共查询到20条相似文献,搜索用时 15 毫秒
1.
Seven ruminally and duodenally cannulated steers (264 +/- 8 kg BW) consuming low-quality forage (5% CP; 61% NDF; 31% ADF) were used to determine the influence of CP degradability and supplementation frequency (SF) on ruminal fermentation characteristics. Treatments included an unsupplemented control and degradable intake protein (DIP) or undegradable intake protein (UIP) provided daily, every 3 d, or every 6 d. The DIP treatments (18% UIP) were calculated to provide 100% of the DIP requirement, while the UIP treatments (60% UIP) were provided on an isonitrogenous basis compared with DIP. Ruminal NH3-N was increased on the day all supplements were provided with supplemental CP (P = 0.04) and for DIP compared with UIP (P < 0.01). Also, because ruminal NH3-N increased at a greater rate with DIP compared with UIP as SF decreased, a linear effect of SF x CP degradability interaction (P = 0.02) was observed. In addition, NH3-N was greater on the day only daily supplements were provided for supplemented treatments (P = 0.04), and decreased linearly (P < 0.01) as SF decreased. Concentration of total VFA increased linearly (P = 0.02) as SF decreased on the day all supplements were provided, whereas on the day only daily supplements were provided, total VFA were greater for UIP compared with DIP (P = 0.01), and decreased linearly (P < 0.01) as SF decreased. An interaction concerning the linear effect of SF and CP degradability (P = 0.02) was observed for ruminal liquid volume on the day all supplements were provided. This was the result of an increase in liquid volume with DIP as SF decreased compared with a minimal effect with UIP. In contrast, there was no influence of supplementation on liquid volume the day only daily supplements were provided. Ruminal liquid dilution rate was greater (P = 0.02) with CP supplementation on the day all supplements were provided. We did observe a quadratic effect of SF x CP degradability interaction (P = 0.01) for dilution rate because of a quadratic response with DIP (greatest value with the every-third-day treatment) compared with a decrease as SF decreased for UIP. On the day only daily supplements were provided, ruminal liquid dilution rate decreased linearly (P = 0.02) as SF decreased. These results suggest that DIP and UIP elicit different effects on ruminal fermentation when supplemented infrequently to ruminants consuming low-quality forage while not adversely affecting nutrient intake and digestibility. 相似文献
2.
Fifty-four crossbred steers (275 kg) were assigned randomly to one of three isoenergetic but not isonitrogenous ruminal escape protein (EP) supplements: high ruminal escape protein (HEP), low ruminal escape protein (LEP), or corn. The supplements contained corn, distillers' dried grains with solubles (DDGS), and fish meal. Supplements were fed at approximately 1.5 kg/d; the HEP and LEP supplements provided .25 and .12 kg more EP per day than corn, respectively. These supplements also supplied .20 and .10 kg more CP per day than corn. Fish meal and DDGS provided 66.7 and 33.3% of the supplemental EP, respectively. One-half of the steers in each supplement treatment were implanted once with 36 mg of zeranol. Steers grazed wheat (Triticum aestivum L.)-annual ryegrass (Lolium multiflorum Lam.) pastures for 73 d (March 1 to May 12). Daily gains (kg/d) increased linearly (P less than .07) as EP increased (HEP, 1.61; LEP, 1.54; corn, 1.47); responses were apparent only during the later periods as forage quality declined. Zeranol implants increased (P less than .02) ADG (kg/d) by 9.7% (1.58 vs 1.44). After grazing, all cattle were fed a finishing ration for 76 d. Pre-feedlot EP level produced a negative linear (P less than .04) response on feedlot ADG (kg/d) (HEP, 1.44; LEP, 1.50; corn, 1.59). Zeranol implantation during the grazing phase did not affect (P greater than .2) performance during the feedlot phase or carcass characteristics other than increased ribeye area (P less than .08). Compensatory feedlot performance negated all weight gain advantages elicited by EP supplementation during the grazing period.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
3.
