首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure-concentration–foliar uptake enhancement relationships between commercial polyoxyethylene primary aliphatic alcohol (A), nonylphenol (NP), primary aliphatic amine (AM) surfactants and the herbicide glyphosatemono(isopropylammonium) were studied in experiments with wheat (Triticum aestivum L.) and field bean (Vicia faba L.) plants growing under controlled-environment conditions. Candidate surfactants had mean molar ethylene oxide (EO) contents ranging from 5 to 20 and were added at concentrations varying from 0·2 to 10 g litre?-1 to [14C]glyphosate formulations in acetone–water. Rates and total amounts of herbicide uptake from c. 0·2–μl droplet applications of formulations to leaves were influenced by surfactant EO content, surfactant hydrophobe composition, surfactant concentration, glyphosate concentration and plant species, in a complex manner. Surfactant effects were most pronounced at 0·5 g acid equivalent (a.e.) glyphosate litre?-1 where, for both target species, surfactants of high EO content (15–20) were most effective at enhancing herbicide uptake: surfactants of lower EO content (5–10) frequently reduced, or failed to improve, glyphosate absorption. Whereas, at optimal EO content, AM surfactants caused greatest uptake enhancement on wheat, A surfactants gave the best overall performance on field bean; NP surfactants were generally the least efficient class of adjuvants on both species. Threshold concentrations of surfactants needed to increase glyphosate uptake were much higher in field bean than wheat (c. 2 g litre?-1 and < 1 g litre?-1, respectively); less herbicide was taken up by both species at high AM surfactant concentrations. At 5 and 10 g a.e. glyphosate litre?-1, there were substantial increases in herbicide absorption and surfactant addition could cause effects on uptake that were different from those observed at lower herbicide doses. In particular, the influence of EO content on glyphosate uptake was now much less marked in both species, especially with AM surfactants. The fundamental importance of glyphosate concentration for its uptake was further emphasised by experiments using formulations with constant a.i./surfactant weight ratios. Any increased foliar penetration resulting from inclusion of surfactants in 0·5 g litre?-1 [14C]glyphosate formulations gave concomitant increases in the amounts of radiolabel that were translocated away from the site of application. At these low herbicide doses, translocation of absorbed [14C]glyphosate in wheat was c. twice that in field bean; surfactant addition to the formulation did not increase the proportion transported in wheat but substantially enhanced it in field bean.  相似文献   

2.
The effect of non-ionic nonylphenol (NP) surfactants containing 4–14 ethylene oxide (EO) molecules on the distribution of asulam and diflufenican was investigated in Pteridium aquilinum L. Kuhn and Avena fatua L. The distribution of the herbicides was dependent on the EO content and concentration of surfactant and differed between plant species and herbicide. The surface properties of contact angle, droplet diameter and surface tension were examined. For solutions of asulam, the greatest reductions in contact angle, surface tension and greatest droplet diameter were obtained with surfactants of EO 6.5–10 (at 0.001–0.1%). For solutions of diflufenican, these responses were greatest when applied with surfactant of EO 4. Surfactants of EO 6.5–10 increased the uptake and translocation of [14C]asulam in P. aquilinum, particularly at surfactant concentrations of 0.01 % and 0.1 %. All surfactants increased uptake of [14C]asulam in A. fatua with no significant effects of surfactant EO number or concentration. For both species, there was a positive correlation between the optimum surface characteristics of the herbicide droplets and the uptake of asulam. With diflufenican, greatest uptake and translocation by mature frond tissue of P. aquilinum occurred at the highest concentration of surfactant EO 4; in A. fatua, however, uptake and translocation were not significantly affected by any of the surfactants.  相似文献   

