首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In nut tree orchards in California, irrigation is typically withheld during the harvest period to reduce the likelihood of bark damage during mechanical shaking of the trees. The ensuing water stress, however, may result in premature defoliation and subsequent yield declines. Our objective was to establish and quantify the water stress resulting from irrigation deprivation and determine its impact on leaf function and persistence in mature almond trees (Prunus dulcis (Mill.) D.A. Webb cv. Nonpareil) during a 3-year field experiment. The severity of the water stress was characterized by measurements of predawn leaf (Psi(pd)) and midday stem (Psi(ms)) water potentials, stomatal conductance (gs), net CO2 assimilation rate (A) and leaf abscission. During 1995, Psi(ms) of fully irrigated (FI) trees was maintained above -1.0 MPa. In trees in the moderate- (MS) and severe-stress (SS) treatments, Psi(ms) was reduced to -1.4 to -2.0 MPa and -2.0 to -2.6 MPa, respectively. After 18 days of irrigation deprivation, A was reduced by 32 and 58% at midday and early afternoon, respectively, compared with morning values. A significant decrease in morning values of A only occurred after 30 days of irrigation deprivation. Water-use efficiency and A declined as evaporative demand increased from morning to afternoon. Assimilation also declined seasonally as leaves aged. Midday stem water potential was highly correlated with A, but less so with gs. The coefficient of determination between Psi(ms) and gs improved considerably when vapor pressure deficit and wind were multiply regressed with Psi(ms). Although A recovered rapidly when MS trees were irrigated, recovery in SS trees was slower and incomplete. Integrating the MS and SS effects for an extended period during 1995 resulted in 14 and 30% declines in A, and 6 and 20% declines in gs, respectively. The apparent Psi(ms) threshold for leaf abscission was -1.8 MPa. Daily canopy light interception declined with decreasing Psi(ms) as a result of premature defoliation (and perhaps altered leaf angles) from 67.9% in FI trees to 61.4 and 60.7% in MS and SS trees, respectively.  相似文献   

2.
A water deficit during stage III of fruit growth was established with the aim of determining if it is possible to achieve an improvement in tree water status by summer pruning and fruit thinning. The experiment was set up as a randomized block split-plot design across trials (irrigation) where pruning was assigned to the main plot and fruit thinning to the sub-plots. The irrigation treatments were (1) standard full irrigation (FI), and (2) suppression of irrigation during stage III of fruit growth until leaves visibly withered (LWI); the pruning treatments were (1) experimental summer pruning (EP), and (2) standard summer pruning (CP); and three fruit thinning intensities were applied to facilitate analysis of the effects of the treatments in relation to fruit load. Changes in amount of light intercepted and in tree stem water potential (Psi stem) were evaluated. The EP treatment reduced the amount of light intercepted by the tree. In the FI treatment, there was a significant reduction in fruit growth measured as both water accumulation and dry mass accumulation. Under FI conditions, reductions in fruit load as a result of EP were not accompanied by a significant improvement in Psi stem. In the LWI treatment, EP produced a significant improvement of 0.17 MPa in Psi stem, but there was no improvement in fruit growth compared with CP trees. A reduction in fruit load from 350 (commercial load) to 150 per tree significantly improved Psi stem by 0.3 MPa at the end of stage III of fruit growth. These results indicate that improvements in water status in response to pruning may be insufficient to promote fruit growth if the pruned trees are unable to provide an adequate supply of assimilates to the developing fruits.  相似文献   

3.
Effects of irrigation deprivation during the harvest period on yield determinants in mature almond (Prunus dulcis (Mill.) D.A. Webb cv. Nonpareil) trees were investigated during a 3-year field experiment. Return bloom and fruit set were measured on 2185 individually tagged spurs. Water stress resulting from irrigation deprivation during the harvest period, which purportedly coincides with the time of flower initiation, had no effect on the percentage of spurs that flowered or set fruit during subsequent years. Although water stress had no apparent effect on spur mortality, 66% of the tagged spurs died within 3 years. In addition, many spurs were vegetative by the third year, indicating the importance of spur renewal for sustained fruit production. Reductions in nut yield were evident after two successive years of irrigation deprivation during the harvest period. Regression analysis indicated a loss in yield of 7.7 kg tree(-1) in response to each 1 MPa decrease in stem water potential below -1.2 MPa during the previous seasons. The number of fruiting positions per tree (estimated indirectly for whole trees based on weight of current-year shoots > 5 cm in length) was negatively associated with water stress. Yield reduction in response to water stress during harvest appears to be a compound, multiyear effect, associated with reduced annual growth and renewal of fruiting positions.  相似文献   