The relationship between dry matter (DM) degradation and crude protein (CP) degradation in the dairy cow's rumen was determined with a view to defining the protein value of feeds for ruminants. The nylon bag technique was applied for these studies. For all the feeds investigate (green fodder and preserves from cocks-foot, ryegrass, alfalfa/grass and meadow grass, as well as alfalfa, extracted soybean meal) a significantly positive relationship was found to exist between the levels of DM and CP degradation (r = 0.73 to 1.0). The regression coefficient b1 (CP degradation as regressor) was found to average 0.87. The positive relationship between DM degradation and CP degradation implies that microbial protein amount and unfermented feed protein at the duodenum are negatively correlated. Model calculations show that, on account of the compensation between microbial protein and feed protein at the duodenum, in feeds with a CP concentration below 200 g/kg DM, the extent of ruminal protein degradation does not exert a marked influence on duodenal protein passage. The partial calculation of the duodenal protein supply on the basis of undegraded feed protein and microbial protein, as practiced in the new models of protein evaluation, leads to systematic errors unless the relationship between DM degradation and CP degradation is considered. 相似文献
4.
Kaizhen Liu Yangdong Zhang Zhongtang Yu Qingbiao Xu Nan Zheng Shengguo Zhao Guoxin Huang Jiaqi Wang 《动物营养(英文)》2021,7(1):49
Rumen microbiota has a close and intensive interaction with the ruminants. Microbiota residing in the rumen digests and ferments plant organic matters into nutrients that are subsequently utilized by the host, making ruminants a unique group of animals that can convert plant materials indigestible by humans into high-quality animal protein as meat and milk. Many studies using meta-omics technologies have demonstrated the relationships between rumen microbiome and animal phenotypes associated with nutrient metabolism. Recently, the causality and physiological mechanisms underpinning the host–microbiota interactions have attracted tremendous research interest among researchers. This review discusses the host–microbiota interactions and the factors affecting these interactions in ruminants and provides a summary of the advances in research on animal husbandry. Understanding the microbiota composition, the functions of key bacteria, and the host–microbiota interaction is crucial for the development of knowledge-based strategies to enhance animal productivity and host health. 相似文献
5.
Qiu R Croom J Ali RA Ballou AL Smith CD Ashwell CM Hassan HM Chiang CC Koci MD 《Journal of animal science》2012,90(8):2639-2651
Direct fed microbials and probiotics are used to promote health in livestock and poultry; however, their mechanism of action is still poorly understood. We previously reported that direct fed microbial supplementation in young broilers reduced ileal respiration without changing whole-body energy expenditure. The current studies were conducted to further investigate the effects of a direct fed microbial on energy metabolism in different tissues of broilers. One hundred ninety-two 1-d-old broiler chicks (16 chicks/pen) were randomly assigned to 2 dietary groups: standard control starter diet (CSD) and CSD plus direct fed microbial (DFMD; 0.3%) with 6 pens/treatment. Body weight, feed consumption, whole-body energy expenditure, organ mass, tissue respiration rates, and peripheral blood mononuclear cell (PBMC) ATP concentrations were measured to estimate changes in energy metabolism. No differences in whole body energy expenditure or BW gain were observed; however, decreased ileal O(2) respiration (P < 0.05) was measured in DFMD fed broilers. In contrast, the respiration rate of the thymus in those broilers was increased (P < 0.05). The PBMC from DFMD fed broilers had increased ATP concentrations and exhibited increased ATP turnover (P < 0.01). To determine if the increased energy consumption by PBMC corresponded with an altered immune response, broilers were immunized with sheep red blood cells (SRBC) and assayed for differences in their humoral response. The DFMD-fed broilers had a faster rate of antigen specific IgG production (P < 0.05) and an increase in total IgA (P < 0.05). Collectively, these data indicate that supplementation with the direct fed microbial used in this study resulted in energy re-partitioning to the immune system and an increase in antibody production independent of changes in whole body metabolism or growth performance. 相似文献
6.