3.
Investigations were conducted to elucidate the mechanism of selectivity of the auxin herbicide, quinmerac, in cleavers (Galium aparine) and the tolerant crops sugarbeet (Beta vulgaris), oilseed rape (Brassica napus) and wheat (Triticum aestivum). After root treatment with the herbicide, the selectivity has been quantified as approximately 400-fold between oilseed rape and Galium and 1000-fold between sugarbeet or wheat and the weed species. When 1 and 10 μM [14C]quinmerac were applied for 4 h, no significant differences between root absorption and translocation of 14C by Galium and the crop species were found. After 16 h, metabolism of [14C]quinmerac to the biologically inactive hydroxymethyl and dicarboxylic acid derivatives was more rapid in wheat and sugarbeet than in Galium. In oilseed rape, a lower rate of herbicide metabolism was observed. In Galium, accumulations of abscisic acid (ABA), triggered by quinmerac-stimulated ethylene biosynthesis, were found to cause the herbicidal growth inhibition which develops during 24 h of application. Within 1 h of treatment, quinmerac stimulated 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity and ACC concentration specifically in Galium shoot tissue. During the next 4 h, ACC synthase activity was increased up to 50-fold, relative to the control. Within 3 h of exposure to quinmerac, increased ethylene formation followed by higher ABA levels was detected. In sugarbeet, oilseed rape and wheat, quinmerac did not stimulate ACC synthase activity and ACC and ABA levels. It is suggested that (i) the selectivity of quinmerac is primarily based upon the lower sensitivity to the herbicide of the tissue/target in the crop species, (ii) the induction process of the ACC synthase activity in the shoot tissue is the primary target of herbicidal interference. In wheat and sugarbeet, tolerance to quinmerac is additionally increased by a more rapid metabolism. © 1998 SCI.  相似文献   

4.
Cinidon-ethyl (BAS 615H) is a new herbicide of isoindoldione structure which selectively controls a wide spectrum of broadleaf weeds in cereals. The uptake, translocation, metabolism and mode of action of cinidon-ethyl were investigated in Galium aparine L, Solanum nigrum L and the tolerant crop species wheat (Triticum aestivum L). When plants at the second-leaf stage were foliarly treated with cinidon-ethyl equivalent to a field rate of 50 g ha−1 for 48 h, the light requirement for phytotoxicity and the symptoms of plant damage in the weed species, including rapid chlorophyll bleaching, desiccation and necrosis of the green tissues, were identical to those of inhibitors of porphyrin synthesis, such as acifluorfen-methyl. The selectivity of cinidon-ethyl between wheat and the weed species has been quantified as approximately 500-fold. Cinidon-ethyl strongly inhibited protoporphyrinogen oxidase (Protox) activity in vitro, with I50 values of approximately 1 nM for the enzyme isolated from the weed species and from wheat. However, subsequent effects of herbicide action, with accumulation of protoporphyrin IX, light-dependent formation of 1-aminocyclopropane-1-carboxylic acid-derived ethylene, ethane evolution and desiccation of the green tissue, were induced by cinidon-ethyl only in the weed species. After foliar application of [14C] cinidon-ethyl, the herbicide, due to its lipophilic nature, was rapidly adsorbed by the epicuticular wax layer of the leaf surface before it penetrated into the leaf tissue more slowly. No significant differences between foliar and root absorption and translocation of the herbicide by S nigrum, G aparine and wheat were found. After foliar or root application of [14C]- cinidon-ethyl, translocation of 14C into untreated plant parts was minimal, as demonstrated by combustion analysis and autoradiography. Metabolism of [14C]cinidon-ethyl via its E-isomer and acid to further metabolites was more rapid in wheat than in S nigrum and G aparine. After 32 h of foliar treatment with 50 g ha−1 of the [14C]-herbicide, approximately 47%, 36%, and 12% of the absorbed radioactivity, respectively, were found as unchanged parent or its biologically low active E-isomer and acid in the leaf tissue of G aparine, S nigrum and wheat. In conclusion, cinidon-ethyl is a Protox-inhibiting, peroxidizing herbicide which is effective through contact action in the green tissue of sensitive weed species. It is suggested that a more rapid metabolism, coupled with moderate leaf absorption, contribute to the tolerance of wheat to cinidon-ethyl. © 1999 Society of Chemical Industry  相似文献   