4.
Recovery of water status in water-stressed pistachio trees (Pistacia vera L. cv. Kerman) was investigated by subjecting trees to regulated deficit irrigation (RDI) (60% of crop evapotranspiration rate, ET(c)) during stages I and II of fruit development (FD) followed by full irrigation during FD stage III (kernel-filling). Trees irrigated at 100% ET(c) throughout FD stages I, II and III served as controls. Water-stress severity was characterized by changes in soil water content and midday stem water potential (Psi(md)). Midday leaf conductance (g(1)) and trunk diameter variation (TDV) were also measured. In RDI trees, the lowest Psi(md) value, -1.8 MPa, occurred at the end of the RDI period. The corresponding value for the control trees was around -1.1 MPa. Although the RDI treatment affected gas exchange later than Psi(md), the greatest reductions in gas exchange (60% of control values) also appeared at the end of the RDI period. There were significant differences in TDV between control and RDI trees at the end of the RDI period. Although plant water status recovered within 20 days of resuming irrigation, the TDV values indicated a longer period might be necessary for complete recovery. Recovery of g(1) was faster than that of Psi(md), although differences in TDV between control and RDI trees indicated that gas exchange recovered later than Psi(md). The slow recovery of pistachio trees during FD stage III from water stress imposed during FD stages I and II suggests that irrigation should exceed 100% ET(c) during FD stage III or that more extensive irrigation should commence before the end of FD stage II.  相似文献   

5.
We studied the relief of water stress associated with fruit thinning in pear (Pyrus communis L.) trees during drought to determine what mechanisms, other than stomatal adjustment, were involved. Combinations of control irrigation (equal to crop water use less effective rainfall) and deficit irrigation (equal to 20% of control irrigation), fruit load (unthinned and thinned to 40 fruits per tree) and root pruning (pruned and unpruned) treatments were applied to pear (cv. 'Conference') trees during Stage II of fruit development. Daily patterns of midday stem water potential (Psi(stem)) and leaf conductance to water vapor (g(l)) of deficit-irrigated trees differed after fruit thinning. In response to fruit thinning, gl progressively declined with water stress until 30 days after fruit thinning and then leveled off, whereas the effects of decreased fruit load on Psi(stem) peaked 30-40 days after fruit thinning and then tended to decline. Soil water depletion was significantly correlated with fruit load during drought. Our results indicate that stomatal adjustment and the resulting soil water conservation were the factors determining the Psi(stem) response to fruit thinning. However, these factors could not explain differences in daily patterns between g(l) and Psi(stem) after fruit thinning. In all cases, effects of root pruning treatments on Psi(stem) in deficit-irrigated trees were transitory (Psi(stem) recovered from root pruning in less than 30 days), but the recovery of Psi(stem) after root pruning was faster in trees with low fruit loads. This behavior is compatible with the concept that the water balance (reflected by Psi(stem) values) was better in trees with low fruit loads compared with unthinned trees, perhaps because more carbon was available for root growth. Thus, a root growth component is hypothesized as a mechanism to explain the bimodal Psi(stem) response to fruit thinning during drought.  相似文献   

6.
ABSTRACT

Information about macro- and micro-nutrient uptake and distribution into tissues of Populus irrigated with landfill leachate helps to maximize biomass production and understand impacts of leachate chemistry on tree health. We irrigated eight Populus clones (NC 13460, NCI4O18, NC14104, NC14106, DM115, DN5, NM2, NM6) with fertilized (N, P, K) well water(control) or municipal solid waste landfill leachate weekly during 2005 and 2006 in Rhinelander, Wisconsin, USA. During Aug. 2006, we tested for differences in total N, P, K, Ca, Mg, S, Zn, B, Mn, Fe, Cu, Al, and Pb concentration in preplanting and harvest soils; and in leaf, woody (stems?+?branches), and root tissue. Other than N, leachate did not increase the soil concentration of elements relative to preplanting levels. There was broad genotypic variation for tissue concentrations, with clone-specific uptake for most elements. Nitrogen, P, K, Ca, Mg, S, B, and Mn concentrations were greatest in leaves and least in woody tissue, while those of Fe, Cu, and Al were greatest in roots and least in leaves and woody tissue. Overall, successful uptake of nutrients without impacts to tree health validated the use of landfill leachate as an irrigation and fertilization source for Populus.  相似文献   