7.
Bruno I Cappellozza David W Bohnert Maria M Reis Kendall C Swanson Stephanie J Falck Reinaldo F Cooke 《Journal of animal science》2021,99(6)
This experiment evaluated the influence of protein supplementation frequency (SF) and amount offered on intake, nutrient digestibility, and ruminal fermentation by rumen-fistulated beef steers consuming low-quality [2.9% crude protein (CP); dry matter (DM) basis], cool-season forage. Seven Angus × Hereford steers (300 ± 27 kg) fitted with ruminal cannulas were randomly assigned to 1 of 7 treatments in an incomplete 7 × 4 Latin square. Treatments, in a 2 × 3 factorial design plus a non-supplemented control (CON), consisted of 2 levels of supplemental soybean meal, 100% (F) or 50% (H) of the estimated rumen-degradable protein requirement, provided daily (D), once every 5 d (5D), or once every 10 d (10D). Experimental periods were 30 d and dry matter intake (DMI) was measured from days 19 to 28. On days 21 (all supplements provided) and 30 (only daily supplements provided; day immediately prior to supplementation for 5D and 10D treatments) ruminal fluid was collected for ruminal pH, ammonia-N (NH3), volatile fatty acids (VFA), and determination of ruminal fermentation variables. Forage and total DM, organic matter (OM), and nitrogen (N) intake increased with supplementation (P ≤ 0.04). However, a linear effect of SF × amount of supplement interaction was observed for forage and total DM, OM, and N intake (P ≤ 0.04), with each variable decreasing as SF decreased, but the decrease being greater with F vs. H. Apparent total tract DM, OM, and neutral detergent fiber digestibility was not affected by supplementation or amount of supplement provided (P ≥ 0.10). In contrast, N digestibility increased with supplementation and for F vs. H (P < 0.01). Digestibility of DM, OM, and N increased linearly as SF decreased (P ≤ 0.03). When all supplements were provided, ruminal NH3, total VFA, and molar proportions of all individual VFA increased with supplementation (P ≤ 0.04), whereas acetate:propionate ratio decreased (P < 0.01). When only daily supplements were provided, none of the aforementioned fermentation parameters were affected (P ≥ 0.09). In summary, reducing the amount of supplemental CP provided to ruminants consuming low-quality forages, when supplementation intervals are >5 d, can be a management tool to maintain acceptable levels of DMI, nutrient digestibility, and ruminal fermentation while reducing supplementation cost. 相似文献
8.
Bruno I Cappellozza David W Bohnert Maria M Reis Megan L Van Emon Christopher S Schauer Stephanie J Falck Reinaldo F Cooke 《Journal of animal science》2021,99(6)
We evaluated the influence of amount and crude protein (CP) supplementation frequency (SF) on nitrogen (N) use by wethers and the performance of late-gestation beef cows. In exp. 1, seven Western whiteface wethers (31.8 ± 1.4 kg) were used in an incomplete 7 × 4 Latin square to evaluate intake and N use. Wethers received one of the seven treatments in a 2 × 3 factorial design containing two levels of supplemental soybean meal offered at a rate of 100% (F) or 50% (H; 50% of F) of the estimated CP requirement daily, once every 5, or once every 10 d, plus a non-supplemented control (CON). Low-quality cool-season forage (4.9 % CP; dry matter [DM] basis) was provided daily for ad libitum intake. Experimental periods lasted 30 d. In exp. 2, 84 Angus × Hereford cows (560 ± 35 kg) were stratified by age, body condition score (BCS), and expected calving date and allocated to 1 of the 21 feedlot pens (three pens per treatment). Pens were randomly assigned to receive the same treatments as in exp. 1 and cows had free access to low-quality cool-season forage (2.9% CP; DM basis). Cow body weight (BW) and BCS were measured every 14 d until calving and within 24 h after calving. In exp. 1, supplementation did not alter total DM and organic matter (OM) intake (P ≥ 0.26), but both parameters linearly decreased as SF decreased (P = 0.02). Supplementation increased DM, OM, and neutral detergent fiber (NDF) digestibility (P ≤ 0.02). Additionally, F feeding linearly increased DM, OM, and NDF digestibility as SF decreased (P ≤ 0.04). Digestibility of N, N balance, and digested N retained were greater with supplementation (P < 0.01), and N digestibility linearly increased as SF decreased (P = 0.01). Mean plasma urea-N concentration was not only greater (P < 0.01) for supplemented vs. CON wethers but also greater (P = 0.03) for F vs. H. In exp. 2, pre-calving BCS change was greater (P = 0.03) for supplemented cows. A linear effect of SF × supplementation rate for pre-calving BCS change was noted (P = 0.05), as F-supplemented cows lost more BCS compared with H as SF decreased. When considering supplementation intervals greater than 5 d, reducing the quantity of supplement provided, compared with daily supplementation, may be a feasible management strategy to maintain acceptable nutrient use and animal performance while reducing supplement and labor costs. 相似文献
9.