5.
Conifer species, which have formed the foundation of commercial forestry industry in many countries, are known to be invasive in natural ecosystems, especially in the Southern Hemisphere. Controlling isolated invasive conifers before they reach reproductive maturity is an essential element of any strategy that aims to reduce spread rate of these species. Using a novel helicopter‐mounted spot‐application gun, which delivers a precise dosage to the crown of each tree, the objective of this research was to test the efficacy of three triclopyr‐based treatments against the four most vigorous wilding conifer species (Pinus contorta, Pinus nigra, Pinus sylvestris and Pseudotsuga menziesii) under New Zealand field conditions. Herbicides tested were triclopyr at two different rates and a combination of triclopyr and picloram. Treated trees covered a wide range of heights (c. 0.5–16 m), and measurements of mortality taken two years post‐herbicide application were used to examine variation in efficacy of the herbicides. Successful treatment was defined by a mortality rate of 85% or higher. A logistic regression model was fitted to the mortality data and used to derive threshold tree heights at which 85% mortality occurred, H85. For all four species, the most effective treatment was application of 1000 ml of herbicide mixture per tree that contained 120 and 20 g, respectively, of the active ingredients triclopyr and picloram. There was a significant decline in efficacy of this treatment with increases in tree size for all four species. Values of H85 for this treatment were 7.4 m for P. nigra, 8.3 m for P. menziesii, 9.7 m for P. contorta and >10 m for P. sylvestris. The methods developed here could be used to effectively manage emerging conifer infestations before they become problematic.  相似文献   

6.
Conyza bonariensis is a major weed infesting zero‐tilled cropping systems in subtropical Australia, particularly in wheat and winter fallows. Uncontrolled C. bonariensis survives to become a problem weed in the following crops or fallows. As no herbicide has been registered for C. bonariensis in wheat, the effectiveness of 11 herbicides, currently registered for other broad‐leaved weeds in wheat, was evaluated in two pot and two field experiments. As previous research showed that the age of C. bonariensis, and to a lesser extent, the soil moisture at spraying affected herbicide efficacy, these factors also were investigated. The efficacy of the majority of herbicide treatments was reduced when large rosettes (5–15 cm diameter) were treated, compared with small rosettes (<5 cm diameter). However, for the majority of herbicide treatments, the soil moisture did not affect the herbicide efficacy in the pot experiments. In the field, a delay in herbicide treatment of 2 weeks reduced the herbicide efficacy consistently across herbicide treatments, which was related to weed age but not to soil moisture differences. Across all the experiments, four herbicides controlled C. bonariensis in wheat consistently (83–100%): 2,4‐D; aminopyralid + fluroxypyr; picloram + MCPA + metsulfuron; and picloram + high rates of 2,4‐D. Thus, this problem weed can be effectively and consistently controlled in wheat, particularly when small rosettes are treated, and therefore C. bonariensis will have a less adverse impact on the following fallow or crop.  相似文献   

7.
Post-emergence application of carfentrazone-ethyl at rates as low as 2·2 g ha-1 caused greater leaf injury and growth reduction in ivyleaf morningglory (Ipomoea hederacea) and velvetleaf (Abutilon theophrasti) than in soybean (Glycine max). The herbicide was more rapidly metabolized in the crop than in the weed species, with 26·7, 54·3 and 60·6% of the parent compound remaining in soybean, ivyleaf morningglory and velvetleaf, respectively, 24 h after exposure. The free acid metabolite, carfentrazone, was present in all species and accounted for 21·2–27·4% of the total radioactivity. Unknown metabolites (Rf 0 and 0·22) were four to five times more abundant in soybean than in the weed species. Carfentrazone-ethyl induced more leakage from leaf discs from the weeds than those from soybean and the degree of injury correlated with the amount of protoporphyrin IX (Proto IX) present in the treated tissues. Both carfentrazone-ethyl and carfentrazone were potent inhibitors of protoporphyrinogen oxidase (Protox). Therefore, the selectivity of this herbicide may, at least in part, be attributed to the lower accumulation of Proto IX in soybean than in the weeds, probably because of the ability of soybean to metabolize more carfentrazone into unknown metabolites than the weeds. © 1997 SCI.  相似文献   