7.
We compared seasonal changes in maximum diurnal trunk shrinkage (MDS) with seasonal changes in midday stem water potential (Psi(s)) over three years in plum trees grown in differing drip-irrigated regimes. In well-irrigated trees, day-to-day variations in Psi(s) and MDS were related to evaporative demand. Reference equations were obtained to predict MDS and Psi(s) values for well-irrigated trees as functions of environmental conditions. A decrease in plant water status toward the end of the growing season occurred even in the well-irrigated trees, probably reflecting a reduced volume of soil wetted by the drip irrigation system. Thus, for the prediction of Psi(s), different reference equations are required for the fruit-growth and after-harvest phenological periods. A seasonal change in the relationship between MDS and Psi(s) was observed, which compensated for the decrease in plant water status such that well-irrigated trees had similar MDS values during both the fruit-growth and after-harvest periods. The influence of tree size on the relationship between MDS and Psi(s) was also investigated. For tree trunk diameters ranging between 8 and 13 cm, MDS increased 13% for each cm of increase in trunk diameter, as a result of the thicker phloem tissues of the larger trees. This finding may allow extrapolation of Psi(s) predictions based on empirical relationships with MDS to plum trees of different sizes.  相似文献   

8.
Marsal J  Girona J 《Tree physiology》1997,17(5):327-333
Effects of water deficits on leaf turgor maintenance processes were analyzed for pear trees (Pyrus communis L. cv. "Barlett") grown in 120-liter containers. Four irrigation treatments were applied: a well-watered control treatment, a spring water stress cycle (Sp), a summer water stress cycle (Su), and a spring plus summer water stress cycle (Sp + Su). For the Sp treatment, water application was progressively reduced from 100 to 20% of the control dose over a period of 27 days in spring. For the Su treatment, water application was progressively reduced over 23 days in summer, from 100 to 20% of the control dose. The Sp + Su treatment comprised both the spring and summer drought stress cycles. Pressure-volume (P-V) curves were constructed and stomatal conductances were determined for pear leaves from each treatment during the spring and summer stress cycles. Leaf water potential (Psi(pi) (0)) and relative water content (R(0)) at the turgor loss point of control leaves tended to decrease from spring to summer. Changes in leaf osmotic water potential at full turgor (Psi(pi) (100)) and in symplast water fraction (R(s)) did not explain the seasonal decrease in Psi(pi) (0). The water stress treatments had no effect on Psi(pi) (100), but R(s) was reduced by the water stress treatments, particularly during the summer stress cycle of the Su and Sp + Su treatments. The decrease in R(s) was correlated with an increase in the slope of the linear region of the P-V curve. Such a coupled adjustment would lead to increased water uptake capacity of water-stressed trees only under non-turgor conditions. Furthermore, pear leaves did not actively accumulate solutes. We conclude, therefore, that changes in leaf tissue water relations as a result of leaf acclimation to water stress are unlikely to facilitate maintenance of fruit productivity under drought.  相似文献   