本试验旨在研究亚急性瘤胃酸中毒(SARA)对瘤胃上皮形态结构和通透性的影响。选用体况良好、体重相近的泌乳期萨能奶山羊9只,随机分为3组(对照组、SARA组、恢复组,n=3),对照组饲喂基础饲粮[非纤维性碳水化合物与中性洗涤纤维比(NFC/NDF)=1.40],SARA组和恢复组先后饲喂NFC/NDF为1.40、1.79、2.31、3.23的4种试验饲粮诱导SARA发生,每种饲喂15 d,恢复组奶山羊待SARA诱导成功后自由采食青干草30 d。对照组奶山羊分别在饲养30、60(与SARA组3只同时)和90 d(与恢复组3只同时)各屠宰1只。采集瘤胃腹囊部上皮组织用于石蜡切片、透射电子显微镜观察及尤斯灌流系统(Ussing chamber)研究。结果表明:1)组织切片结果显示,瘤胃上皮角质层厚度SARA组显著高于对照组和恢复组(P0.05),恢复组显著低于对照组(P0.05);颗粒层厚度对照组显著高于SARA组和恢复组(P0.05),但SARA组和恢复组之间无显著差异(P0.05);棘突层厚度3组之间无显著差异(P0.05);上皮总厚度恢复组显著低于对照组和SARA组(P0.05),但对照组与SARA组之间无显著差异(P0.05)。透射电子显微镜结果显示,SARA组瘤胃上皮紧密连接被破坏,细胞间隙增大,棘状层细胞线粒体出现降解并出现空泡。2)与对照组相比,SARA组和恢复组瘤胃上皮短路电流(Isc)、组织导电性(Gt)和辣根过氧化物酶(HRP)流速显著升高(P0.05),跨膜电位差(PD)显著降低(P0.05)。综合得出,SARA破坏了奶山羊瘤胃上皮形态结构的完整性,使瘤胃上皮通透性增加,导致瘤胃上皮屏障功能长期受损。 相似文献
10.
可降解蛋白及非蛋白氮对模拟瘤胃体外发酵、营养物质降解率的影响 总被引:5,自引:0,他引:5
以11.85%和8.38%两个水平的可降解蛋白(RDP)及非蛋白氮(NRN)作为试验因子,进行2×2试验设计。应用体外短期发酵技术,研究了RDP及RDP与非蛋白氮组合对模拟瘤胃发酵及营养物质降解率的影响。结果表明:添加NPN处理组的pH、NH3-N浓度显著(P<0.05)高于未添加NPN处理组。高RDP水平pH值、NH3-N浓度、细菌N与低RDP水平的相比,高RDP处理组显著(P<0.05)高于低RDP处理组,说明日粮中RDP水平显著提高瘤胃内pH值、NH3-N浓度和细菌N的产量。同时发现,RDP与NPN互作对瘤胃发酵影响不显著。对瘤胃发酵营养物质降解率的研究发现,反刍动物日粮中添加适量的NPN,有利于优化瘤胃内环境,提高物质成分在瘤胃中的降解率。RDP水平对模拟瘤胃发酵时干物质(DM)、酸性洗涤纤维(ADF)降解没有显著影响,但显著提高了中性洗涤纤维(NDF)的降解率。 相似文献
11.