8.
The possibilities are demonstrated of increasing the activity of foliar applied growth regulator herbicides by mixing them with chemicals which injure the cuticle or epidermis. S, S, S-Tributyl phosphorotrithioate (“DEF”) increases the effects of picloram, 2,4,5-T and mecoprop salts on four woody species, privet (Ligustrum ovalifolium Hassk.), poplar (× Populus gelrica Ait.), bluegum (Eucalyptus globulus Labill.) and guava (Psidium guajava L.). Mixtures with esters of the herbicides are not synergistic and often antagonistic. DEF, tributyl phosphorotrithioite, a number of alkyl and aryl phosphates and phosphites and potassium ethyl xanthate enhance the phytotoxicity of picloram solution on dwarf bean (Phaseolus vulgaris L.). Mixtures of picloram with tributyl phosphorotrithioite, tributyl phosphate, mixed acid butyl phosphates, trimethyl phosphate and mixed isomers of tritolyl phosphate are synergistic when applied to guava foliage. Tributyl phosphate and mixed acid butyl phosphates interact similarly with picloram on privet and tributyl phosphate increases the effects of foliar applied mecoprop salt on guava. The mode of action of the additives is not fully understood but there is evidence that DEF facilitates the entry of water soluble growth regulator herbicides into leaves and has little effect on the rate at which the herbicides move through the plant. Tributyl phosphate and mixed acid butyl phosphates are suggested for practical use in herbicide formulations to control woody plants, as they are relatively cheap and non-toxic.  相似文献   

9.
10.
The uptake of 2,4,5-T by spines of gorse (Ulex europaeus L.) was limited and not enhanced when picloram was added to the application solution. Translocation of 2,4,5-T in 6-month-old cuttings after treatment of a single spine or lateral branch was poor. The most significant accumulation of translocated herbicide occurred in stem tissue, with lesser amounts detected in root tissues, root nodules, stem apices and flowers. Untreated lateral branches or spines accumulated minimal amounts of herbicide. The pattern and extent of distribution of 2,4,5-T was not increased by addition of picloram. The lack of efficient control of gorse by 2,4,5-T can largely be attributed to its inadequate uptake and lack of true systemic translocation.  相似文献   

11.
Experiments were conducted in a growth cabinet to investigate the absorption and translocation of 14C-3, 6-dichloropicolinic acid by Cirsium arvense (L.) Scop. (Canada thistle, creeping thistle), a sensitive species. Applications were made, either to the middle four leaves of 12-cm-tall vegetative plants grown under low (40%) and/or high (>95%) relative humidity (r.h.), or to four upper or lower leaves of 30-cm-tall flowering plants grown under low r.h. Following application to vegetative plants, absorption and translocation of 14C-3,6-dichloropicolinic acid was rapid and was approximately doubled by high r.h. High r.h. increased the amount of radioactivity retained by the treated leaves or translocated to the shoots but did not affect greatly the amount retained in the roots. The herbicide was highly mobile, with over half of that absorbed, translocated out of the treated leaves after two days. The apex accumulated most of the radioactivity, while approximately 8% was recovered from the roots. The absorption and translocation patterns were similar to those reported in the literature for picloram in C. arvense. Absorption of 3,6-dichloropicolinic acid was greater in vegetative than in flowering C. arvense plants, and placement of herbicide on lower leaves tended to decrease the amount of radioactivity recovered from shoot apex and increase the amount recovered from the roots. Approximately 15% of the applied radioactivity could not be recovered from treated plants by 2 days after treatment.  相似文献   

