首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The diurnal rhythms of plasma glucose, cortisol, growth hormone (GH) and thyroid hormone (T4, T3) concentrations and hepatic glycogen content were measured in rainbow trout that had been entrained to a specific time of daily feeding (post-dawn, midday, pre-dusk); the purpose of the study was to investigate the significance of feeding time on hormones and metabolite patterns. Plasma GH, cortisol and T4 concentrations all showed evidence of a diurnal rhythm in some treatment groups. There was a significant interaction between the time of feeding and plasma GH and cortisol concentration rhythms; for GH, this appeared to be related to the phase-shifting of the post-prandial increases in plasma GH concentrations, and for cortisol, the rhythms were only evident in fish fed in the post-dawn period [diurnal rhythms were not evident in treatment groups fed in at midday or pre-dusk]. Peak plasma T4 concentrations were evident during the photophase in all three treatment groups; however, the time of feeding had a negligible effect on the timing of those peaks. There were no apparent diurnal rhythms of plasma T3 and glucose concentrations, hepatic glycogen content or hepatosomatic index in any of the three treatment groups. To whom correspondence should be addressed  相似文献   

2.
The acute and chronic effects of excess iodide (KI or NaI) were studied on thyroid function of rainbow trout at 11±1°C. No Wolff-Chaikoff effect, characteristic of mammals, was observed and instead plasma L-thyroxine (T4) levels increased 6 hr after a single iodide injection. Plasma 3,5,3′-triiodo-L-thyronine (T3) did not change and by 24 hr plasma T4 returned to normal. This iodide-induced elevation in plasma T4 was probably not due to toxic effects demonstrated at higher NaI or KI doses. A single iodide injection also decreased the plasma iodide distribution space, decreased the fractional rate of plasma iodide loss and completely blocked thyroidal uptake of radioiodide. Injections of iodide over a 22-day period elevated plasma iodide 200X with no mortality and no influence on plasma T4 or T3. It is concluded that: (i) apart from the transient 6h increase in plasma T4, trout thyroid function, as judged by plasma hormone levels, is insensitive to considerable iodide excess, (ii) non-invasive iodide suppression of thyroidal radioiodide recycling may be useful in kinetic studies of125I-labeled thyroid hormones, and (iii) fundamental differences in intrathyroidal iodine metabolism appear to exist between mammals and fish.  相似文献   

3.
Fasting and refeeding have considerable effects on thyroid hormone metabolism. In tilapia (Oreochromis niloticus), fasting results in lower plasma T3 and T4 concentrations when compared to the ad libitum fed animals. This is accompanied by a decrease in hepatic type II (D2) and in brain and gill type III (D3) activity. No changes in kidney type I (D1) activity are observed. Refeeding results in a rapid restoration of plasma T4 values but not of plasma T3. Plasma T3 remains low for two days of refeeding before increasing to normal levels. Liver D2 and gill D3 also do not increase until two days after refeeding. Brain D3, on the other hand, rises immediately upon refeeding. These results suggest that the change in hepatic D2 activity is one of the main factors responsible for the changes in plasma T3 observed during starvation and refeeding in tilapia. This finding supports the hypothesis that, in contrast to mammals and birds, liver D2 is the primary source of plasma T3 in fish. Although the deiodinases important for the gross regulation of plasma T3 during fasting/refeeding differ (mammals: D1 and D3, birds: D3, fish: D2), they all occur in the liver, suggesting that the organ itself may play a crucial role. In addition, the changes in brain and gill D3 suggest that these enzymes constitute a fine tuning mechanism for regulation of T3 availability at the cellular or plasma levels, respectively.  相似文献   

4.
Plasma levels of L-thyroxine (T4) and 3,5,3-triiodo-L-thyronine (T3) and the percentage of plasma T4 and T3 present in the free (dialyzable) form (%FT4 and %FT3) were measured in 16 species (11 families) of tropical marine teleosts from an inshore Barbados reef. Mean plasma T4 varied from 0.2 ng/ml to 42 ng/ml; mean plasma T3 varied from < 0.2 ng/ml to 50 ng/ml. The highest T4 and T3 levels were recorded in parrot-fish and the lowest levels in filefish. The %oFT4 and %FT3 varied from 0.05–3.41%. Estimated levels of plasma free T4 and free T3 levels ranged from 0.4–466 pg/ml. The extremely wide inter- and intra-species ranges in levels of free T4 and T3 do not support a previous suggestion, based on temperate freshwater salmonid species, that free T4 and T3 levels in fish may fall within a relatively range narrow comparable to that of homeothermic vertebrates.  相似文献   