Cardiovascular adaptations to exercise and training 总被引:2,自引:0,他引:2
D L Evans 《Veterinary Clinics of North America: Equine Practice》1985,1(3):513-531
The cardiovascular system provides the link between pulmonary ventilation and oxygen usage at the cellular level. During exercise, efficient delivery of oxygen to working skeletal and cardiac muscles is vital for maintenance of ATP production by aerobic mechanisms. The equine cardiovascular response to increased demand for oxygen delivery during exercise contributes largely to the over 35-fold increases in oxygen uptake that occur during submaximal exercise. Cardiac output during exercise increases greatly owing to the relatively high heart rates that are achieved during exercise. Heart rate increases proportionately with workload until heart rates close to maximal are attained. It is remarkable that exercise heart rates six to seven times resting values are not associated with a fall in stroke volume, which is maintained by splenic contraction, increased venous return, and increased myocardial contractibility. Despite the great changes in cardiac output, increases in blood pressure during exercise are maintained within relatively smaller limits, as both pulmonary and systemic vascular resistance to blood flow is reduced. Redistribution of blood flow to the working muscles during exercise also contributes greatly to the efficient delivery of oxygen to sites of greatest need. Higher work rates and oxygen uptake at submaximal heart rates after training imply an adaptation due to training that enables more efficient oxygen delivery to working muscle. Such an adaptation could be in either blood flow or arteriovenous oxygen content difference. Cardiac output during submaximal exercise does not increase after training, but studies using high-speed treadmills and measurement of cardiac output at maximal heart rates may reveal improvements in maximal oxygen uptake due to increased stroke volumes, as occurs in humans. Improvements in hemoglobin concentrations in blood during exercise after training are recognized, but at maximal exercise, hypoxemia may reduce arterial oxygen content. More effective redistribution of cardiac output to muscles by increased capillarization and more efficient oxygen diffusion to cells may also be an important means of increasing oxygen uptake after training. 相似文献
12.
D R Hodgson 《Veterinary Clinics of North America: Equine Practice》1985,1(3):533-548
This article provides an overview of the characteristics of skeletal muscle, with an emphasis on equine skeletal muscle. A discussion of many of the adaptive processes that can occur in this tissue in response to altered states of physical activity is also included. 相似文献
13.
Schauer CS Bohnert DW Ganskopp DC Richards CJ Falck SJ 《Journal of animal science》2005,83(7):1715-1725
The objectives of this research were to determine the influence of protein supplementation frequency on cow performance, grazing time, distance traveled, maximum distance from water, cow distribution, DMI, DM digestibility, harvest efficiency, percentage of supplementation events frequented, and CV for supplement intake for cows grazing low-quality forage. One hundred twenty pregnant (60 +/- 45 d) Angus x Hereford cows (467 +/- 4 kg BW) were used in a 3 x 3 Latin square design for one 84-d period in each of three consecutive years. Cows were stratified by age, BCS, and BW and assigned randomly to one of three 810-ha pastures. Treatments included an unsupplemented control (CON) and supplementation every day (D; 0.91 kg, DM basis) or once every 6 d (6D; 5.46 kg, DM basis) with cottonseed meal (CSM; 43% CP, DM basis). Four cows from each treatment (each year) were fitted with global positioning system collars to estimate grazing time, distance traveled, maximum distance from water, cow distribution, and percentage of supplementation events frequented. Collared cows were dosed with intraruminal n-alkane controlled-release devices on d 28 for estimation of DMI, DM digestibility, and harvest efficiency. Additionally, Cr2O3 was incorporated into CSM on d 36 at 3% of DM for use as a digesta flow marker to estimate the CV for supplement intake. Cow BW and BCS change were greater (P < or = 0.03) for supplemented treatments compared with CON. No BW or BCS differences (P > or = 0.14) were noted between D and 6D. Grazing time was greater (P = 0.04) for CON compared with supplemented treatments, with no difference (P = 0.26) due to supplementation frequency. Distance traveled, maximum distance from water, cow distribution, DMI, DM digestibility, and harvest efficiency were not affected (P > or = 0.16) by protein supplementation or supplementation frequency. The percentage of supplementation events frequented and the CV for supplement intake were not affected (P > or = 0.58) by supplementation frequency. Results suggest that providing protein daily or once every 6 d to cows grazing low-quality forage increases BW and BCS gain, while decreasing grazing time. Additionally, protein supplementation and supplementation frequency may have little to no effect on cow distribution, DMI, and harvest efficiency in the northern Great Basin. 相似文献
14.