9.
We investigated seasonal patterns of water relations in current-year leaves of three evergreen broad-leaved trees (Ilex pedunculosa Miq., Ligustrum japonicum Thunb., and Eurya japonica Thunb.) with delayed greening in a warm-temperate forest in Japan. We used the pressure-volume method to: (1) assess the extent to which seasonal variation in leaf water relations is attributable to leaf development processes in delayed greening leaves versus seasonal variation in environmental variables; and (2) investigate variation in leaf water relations during the transition from the sapling to the adult tree stage. Leaf mass per unit leaf area was generally lowest just after completion of leaf expansion in May (late spring), and increased gradually throughout the year. Osmotic potential at full turgor (Psi(o) (ft)) and leaf water potential at the turgor loss point (Psi(w) (tlp)) were highest in May, and lowest in midwinter in all species. In response to decreasing air temperature, Psi(o) (ft) dropped at the rate of 0.037 MPa degrees C(-1). Dry-mass-based water content of leaves and the symplastic water fraction of total leaf water content gradually decreased throughout the year in all species. These results indicate that reductions in the symplastic water fraction during leaf development contributed to the passive concentration of solutes in cells and the resulting drop in winter Psi(o) (ft). The ratio of solutes to water volume increased in winter in current-year leaves of L. japonicum and E. japonica, indicating that osmotic adjustment (active accumulation of solutes) also contributed to the drop in winter in Psi(o) (ft). Bulk modulus of elasticity in cell walls fluctuated seasonally, but no general trend was found across species. Over the growing season, Psi(o) (ft) and Psi(w) (tlp) were lower in adult trees than in saplings especially in the case of I. pedunculosa, suggesting that adult-tree leaves are more drought and cold tolerant than sapling leaves. The ontogenetic increase in the stress resistance of I. pedunculosa may be related to its characteristic life form because I. pedunculosa grows taller than the other species studied.  相似文献   

10.
We analyzed annual carbohydrate storage and mobilization of bearing ("on") and non-bearing ("off") 'Kerman' pistachio (Pistacia vera L.) trees growing on three different rootstocks. On all rootstocks, carbohydrate storage in shoots and branches of "on" and "off" trees was lowest following the spring growth flush. In "off" trees, stored carbohydrates increased and remained high after the initial growth flush. In "on" trees, stem carbohydrates increased temporarily in early summer, but were mobilized in mid-season during kernel fill, and then increased again after nut harvest. During the dormant season, the only substantial differences in carbohydrate storage between previously "on" and "off" trees were found in the roots of the weakest rootstock. The annual carbohydrate storage and mobilization pattern in canopy branches of heavily cropped pistachio trees appeared to be driven by carbohydrate demands related to nut development and untempered by tree vigor. Mobilization of carbohydrates from current-season and 1- and 2-year-old stem wood of "on" trees during the primary period of kernel fill corresponded with the period of inflorescence bud abscission. Thus, the alternate bearing pattern associated with inflorescence bud abscission in 'Kerman' pistachio may be a function of mid-season mobilization of stored carbohydrates in current-season stems resulting in stimulation of inflorescence bud abscission.  相似文献   

11.
Rufat J  DeJong TM 《Tree physiology》2001,21(15):1133-1140
The PEACH computer simulation model of reproductive and vegetative growth of peach trees (Grossman and DeJong 1994) was adapted to estimate seasonal nitrogen (N) dynamics in organs of mature peach (Prunus persica (L.) Batsch cv. O'Henry) trees grown with high and low soil N availability. Seasonal N accumulation patterns of fruits, leaves, stems, branches, trunk and roots of mature, cropping peach trees were modeled by combining model predictions of organ dry mass accumulation from the PEACH model with measured seasonal organ N concentrations of trees that had been fertilized with either zero or 200 kg N ha(-1) in April. The results provided a comparison of the N use of perennial and annual organs during the growing season for trees growing under both low and high N availability. Nitrogen fertilization increased tree N content by increasing organ dry masses and N concentrations during the fruit growing season. Dry mass of current-year vegetative growth was most affected by N fertilization. Whole-tree N content of fertilized trees was almost twice that of non-fertilized trees. Although N use was higher in fertilized trees, calculated seasonal N accumulation patterns were similar for trees in both treatments. Annual organs exhibited greater responses to N fertilization than perennial organs. Estimated mean daily N use per tree remained nearly constant from 40 days after anthesis to harvest. The calculations indicated that fertilized trees accumulated about 1 g N tree(-1) day(-1), twice that accumulated by non-fertilized trees. Daily N use by the fertilized orchard was calculated to be approximately 1 kg N ha(-1), whereas it was approximately 0.5 kg N ha(-1) for the non-fertilized trees. During the first 25-30 days of the growing season, all N use by growing tissues was apparently supplied by storage organs. Nitrogen release from storage organs for current growth continued until about 75 days after anthesis in both N treatments.  相似文献   

