms, seed yield and seed size were recorded. There was evidence that late flowering and maturity were associated with BCMV resistance in some crosses, though not strongly enough to present an obstacle to plant breeding. The incidence of virus symptoms and seed yield were influenced by genetic factors additional to the major resistance genes, and variation in seed yield was present not only between bulk populations of crosses, but also between single-row plots of lines within crosses. This indicates that early-generation selection for yield in the presence of BCMV, even among progeny selected for BCMV-resistace, is likely to be effective. However, the variation in yield among F4 lines was least in the highest-yielding crosses, which may represent a limit to successful selection for yield. Seed size was partly under additive genetic control, but there was also evidence of non-allelic interactions. There was no association between large seed size, preferred by consumers, and susceptibility to BCMV in the progeny, indicating that the association between these characters in the parent lines is fortuitous and will not present an obstacle to plant breeding. It is noted that a considerable amount of useful genetic information can be obtained without recourse to elaborate crossing schemes, provided that unselected progeny are included in experiments as controls. The evidence presented indicates that resistance to BCMV can be combined with appropriate values of maturity date, yield and seed size without the need for backcrossing.  相似文献   

14.
P. K. Singh  G. R. Hughes 《Euphytica》2006,152(3):413-420
The fungus Pyrenophora tritici-repentis, causal agent of tan spot of wheat, produces two phenotypically distinct symptoms, tan necrosis and extensive chlorosis. The inheritance of resistance to chlorosis induced by P. tritici-repentis races 1 and 3 was studied in crosses between common wheat resistant genotypes Erik, Hadden, Red Chief, Glenlea, and 86ISMN 2137 and susceptible genotype 6B-365. Plants were inoculated under controlled environmental conditions at the two-leaf stage and disease rating was based on presence or absence of chlorosis. In all the resistant × susceptible crosses, F1 plants were resistant and the segregation of the F2 generation and F3 families indicated that a single dominant gene controlled resistance. Lack of segregation in a partial diallel series of crosses among the resistant genotypes tested with race 3␣indicated that the resistant genotypes possessed␣the same resistance gene. This resistance gene was effective against chlorosis induced by P.␣tritici-repentis races 1 and 3.  相似文献   

15.
The Russian wheat aphid, Diuraphis noxia (Mordvilko), is a major pest of cereal crops in many areas of the world, causing serious reduction in grain yield in wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). Incorporating genetic resistance to D. noxia into wheat cultivars is paramount to effectively reduce damage inflicted by this pest. Genetic resistance to D. noxia has been identified in wheat, barley and rye germplasm, and several resistance genes are available for use for cultivar improvement. In the United States of America, only a few Russian wheat aphid (RWA) resistant winter wheat cultivars are currently available, and these cultivars contain only one of the six known RWA resistance genes. The objective of this study was to determine the inheritance of RWA resistance in wheat accession PI 47545, using a screening method based on differences in the leaf morphology of resistant and susceptible types following insect challenge. PI 47545 was selected for study, since it displayed high levels of resistance in a white-grained wheat background, the predominant wheat class produced in the Pacific Northwest of the USA. Segregation analysis was conducted on an F2 population developed by cross-hybridizing the susceptible soft white winter wheat cultivar ‘Daws’ to the resistant accession PI 47545. Russian wheat aphid screening data from this population indicated that the resistance in PI 47545 is controlled by a single, dominant gene (χ2 = 1.72; p ≤ 0.189). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Pigeonpea [Cajanus cajan (L.) Millsp.] is an important legume crop in the semi-arid tropics, and pod fly [Melanagromyza obtusa (Malloch)] is an important emerging constraint to increase the production and productivity of this crop under subsistence farming conditions. Host plant resistance can be used as an important tool for the management of this pest. Therefore, a set of ten pigeonpea genotypes from a diverse array of plant growth types and maturity groups including two appropriate commercial checks, was evaluated for resistance to pod fly under field conditions, and characterized for physico-chemical pod traits. The non-determinate type GP 75 (extra early maturing) and GP 118 (early maturing), and determinate type GP 233 (extra early maturing) and GP 253 (early maturing) genotypes had significantly lower pod and seed damage as compared to determinate (Prabhat) and non-determinate (Manak) early maturing checks, suggesting that resistance to pod fly is not linked to plant growth type and maturity period of the genotype in pigeonpea. Pod wall thickness, trichome density, reducing and non-reducing sugars, total phenols, tannins, and crude fiber were found to be negatively associated (r = −0.83** to −0.97**), while total protein positively associated (r = 0.88** to 0.97**) with pod fly infestation. Therefore, these traits particularly total phenols, tannins, crude fiber, trichome density, and pod wall thickness, can be used as physico-chemical markers to identify pigeonpea genotypes with resistance to M. obtusa, and use in pod fly resistant breeding program in pigeonpea.  相似文献   