5.
The trout thyroid secretes L-thyroxine (T4) which undergoes enzymatic deiodination in liver and other tissues. Based on mammalian studies, T4 outer-ring deiodination (ORD) or T4 inner-ring deiodination (IRD) could generate respectively 3,5,3′-triiodo-L-thyronine (T3) or 3,3′,5′-T3(rT3), while subsequent T3ORD or T3IRD could generate respectively 3,5-diiodo-L-thyronine (T2) or 3,3′-T2, and rT3ORD or rT3IRD could generate respectively 3,3′-T2 or 3′,5′-T2. In practice, T4 in trout undergoes hepatic ORD to produce T3 but negligible IRD to produce rT3, and T3 in turn undergoes negligible ORD but modest IRD to produce 3,3′-T2. T4ORD, which is particularly important in converting T4 to the biologically more potent T3, also occurs in gill, muscle and kidney. At least two isozymes are involved: i) a high-affinity, propylthiouracil (PTU)-sensitive T4ORD which displays ping-pong kinetics, requires thiol as a cofactor, and is present in liver, gill and muscle, and ii) a low-affinity, PTU-insensitive T4ORD with sequential kinetics with a thiol cofactor, and is present in liver and kidney. Receptor-bound T3 is derived primarily from the plasma for kidney, mainly from intracellular sources for gill and about equally from both plasma and intracellular sources for liver. Thus, the high-affinity T4ORD may produce T3 for local intracellular use while the low-affinity 5′-monodeiodinase may produce T3 for systemic use. T4ORD activity responds to nutritional factors and the physiologic state of the fish. Furthermore, T3 administered orally for either 6 weeks or 24h reduces the functional level (Vmax) of hepatic T4ORD, and T3 added to isolated hepatocytes also reduces activity, indicating direct T3 autoregulation of T4ORD to maintain hepatocyte T3 homeostasis. However, T3 administration also induces T4IRD to produce biologically inactive rT3 and induces T3IRD to produce 3,3′-T2. Thus, the trout liver has several iodothyronine deiodinase systems which in a coordinated manner regulate tissue T3 homeostasis in the face of a T3 challenge. It does this by decreasing formation of T3 itself, by diverting T4 substrate to biologically inactive rT3 and by increasing the degradation of T3. These deiodinases differ in many respects from any mammalian counterparts.  相似文献   

6.
Blood and ovarian samples were collected at intervals of 4h prior to spawning time from medaka (Oryzias latipes) that were maturationally synchronized with artificial photoperiod (14h light: 10h dark). Plasma estradiol-17β (E2) levels increased rapidly from 16h before spawning and peaked at 8h before spawning. Follicle-enclosed oocytes (ovarian follicles) at different stages of development were isolated from the ovaries and used to study the in vitro effects of thyroid hormone (triiodothyronine; T3) on pregnant mare serum gonadotropin (GTH)-induced E2 production. GTH at a concentration of 100 IU/ml stimulated E2 production by ovarian follicles collected between 32 and 16h before spawning. At 32h before spawning, T3 (5 ng/ml) administered along with GTH (100 IU/ml) resulted in a 3.5 fold increase in E2 production, compared with GTH administered alone. These results suggest that T3 can act on ovarian follicles directly to modulate GTH-stimulated E2 production in the medaka.  相似文献   

7.
Juvenile red drum (Sciaenops ocellatus) were cultured at 25°C on a variety of diets and blood sampled over eight weeks to examine the relationship between growth and plasma thyroid hormone levels. Maximum growth rates were achieved on formulated experimental diets and a simulated natural shrimp diet. Associated with these maximal rates was a significant increase in triidothyronine (T3), but no consistent change in thyroxine (T4). Reduced rations of diets resulted in low growth rates associated with significantly lowered levels of T3 but not T4. To determine whether weight gain could be increased by application of exogeneous hormone, diets were supplemented with T3 or T4 at 2, 10, and 50 mg hormone/kg diet. Significantly elevated T3 was induced by supplementation with 10 and 50 mg T3/kg diet, although there were no indications of an anabolic effect of T3 incorporation, and 50 mg T3/kg diet was in fact associated with decreased weight gain. Incorporation of T4 into diets had no effect on growth or T3, and had effects on T4 which were small and inconsistent, indicating that T4 may not be effectively absorbed from the gut. No difference was found in response to hormone feeding between low (6 ppt) or high (35 ppt) water salinity. T3 levels thus appear to closely parallel growth in fish on unsupplemented diets, whereas T4 which were small and manipulation. Supplementation with T3 is not an effective means of stimulating growth in red drum fed optimum diets. Whereas thyroid hormones may function to regulate intermediary metabolism in red drum, elevated endogenous thyroid hormone levels appear adequate to supply tissue needs during juvenile growth in culture.  相似文献   