12.
The detection of stem water content is necessary as it is an important indicator for measuring woody plant vitality. However, the relationship between stem water content, determined by non-destructive, real-time, and long-term monitoring, and woody plant vitality remains undefined. In this study, the response of woody plant vitality to stem water content under different stress (freeze–thaw, pest, or drought) was analysed by mining the dynamic characteristics of the stem water content in different woody plants at the temporal scales of year, month, and day. Compared with unstressed trees, stressed trees had contrasting diurnal patterns. The stem water content in Populus koreana Rehd. during the freeze period was much lower than that during the thaw period, and opposite diurnal variation trends were observed during the freeze and thaw periods. The stem water content in infected Lagerstroemia indica was lower than that in uninfected L. indica, and the amplitude of the diurnal variation curve was lower in infected than in uninfected L. indica. Under drought stress, the more severe the water shortage, the lower the stem water content in Malus micromalus. When it was below a certain threshold, the diurnal variation trend was opposite to that without water shortage. In conclusion, stem water content dynamics can be used to evaluate the cold, pest, and drought response of trees, which could monitor tree health and guide forest assessment.  相似文献   

13.
We compared leaf gas exchange and water potential among the dominant tree species and major size classes of trees in an upland, pine-oak forest in northern Arizona. The study included old-growth Gambel oak (Quercus gambelii Nutt.), and sapling, pole, and old-growth ponderosa pines (Pinus ponderosa var. scopulorum Dougl. ex Laws.). Old-growth oak had higher predawn leaf water potential (Psi(leaf)) than old-growth pine, indicating greater avoidance of soil water stress by oak. Old-growth oak had higher stomatal conductance (G(w)), net photosynthetic rate (P(n)), and leaf nitrogen concentration, and lower daytime Psi(leaf) than old-growth pine. Stomatal closure started at a daytime Psi(leaf) of about -1.9 MPa for pine, whereas old-growth oak showed no obvious reduction in G(w) at Psi(leaf) values greater than -2.5 MPa. In ponderosa pine, P(n) and G(w) were highly sensitive to seasonal and diurnal variations in vapor pressure deficit (VPD), with similar sensitivity for sapling, pole, and old-growth trees. In contrast, P(n) and G(w) were less sensitive to VPD in Gambel oak than in ponderosa pine, suggesting greater tolerance of oak to atmospheric water stress. Compared with sapling pine, old-growth pine had lower morning and afternoon P(n) and G(w), predawn Psi(leaf), daytime Psi(leaf), and soil-to-leaf hydraulic conductance (K(l)), and higher foliar nitrogen concentration. Pole pine values were intermediate between sapling and old-growth pine values for morning G(w) and daytime Psi(leaf), similar to sapling pine for predawn Psi(leaf), and similar to old-growth pine for morning and afternoon P(n), afternoon G(w), K(l), and foliar nitrogen concentration. For the pines, low predawn Psi(leaf), daytime Psi(leaf), and K(l) were associated with low P(n) and G(w). Our data suggest that hydraulic limitations are important in reducing P(n) in old-growth ponderosa pine in northern Arizona, and indicate greater avoidance of soil water stress and greater tolerance of atmospheric water stress by old-growth Gambel oak than by old-growth ponderosa pine.  相似文献   

14.
One-year-old peach trees (Prunus persica (L.) Batsch) were severely pruned in July by removing 60% of the shoots. Tree responses were analyzed in terms of architecture and nutritional status. Tree growth was recorded from July to September by nondestructive (leaf production, thickening and branching of the remaining secondary axes) and destructive measurements (biomass partitioning and concentrations of total nitrogen (N) and nonstructural carbohydrates (NC) in specific tissues). The dry weights of pruned trees were lower than those of control trees at the end of the growing season (i.e., 2.5 months after pruning), whereas shoot:root ratios were restored to the initial values. Tree response occurred in two stages. During the first 24 days following pruning, the growth components of the remaining secondary axes were similar to the control, and new secondary axes were produced. During the next 17 days, increases in both diameter and branching of secondary axes contributed to the maintenance of pruned tree growth rate (similar to that of control trees) and restoration of initial shoot:root ratios. No significant effect of pruning was observed on NC concentrations, whereas N concentrations increased in several organs of the pruned trees during the first growth period. The transient increase in internal N availability contributed to the initiation of new axes and the restoration of a more functional biomass partitioning between shoots and roots.  相似文献   