17.
The parasitic weed Striga hermonthica (Del.) Benth. seriously limits sorghum [Sorghum bicolor (L.) Moench] production in Sub-Saharan Africa. As an outbreeder, S. hermonthica is highly variable with an extraordinary capacity to adapt to different hosts and environments, thereby complicating resistance breeding. To study genotype x environment (G x E) interaction for striga resistance and grain yield, nine sorghum lines, 36 F2 populations and five local checks were grown under striga infestation at two locations in both Mali and Kenya. Mean squares due to genotypes and G x E interaction were highly significant for both sorghum grain yield and area under striga severity progress curve(ASVPC, a measure of striga emergence and vigor throughout the season). For grain yield, the entry x location-within-country interaction explained most of the total G x E while for ASVPC, entry x country and entry x location-within-country interactions were equally important. Pattern analysis (classification and ordination techniques) was applied to the environment-standardized matrix of entry x environment means. The classification clearly distinguished Malian from Kenyan locations for ASVPC, but not for grain yield. Performance plots for different entry groups showed differing patterns of adaptation. The ordination biplot underlined the importance of entry x country interaction for ASVPC. The F2 derived from the cross of the striga-resistant line Framida with the striga-tolerant cultivar Seredo was the superior entry for both grain yield and ASVPC, underlining the importance of combining resistance with tolerance in striga resistance breeding. The observed entry x country interaction for ASVPC may be due to the entries' different reactions to climatic conditions and putative differences in striga virulence in Mali and Kenya. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Common bean (Phaseolus vulgaris L.), an important food crop in Europe, America, Africa and Asia, is thought to fix only small amounts of atmospheric nitrogen. It contributes significantly to the sustainability of traditional cropping systems because of the predominance of small-scale farmers who cultivate beans in those areas. The objectives of this work were to evaluate bush bean varieties under common agronomic cropping systems and to evaluate breeding lines under low N-fertility sole cropping and intercropping systems. The purpose of the study was to characterize the genotype and cropping system's variability in symbiotic and plant characters and to identify the most suitable genotypes to establish an effective symbiosis with indigenous strains of Rhizobium. No significant differences among the bush bean varieties evaluated under typical fertilization practices were observed for N2-fixation and plant traits except for seed nitrogen. Significant differences among the bean lines studied under low N-fertilization conditions were detected for plant growth,plant component and N2-fixation traits. A significant interaction of bean genotype x cropping system was found for number of nodules per plant and nodule moisture on the bush bean varieties studied, and for days to emergence, days to flowering, end of flowering, shoot length, root dry weight and shoot nitrogen on the bean lines evaluated. Nodulation parameters were correlated positively with the yield components, shoot and root parts and duration of flowering, and correlated negatively with seed crude protein, pod and seed dimensions and seed dry weight. These observations indicate that it may be possible to increase both the symbiotic N2-fixation and seed yield through plant breeding. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
S. K. Dey  Gurdip Singh 《Euphytica》1993,68(1-2):147-153
Summary Genetic regulation of host resistance in chickpea-Ascochyta rabiei interaction system is governed by two dominant complementary genes each in the genotypes GLG 84038 and GL 84099, whereas the resistance in a black seeded genotype ICC 1468 was controlled by one dominant and one recessive independent gene. In all the genotypes, resistance is operated by inter-allelic interactions. The genes conferring resistance in GLG 84038 were found to be different to those operating in GL 84099 and ICC 1468. Among the five dominant genes dispersed in 3 genotypes under study, at least one has been reported for the first time, as to date, only three dominant genes have been reported in the literature.The four identified dominant genes in GLG 84038 and GL 84099 have been named as Arc1, Arc2 (in GLG 84038) and Arc3, Arc4 (in GL 84099). The undistinguished dominant gene in ICC 1468 has been named as Arc5(3,4) as it could not be equated or differentiated from Arc3 or Arc4. The recessive gene in ICC 1468 has been named as Arc1.Generation mean analysis of the 6 resistant × susceptible crosses involving the same genotypes, revealed that the genes conferring resistance in any of the 3 genotypes did not follow simple Mendelian inheritance but were influenced by inter allelic interactions. Additive gene effect along with dominance were operative in all the 3 genotypes under study in conferring resistance. However, the mechanism of resistance in GLG 84038 and GL 84099 were primarily additive in nature while that in ICC 1468, dominance as well as dominance × dominance interactions were more important than additive gene action.  相似文献   

20.
A series of half-diallel crosses involving early, medium and late maturity desi and kabuli type chickpea (Cicer arietinum L.) genotypes with stable resistance to Helicoverpa pod borer, along with the parents, were evaluated at two locations in India to understand the inheritance of pod borer resistance and grain yield. Inheritance of resistance to pod borer and grain yield was different in desi and kabuli types. In desi type chickpea, the additive component of genetic variance was important in early maturity and dominance component was predominant in medium maturity group, while in the late maturity group, additive as well as dominance components were equally important in the inheritance of pod borer resistance. Both dominant and recessive genes conferring pod borer resistance seemed equally frequent in the desi type parental lines of medium maturity group. However, dominant genes were in overall excess in the parents of early and late maturity groups. In the kabuli medium maturity group, parents appeared to be genetically similar, possibly due to dispersion of genes conferring pod borer resistance and susceptibility, while their F1s were significantly different for pod borer damage. The association of genes conferring pod borer resistance and susceptibility in the parents could be attributed to the similarity of parents as well as their F1s for pod borer damage in kabuli early and late maturity groups. Grain yield was predominantly under the control of dominant gene action irrespective of the maturity groups in desi chickpea. In all the maturity groups, dominant and recessive genes were in equal frequency among the desi parental lines. Dominant genes, which tend to increase or decrease grain yield are more or less present in equal frequency in parents of the early maturity group, while in medium and late maturity groups, they were comparatively in unequal frequency in desi type. Unlike in desi chickpea, differential patterns of genetic components were observed in kabuli chickpea. While the dominant genetic component was important in early and late maturity group, additive gene action was involved in the inheritance of grain yield in medium duration group in kabuli chickpea. The dominant and recessive genes controlling grain yield are asymmetrically distributed in early and medium maturity groups in kabuli chickpea. The implications of the inheritance pattern of pod borer resistance and grain yield are discussed in the context of strategies to enhance pod borer resistance and grain yield in desi and kabuli chickpea cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号