12.
Timely detection of herbicide resistance at an early stage of crop cultivation is essential to help farmers find alternative solutions to manage herbicide resistance in their fields. In this study, maximum quantum yield of PS II [Fv/Fm = (FmFo)/Fm] was measured at the 4–5 leaf stage to discriminate between herbicide‐resistant and susceptible biotypes of Echinochloa species. The differences in Fv/Fm between herbicide‐resistant and susceptible Echinochloa spp. were consistent with the whole‐plant assay based on I50 (herbicide doses causing a 50% inhibition of Fv/Fm) and GR50 (herbicide doses causing a 50% reduction in plant fresh weight) values and R/S ratios (herbicide resistance index), regardless of the mode of action of the tested herbicides. A PS II inhibitor caused the fastest inhibition of Fv/Fm, compared with ACCase and ALS inhibitors, after herbicide treatment. The required time for discrimination between herbicide‐resistant and susceptible Echinochloa spp. was 64 h after PS II inhibitor treatment, much shorter than those of ACCase and ALS inhibitor‐treated plants, which required 168 and 192 h respectively. The leaf chlorophyll fluorescence assay provided reliable diagnostics of herbicide resistance in Echinochloa spp. with significant time savings and convenient measurement in field conditions compared with the conventional whole‐plant assay.  相似文献   

13.
BACKGROUND: Surfactants are very often used for more efficient pesticide spraying, but knowledge about their influence on the leaching potential for pesticides is very limited. In the present study, the leaching of the herbicide bentazone [3‐isopropyl‐1H‐2, 1,3‐benzothiadiazin‐4(3H)‐one 2,2‐dioxide] was measured in columns with sandy loam soil with or without the addition of a non‐ionic surfactant, octylphenol ethylene oxide condensate (Triton X‐100, Triton), and an anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), and in the presence of both surfactants (SDBS + Triton). RESULTS: The mobility of bentazone (B) increased in the following order: B + Triton (slowest) < B + SDBS + Triton < B < B + SDBS (fastest). When Triton X‐100 was applied to the soil together with bentazone, the leaching of bentazone in the soil decreased significantly compared with leaching of bentazone without the addition of surfactant. SDBS and Triton X‐100 neutralised their influence on the leaching speed of bentazone in the soil columns when both surfactants were applied with bentazone. CONCLUSION: From the study it can be concluded that, depending on their properties, surfactants can enhance or reduce the mobility of bentazone. By choosing a non‐ionic surfactant, bentazone mobility can be reduced, giving time for degradation and thereby reducing the risk of groundwater pollution. Copyright © 2009 Society of Chemical Industry  相似文献   

14.
Glasshouse experiments were conducted to evaluate whether herbicide application rates could be reliably reduced without compromising the efficacy of the herbicide. The seedling, and vegetative and preflowering plants of nodding thistle ( Carduus nutans ) and hairy buttercup ( Ranunculus sardous ) were treated with different rates of glyphosate or a mixture of picloram and triclopyr. Half of the plants were well-watered at all times while the other half was moisture-stressed for 1 week before the herbicide treatments were applied. Hairy buttercup was more susceptible to glyphosate than nodding thistle, while both were equally susceptible to the picloram/triclopyr mixture. Moisture stress significantly reduced the efficacy of both herbicide treatments, regardless of the plant development stage or the herbicide rate applied.  相似文献   