Ruminal crude protein (CP) degradability of four commercially available soybean meal (SBM) types--untoasted (U), toasted (T), heat-treated (H) and formaldehyde-treated (F)--was studied by the use of in sacco and in vivo techniques with lactating German Friesian cows cannulated in the rumen, duodenum and ileum. In two in sacco experiments three cows were fed a diet based either on grass hay plus ear-maize silage or on barley whole plant silage. Ruminal degradation rate of CP was estimated as percent nitrogen (N) disappearance from polyester bags incubated in the rumen for 2, 4, 6, 8, 12 and 24 h. Ruminal degradation rate of CP varied among the four SBM types as well as between the two basal diets. N disappearance from the bags after 12 h of incubation averaged 96, 67, 37, and 23% for the U, T, H, and F SBM types, respectively, in the cows fed the hay/ear-maize silage diet vs 99, 86, 58 and 41% for the four SBM types, respectively, in the cows fed the barley whole plant silage diet. In the in vivo experiment, four cows were fed diets based on meadow hay and ear-maize silage in a 4 x 4 Latin square design. The effect of SBM treatment on the flow rate of non-ammonia N (NAN) into the duodenum, and its relationship with the ruminal degradation rate of CP of the four SBM types, was studied. Formaldehyde treatment increased the amount of NAN entering the duodenum (P less than .05): 485 g cow-1 day-1 compared to 383, 418 and 428 g for U, T and H, respectively. Calculated ruminal CP degradabilities were 93, 75, 71 and 38% for SBM types U, T, H and F, respectively. 相似文献
15.
Eight wether lambs fitted with ruminal, duodenal, and ileal cannulas were used in a replicated 4 x 4 Latin square design to study the effects of carbohydrate and protein sources on ruminal protein metabolism and carbohydrate fermentation and intestinal amino acid (AA) absorption. Treatments were arranged as a 2 x 2 factorial. Carbohydrate sources were corn and barley; protein sources were soybean meal (SBM) and fish meal (FM). Diets contained 15.5% CP, of which 40% was supplied by SBM or FM. Corn or barley provided 39% of dietary DM that contained equal amounts of grass hay and wheat straw. Fish meal diets produced a lower (P less than .05) ruminal NH3 concentration and resulted in less CP degradation and bacterial protein flow to the duodenum than did SBM diets. Replacing SBM with FM increased (P less than .05) ruminal digestion of all fiber fractions. In addition, cellulose and hemicellulose digestibilities in the rumen tended to increase (P greater than .05) when barley replaced corn in the FM diets. Carbohydrate x protein interactions (P less than .05) were observed for OM digestion in the rumen and AA absorption in the small intestine (percentage of AA entering); these interactions were highest for the barley-FM diet. These results suggest that feeding FM with barley, which is high in both degradable carbohydrate and protein, might benefit ruminants more than feeding FM with corn, which is high in degradable carbohydrate but relatively low in degradable protein. 相似文献
16.