15.
Tropical tree fodder is harvested by frequent prunings, and resprouting depends on nonstructural carbohydrate reserves in the remaining tree parts. We studied the effects of three pruning intensities (removal of all leaves and branches leaving 1 m of stem once a year (T-12), or every 6 months (T-6), and about 50% pruning every 2 months (P-2)) on regrowth and the dynamics of soluble sugars and starch in the legume tree Gliricidia sepium (Jacq.) Walp. growing under humid tropical conditions in Guadeloupe, Lesser Antilles. Carbohydrates were sampled in roots, stems and branches. Among pruned trees, trees in the T-6 harvest regime had the highest leaf fodder yield (0.73 kg tree(-1) year(-1)). High litter loss reduced leaf yield of T-12 trees, but compared with the other treatments, T-12 trees produced the most branch biomass (3.43 kg tree(-1)). Among treatments, P-2 trees had an intermediate leaf fodder yield and the lowest branch production. Sucrose, glucose and fructose were the most common sugars in all biomass compartments. Mannose, pinitol and an unidentified cyclitol were relatively abundant in branches. Root sugar and starch concentrations were unaffected by harvest regime. There was a significant interactive effect of harvest intensity and regrowth time on stem sugar concentration. Stem starch concentration was highest in T-12 trees. After a year of fodder harvesting, whole-tree reserves of nonstructural carbohydrates were highest in T-12 trees; however, a larger proportion of reserves were located in roots and stems of T-6 and P-2 trees. These reserves, which were not lost in pruning and contributed to regrowth of G. sepium after pruning, may explain the relatively small effects of harvesting regime on soluble sugar and starch concentrations.  相似文献   

16.
Myers BJ 《Tree physiology》1988,4(4):315-323
Water stress integral (S(Psi)), the cumulative integral of pre-dawn leaf water potential over any chosen period of time, was estimated from measurements of pre-dawn water potential made every two weeks in a Pinus radiata D. Don plantation near Canberra, Australia. Also measured were final length of current-season needles and annual stem basal area increment. Data were gathered over a 4-year period from a control plot, a fertilized plot, an irrigated plot, and two plots that were both fertilized and irrigated. Among years and treatments, annual basal area increment varied over a threefold range. Of this variation, 91% was accounted for by variation in S(Psi) for the entire year, during every month of which stem diameter growth occurred. Of variation in annual needle elongation, 90% was accounted for by variation in S(Psi) from late August to late February, which was the period of needle growth. In dry years, the annual value of S(Psi) in non-irrigated plots was mainly determined by soil water content, but in wet years in non-irrigated plots, and in all years in irrigated plots, it was closely correlated with tree nutrient status (r(2) = 0.81).  相似文献   

17.
Soil microorganisms, such as plant growth-promoting rhizobacteria (PGPR), play crucial roles in plant growth, but their influence on plant water relations remains poorly explored. We studied the effects of native soil microorganisms and inoculation with the PGPR strain Aur6 of Pseudomonas fluorescens on water stress responses of seedlings of the drought-avoiding Pinus halepensis Mill. and the drought-tolerant Quercus coccifera L. Plant growth, nutrient concentrations and physiology (maximum photochemical efficiency of photosystem II (PSII; F(v)/F(m)), electron transport rate (ETR), stomatal conductance (g(s)) and predawn shoot water potential (Psi(PD))) were measured in well-watered plants, and in plants under moderate or severe water stress. Inoculation with PGPR and native soil microorganisms improved tree growth, and their interactions had either additive or synergistic effects. Both F(v)/F(m) and ETR were significantly affected by PGPR and native soil microorganisms. Marked differences in g(s) and Psi(PD) were found between species, confirming that they differ in mechanisms of response to water stress. A complex tree species x treatment interactive response to drought was observed. In P. halepensis, F(v)/F(m) and ETR were enhanced by PGPR and native soil microorganisms under well-watered conditions, but the effects of PGPR on Psi(PD) and g(s) were negative during a period of water stress. In Q. coccifera, F(v)/F(m) and ETR were unaffected or even reduced by inoculation under well-watered conditions, whereas Psi(PD) and g(s) were increased by PGPR during a period of water stress. Our results indicate that microbial associates of roots can significantly influence the response of tree seedlings to drought, but the magnitude and sign of this effect seems to depend on the water-use strategy of the species.  相似文献   