15.
In order to clarify the action mechanism of fluazifop-butyl, an aryloxyphenoxypropionate (AOPP) herbicide in bristly starbur (Acanthospermum hispidum DC.), a unique fluazifop-butyl-susceptible broad-leaved weed, ethylene evolution and membrane lipid peroxidation in the plant seedlings were investigated. Foliar application of fluazifop-P-butyl induced ethylene evolution only from bristly starbur, but not from oat (Avena sativa L.), another fluazifop-butyl-susceptible species, and two tolerant species, pea (Pisum sativum L.) and hairy beggarticks (Bidens pilosa L.). The other AOPP herbicides, quizalofop-ethyl and fenoxaprop-ethyl, and a cyclohexanedione (CHD) herbicide, sethoxydim, did not enhance ethylene production from bristly starbur. This fluazifop-butyl-induced ethylene production in bristly starbur was completely suppressed by aminoethoxyvinylglycine (AVG), a 1-aminocyclopropane-1-carboxylic acid (ACC) synthase inhibitor, but not by p-chlorophenoxyisobutyric acid (PCIB), an anti-auxin compound, suggesting this evolved ethylene was not auxin-induced. Phytotoxic action by fluazifop-P-butyl (5 μM) in bristly starbur was reduced markedly by two lipid-soluble antioxidants, vitamin E, and ethoxyquin. The ethylene production from the plant was also inhibited by these two antioxidants. Content of malondialdehyde, an indicator of lipid peroxidation, increased only by fluazifop-P-butyl in bristly starbur seedlings but not in oat, and this increase was inhibited by ethoxyquin. These results strongly suggest that the primary site of action for fluazifop-butyl in bristly starbur is on the membranes and active oxygen species and/or free radicals are involved in peroxidation. Ethylene evolution is probably induced by these reactive oxygen species.  相似文献   

16.
A model system consisting of chemically isolated cuticular membranes placed on agar was used to study the penetration of various formulations of 14C-labelled clopyralid, fluroxypyr, triclopyr, picloram, and 2,4-D into and through cuticular membranes. Clopyralid, commercially formulated as the acid, or 1-decyl ester was rapidly absorbed after 12 h by isolated cuticles of Euonymus fortunei. There was less absorption of the monoethanolamine and potassium salt formulations when compared to the acid and 1-decyl ester. However, in terms of the absorbed 14C-activity that partitioned into the agar, there was no difference between the acid and salt formulations with approximately 90% being partitioned after 48 h. Conversely, the 1-decyl ester formulation of clopyralid was retained in the cuticle; less than 5% of the absorbed fraction was recovered in the agar after 48 h. When the acid forms of clopyralid, fluroxypyr, triclopyr, picloram, and 2,4-D were compared, there was little or no difference in absorption among the herbicides. However, the 14C-activity from clopyralid partitioned the most (90%) and triclopyr the least (50%) into the agar. When ester formulations of clopyralid, fluroxypyr, and triclopyr were compared, at least 95% of the 14C-activity was absorbed 24 h after application. However, of the amount absorbed, significantly more of the butoxyethyl ester of triclopyr (36%) partitioned into the agar than did the 1-decyl ester of clopyralid (6%) or the 1-methylheptyl ester of fluroxypyr (5%). Differential retention of various herbicide formulations in this model system may explain, in part, the differences in absorption and translocation among radiolabelled clopyralid formulations observed in previous research (Kloppenburg & Hall, 1990).  相似文献   

17.
Resistance to glyphosate and paraquat has evolved in some populations of Conyza spp. from California, USA. This study evaluated whether herbicide absorption and translocation were involved in the mechanism of resistance to both herbicides. Three lines of each species were used: glyphosate‐paraquat‐susceptible (GPS), glyphosate‐resistant (GR) and glyphosate‐paraquat‐resistant (GPR). Radiolabelled herbicide was applied to a fully expanded leaf, and absorption and movement out of the treated leaf were monitored for up to 24 h for paraquat and 72 h for glyphosate. Plants treated with paraquat were incubated in darkness for the first 16 h and then subjected to light conditions. More glyphosate was absorbed in C. bonariensis (52.9–58.3%) compared with C. canadensis (28.5–37.6%), but no differences in absorption were observed among lines within a species. However, in both species, the GR and GPR lines translocated less glyphosate out of the treated leaf when compared with their respective GPS lines. Paraquat absorption was similar among lines and across species (71.3–77.6%). Only a fraction of paraquat was translocated in the GPR lines (3% or less) when compared with their respective GPS or GR lines (20% or more) in both species. Taken together, these results indicate that reduced translocation is involved in the mechanism of resistance to glyphosate and paraquat in C. bonariensis and C. canadensis.  相似文献   