4头初始体重为34.5±2.0kg、插有瘤胃瘘管的萨福克阉公羊羔被用来评估瘤胃蛋白降解率和添加频率对饲喂低质饲料的羔羊瘤胃特性的影响。羔羊以成熟皇冠干草(含4.2%CP)为基础日粮,各日粮组分为4组,分别是:1)RDP-D:每天饲喂高的瘤胃降解蛋白质(RDP);2)RDP-A:每隔1d饲喂高的RDP;3)RUP-A:每隔1d饲喂非瘤胃降解蛋白质(RUP);4)MIX-A:每隔1d按照RDP:RUP=1:1的比例来饲喂。结果显示,各处理组的羔羊粗饲料的有机质(OM)、氮(N)、中性洗涤纤维(NDF)或酸性洗涤纤维(ADF)的采食量没有显著差异;混合组(MIX-A)的羔羊瘤胃有机质的消化率比其他组的要高(P〈0.001);RUP-A组羔羊的真瘤胃氮消化率较其他处理组的低(P〈0.01);混合组MIX-A瘤胃NDF和ADF的代谢较其他处理组高(P≤0.01)。当在羔羊日粮中添加RUP相对添加RDP-D可以降低其瘤胃氨气浓度,且RUP-A组的羔羊的瘤胃氨气浓度最低。各处理组的瘤胃脲酶活性差异不显著,瘤胃微生物N流量差异不显著,不过RDP-D组的羔羊的瘤胃微生物N合成效率有增加趋势(P=0.004)。隔天饲喂羔羊混合组的日粮可以改善低质粗饲料的消化率,这可能是由于内源性氮循环利用增强导致瘤胃氨气浓度有所下降。 相似文献
17.
Wickersham TA Titgemeyer EC Cochran RC Wickersham EE Moore ES 《Journal of animal science》2008,86(11):3089-3099
We evaluated the effect of frequency and amount of rumen-degradable intake protein (DIP) on urea kinetics in steers consuming prairie hay. Five ruminally and duodenally fistulated steers (366 kg of BW) were used in a 5 x 5 Latin square and provided ad libitum access to low-quality prairie hay (4.7% CP). Casein was provided daily in amounts of 61 and 183 mg of N/kg of BW (61/d and 183/d) and every third day in amounts of 61, 183, and 549 mg of N/kg of BW per supplementation event (61/3d, 183/3d, and 549/3d). Periods were 18-d long with 9 d for adaptation and 9 d for collection. Steers were in metabolism crates for total collection of urine and feces. Jugular infusion of (15)N(15)N-urea followed by determination of urinary enrichment of (15)N(15)N-urea and (14)N(15)N-urea was used to determine urea kinetics. Treatment means were separated to evaluate the effects of increasing DIP supplementation and the effects of frequency at the low (61/d vs. 183/3d) and at the high (183/d vs. 549/3d) amounts of DIP provision. Forage OM and total digestible OM intakes were linearly (P < or = 0.05) increased by increasing DIP provision but were not affected by frequency of supplementation at either the low or high amounts. Production and gut entry of urea linearly (P < or = 0.006) increased with DIP provision and tended to be greater (P < or = 0.07) for 549/3d than 183/d but were not different between 61/d and 183/3d. Microbial N flow to the duodenum was linearly (P < 0.001) increased by increasing DIP provision. Additionally, 183/d resulted in greater (P = 0.05) microbial N flow than 549/3d. Incorporation of recycled urea-N into microbial N linearly (P = 0.04) increased with increasing DIP. Microbial incorporation of recycled urea-N was greater for 549/3d than 183/d, with 42 and 23% of microbial N coming from recycled urea-N, respectively. In contrast, there was no difference due to frequency in the incorporation of recycled urea-N by ruminal microbes at the low level of supplementation (i.e., 61/d vs. 183/3d). This study demonstrates that urea recycling plays a substantial role in the N supply to the rumen and to the animal, particularly in steers supplemented infrequently with high levels of protein. 相似文献
18.