18.
Crop load affects maximum daily trunk shrinkage of plum trees   总被引:1,自引:0,他引:1  
We studied the effects of low fruit load (3-4 fruits cm(-2) of trunk cross-sectional area (TCSA), and high fruit load (6-7 fruits cm(-2) TCSA) on maximum daily trunk shrinkage (MDS) and trunk growth rates (TGR) over two seasons in plum (Prunus salicina Lindell) trees receiving full irrigation or deficit irrigation. Seasonal changes in MDS and TGR were compared with those in midday stem water potential (Psi(s)) and leaf stomatal conductance (g (s)). Crop load increased g (s) in fully irrigated trees approaching harvest. Although crop load did not affect plant water status in either watering regime, there were considerable differences in both MDS and TGR as a function of crop load. Compared with low-cropping [corrected] trees, MDS was 34% higher and TGR was 48% lower in high-cropping [corrected] trees. The differential responses of MDS and Psi(s) to crop load were a consequence of a higher MDS for a given Psi(s) in the high-cropping trees compared with the low-cropping trees. There was a linear increase in MDS with crop load, with a slope of 15.2 microm MPa(-1) per unit increment of crop load. In the fully irrigated trees, day-to-day variations in MDS were related to evaporative demand; however, the slope of the relationship between MDS and evaporative demand increased with crop load, indicating that different reference equations must be used to adjust for tree crop load when using MDS to determine plant water status and irrigation requirements.  相似文献   

19.
Quercus douglasii Hook. & Arn. (blue oak) is a deciduous white oak that is currently failing to regenerate throughout much of its range in California, USA. Patterns of water use were observed in adult trees, saplings and seedlings to determine if ontogenetic changes in water use occur, which might be important in the establishment of this long-lived perennial species in a Mediterranean-type system. Seasonal and diurnal stomatal conductance (g(s)), late-season predawn xylem water potentials (Psi(pre)), carbon isotopic ratio (delta(13)C) and soil water status were compared among the three size classes at three sites differing in mean precipitation and soil water characteristics. Comparisons were also made between microsites with and without regeneration (defined by the presence or absence of saplings). Overall patterns of water use were consistent among the three sites, except that, at the site with the highest rainfall, Q. douglasii plants had higher g(s) and more positive Psi(pre) values. Although no differences in water use patterns were found between regeneration and non-regeneration microsites, the observed ontogenetic differences in water use may have important implications for Q. douglasii establishment. Compared with adult trees and saplings, seedlings had higher gas exchange rates during periods of high soil water content (early in the season and in the morning). Seedling g(s) was correlated with percent extractable soil water (ESW) throughout the season; adult tree and sapling g(s) was correlated with ESW between June and September. Despite experiencing greater water stress (indicated by more negative Psi(pre) values) than older trees, seedlings had more negative delta(13)C values, implying lower water-use efficiencies.  相似文献   

20.
Mixed tree cropping systems have been proposed for sustainable nutrient management in the humid tropics. Yet, the nutrient interactions between intercropped trees have not been addressed sufficiently. In the present study we compare the temporal and spatial patterns of the uptake of applied 15N by four different tree crops in a mixed tree cropping system on a Xanthic Ferralsol in central Amazônia, Brazil, during one year. Most of the N uptake occurred during the first two weeks. Very little N was recovered by peach palm (Bactris gasipaes), more by cupuassu (Theobroma grandiflorum) and annatto (Bixa orellana) and most by Brazil nut (Bertholletia excelsa). Due to tree pruning the total accumulation of applied 15N in the above-ground biomass of annatto decreased throughout the year. It remained constant in cupuassu and peach palm and increased in Brazil nut. Brazil nut showed an extensive root activity and took up more fertilizer N applied to neighboring trees than from the one applied under its own canopy in contrast to the other three tree crops. Therefore, trees with wide-spread root systems may not need to receive N fertilizer directly but can take up N applied to other trees in the mixed cropping system. This means that such trees may effectively decrease N leaching when intercropped with trees that have dormant periods or places with low N uptake, but also exert considerable resource competition.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号