18.
To evaluate the effect of pre‐spraying growing conditions on herbicide efficacy, two years of experimentation were conducted in which Persicaria maculosa plants were exposed to different light intensities for 1–4 days before metribuzin treatment. Specific leaf area, rather than plant growth rate or plant size, was the only parameter that correlated well with herbicide efficacy in both years of experimentation. The negative relationship between the ED50 and the specific leaf area indicates that leaf characteristics might be an important determinant of herbicide efficacy, for instance through an effect on herbicide uptake. In the third year of experimentation this hypothesis was further investigated by raising six cohorts of weed plants at a 1‐week interval and thus exposing them to a range of weather conditions. Clear relationships between uptake and herbicide efficacy were found for a combination of four plant species (Solanum nigrum, Senecio vulgaris, Chenopodium album and Brassica napus) and two herbicides (phenmedipham and bentazone). For phenmedipham, uptake was negatively correlated with global radiation and positively correlated with relative humidity. For the herbicide bentazone the opposite was found. These results were not species‐specific. This study shows the importance of the sensitivity of herbicide × species combinations and indicates that pre‐spraying weather information is relevant for the development of reduced dose rate recommendations.  相似文献   

19.
Surfactants can improve postemergence herbicide efficacy and reduce the amount of herbicide required to obtain weed control. The effect of surfactants on the efficacy of herbicides is complicated and depends on the interaction among the plant, surfactant, and herbicide. The effects of surfactants on the efficacy of clodinafop‐propargyl and/or tribenuron‐methyl on wild oat (Avena ludoviciana) and wild mustard (Sinapis arvensis) under greenhouse conditions were investigated. In addition, the surface tension of aqueous solutions of the surfactants and surfactants + herbicides was determined. Significantly lower surface tension values were obtained with the aqueous solutions of citofrigate (Citogate plus Frigate) alone and with the herbicides used in this study. The citofrigate surfactant lead to the greatest enhancement of clodinafop‐propargyl and/or tribenuron‐methyl efficacy and the effect was species‐dependent. The efficacy of clodinafop‐propargyl and/or tribenuron‐methyl in the presence of surfactants in controlling wild oat was higher than for wild mustard. The foliar activity of the tested herbicides rose with increasing surfactant concentrations. The tank mixture of clodinafop‐propargyl and tribenuron‐methyl showed a synergistic effect in controlling wild oat and wild mustard. The synergistic effect in controlling wild mustard was greater than for wild oat.  相似文献   

20.
The phytotoxicity of glyphosate applied to the leaves of dwarf bean (Phaseolus vulgaris L.) and several woody species was enhanced by mixed butyl acid phosphates (BAP, a technical mixture of dibutyl hydrogen and butyl dihydrogen phosphates) or ammonium sulphate. Tributyl phosphate, or the mixed sodium salts of BAP, similarly increased the activity of aminotriazole. This type of effect did not occur with mixtures of this herbicide and inorganic ammonium salts or the ammonium salts of BAP. Neither phosphate esters nor ammonium salts enhanced the activity of paraquat. Ammonium BAP was more effective than sodium BAP as an activator for leaf-applied picloram or MCPA salts. While phosphate esters and ammonium salts probably have separate modes of action they have similar effects in mixture with many water-soluble herbicides and for many purposes may be regarded as alternative activators. Ammonium salts, particularly ammonium sulphate, have obvious advantages because of their cheapness and low mammalian toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号