Seven cannulated (rumen and duodenal) Angus x Hereford steers (264 +/- 8 kg BW) consuming low-quality forage (5% CP; 61% NDF; 31% ADF) were used to determine the influence of CP degradability and supplementation frequency (SF) on DMI and nutrient digestion. Treatments included an unsupplemented control and degradable intake protein (DIP) or undegradable intake protein (UIP) provided daily, every 3 d, or every 6 d. The DIP treatments (18% UIP) were calculated to provide 100% of the DIP requirement, while the UIP treatments (60% UIP) were provided on an isonitrogenous basis compared with DIP. Forage DMI was not affected by treatment. Total DM and N intake, duodenal N flow, and intestinal N disappearance increased (P < 0.01) with supplementation. Dry matter intake and duodenal N flow responded quadratically (P < 0.04; greatest values on the every-third-day treatments) as SF decreased. However, no differences in N intake or intestinal N disappearance were observed because of CP degradability or SF. Duodenal bacterial N flow and true bacterial N synthesis (g bacterial N/kg of OM truly digested in the rumen) were increased (P < 0.05) with supplementation. Also, duodenal bacterial N flow was greater (P < 0.05) for DIP compared with UIP. Duodenal nonbacterial N flow was increased (P = 0.02) with CP supplementation and for UIP compared with DIP (P < 0.01). Supplemental CP increased (P < 0.01) total tract DM and N digestibility with no difference due to CP degradability or SF. Results suggest CP supplements consisting of 20 to 60% UIP can be effectively used by steers consuming low-quality forage without adversely affecting DMI, nutrient digestibility, or bacterial CP synthesis, even when provided as infrequently as once every 6 d. 相似文献
19.
20.
1. The purpose of this study was to evaluate the effects of protein source and enzyme supplementation on protein digestibility and chyme characteristics in broilers. 2. One hundred and twenty growing (13 d old) and 60 finishing (34 d old) Arbor Acre strain commercial male broilers were selected and placed into individual metabolic cages. 3. The experiment was a 5 x 2 factorial arrangement with 5 different sources of protein: casein, fish meal, soybean meal (SBM), soy protein concentrate (SPC), maize gluten meal (MGM) and two levels of protease (bromelain), 0 and 65 CDU/kg diets. 4. The diets were iso-nitrogenous and semi-purified, with Cr2O3 as an indicator for determination of ileal digestibility and chyme characteristics. 5. Apparent ileal protein digestibility (AIPD) in both growing and finishing chickens was highest on the casein diet, followed by fish meal, SBM, SPC and MGM. 6. Enzyme inclusion did not improve protein digestibility, but significantly decreased the digesta pH value in the gizzard and increased pH in the ileum in the 3-week-old broilers. 7. The digesta pH values in the gizzard and duodenum were significantly lower in the SBM and fish meal groups compared with the other protein groups. The molecular weight distribution pattern of the soluble protein in the chyme of the gastrointestinal (GI) segments showed a similar trend, regardless of the enzyme inclusion or the stage of growth. 8. The molecular weight profile of soluble protein changed dynamically in the casein fed broilers from the gizzard to ileum and the low molecular weight proteins, < 7 kDa, reached maximum levels at the ileum. The molecular weight profile of the soluble protein in the SBM and SPC changed between the jejunum and the ileum and in the intermediate molecular soluble protein weight (7 to 10 kDa) was significantly decreased. This indicated that the hydrolysis process began from the middle to the posterior end of the small intestine. 9. Similar profiles were also shown with fish meal protein. The pattern of distribution, however, did not show any prominent change in the GI segments of the MGM group. 10. The pepsin, trypsin and chymotrypsin protease activity in the gizzard and duodenum were highest in the casein group and lowest in the MGM group as compared with the other protein groups. 11. The rate change in the patterns of molecular weight distribution in soluble protein and the digestive enzyme activity provide indications of the partial digestibility of different protein sources. The exogenous enzyme, bromelain, did not show any beneficial effect on protein digestion. 相似文献