8.
Four separate 8-week feeding trials were conducted to assess the effects of supplementing semipurified diets with either triiodothyronine (T3) or thyroxine (T4) at 0, 2, 10, and 50 mg/kg on growth and body composition of juvenile red drum (Sciaenops ocellatus) held in artificial brackish water (6‰) and artificial seawater (32‰). At both levels of salinity, increasing doses of T3 resulted in fish with reduced weight gain, feed efficiency, condition factor (weight × 100/length3), and muscle ratio (muscle weight × 100/body weight), as well as a lighter body color. Significant (p < 0.05) effects of T3 on the proximate composition of whole body, liver, and muscle were variable, generally reflecting decreased lipid and protein storage in liver and muscle, respectively. The two highest doses of T3 given to seawater adapted fish increased survival. Dietary T4 supplementation had no distinctive effects on appearance, growth or proximate body composition. These results indicate that whereas T3 may function to regulate protein and lipid metabolism in red drum, dietary supplementation with T3 leads to a hyperthyroidism-induced catabolic state. The elevated endogenous thyroid hormone levels found in fish fed optimal diets may thus adequately supply tissue needs during juvenile growth.  相似文献   

9.
Rainbow trout fed a 26% canola meal-based (CM) diet for 12 weeks at 15°C exhibited reduced growth, lower feed conversion, enlarged thyroid glands and lower plasma thyroid hormone (TH) levels than comparable fish fed equinitrogenous, equicaloric soybean meal-based (SB) diets. Supplementation of the SB diets with either T4 (20 mg/kg) or T3 (10 or 20 mg/kg) had no effect on the growth rate, feed conversion and thyroid histology of the trout. However, plasma T4 levels weredepressed in trout fed the T4- and high T3-supplemented SB diets. In trout fed T4- and T3-supplemented CM diets the growth rates and feed conversion were not significantly different from those of the SB-fed groups. Moreover, in the T4-supplemented group, plasma T4 levels were in the normal range. However, thyroid enlargement was evident in all the CM-fed fish, and plasma T3 levels were markedly elevated in groups fed the T3-supplemented CM diets. The data suggest that antithyroid components in the CM diets inhibited TH synthesis (but not their release), and impaired TH clearance from the circulation. There were no significant differences in plasma cortisol levels in the 8 treatment groups, nor were there differences in the histological appearance of the interrenal gland. However, when the data from SB- and CM-fed fish were pooled, plasma cortisol levels in the SB-fed fish were significantly lower than in the CM-fed animals. Glucosinolates at a level of 164 mg/kg diet were toxic to young trout, but the effect was ameliorated by dietary TH supplementation.  相似文献   

10.
Rainbow trout (Salmo gairdneri Richardson) were fed either a soybean mealbased (SM) or canola meal-based (CM) diet for up to 20 weeks. Plasma thyroxine (T4) and triiodothryonine (T3) levels were significantly lower in the CM-fed fish sampled after 12 weeks. However, there appeared to be some compensation after 12 and 20 weeks in that the thyroid hormone levels in trout fed the CM were not significantly different from those of the SM-fed fish. Nevertheless, there was marked thyroid hyperplasia and hypertrophy in the CM-fed fish sampled at 12, 16 and 20 weeks after commencement of the experiment. Moreover, the growth rate was significantly lower in the CM-fed fish in comparison to the SM-fed fish throughout the 20 week study period.Plasma T4 levels were similar in SM-fed fish sampled 12, 16 and 20 weeks after commencement of the experiment, but plasma T3 levels progressively increased over this period, as did the apparent activity of the thyroid tissue based on histological criteria.Fasting for up to 8 weeks resulted in the arrested growth of the SM-fed fish, and a loss in body weight of the CM-fed animals over the 8 week period of the fast. In addition, the plasma thyroid hormone levels in the fasted fish tended to be lower than in fish fed both the SM and CM diets prior to fasting, and there was histological evidence indicating a reduced activity of the pituitary-thyroid axis. However, thyroid hyperplasia and hypertrophy were still evident in the fasted fish previously fed the CM diet indicating that the adverse affects of CM diets are not completely reversible after 8 weeks.In fish fed the CM diet for 12 weeks and then the SM diet for up to a further 8 weeks (diet C-S) there was a compensatory increase in plasma thyroid hormone levels evident within 4 weeks after the change in diet, but no apparent decrease in thyroid hyperplasia or hypertrophy. In addition, in the fish fed the C-S diet there was a marked compensatory growth rate, and an increased feed: gain ratio; body weights of this group of fish were not significantly different from those of the SM-fed animals after 20 weeks of study, indicating a considerably higher growth rate over the last 8 week period.  相似文献   

11.
The circadian patterns of several tissue and plasma metabolites, and several plasma hormone concentrations are described in rainbow trout (Oncorhynchus mykiss) that were held in groups under three different photoperiod regimes, and given free access to a demand-feeder. Regardless of photoperiod regime, all the measured parameters showed significant diel rhythms that appeared to be synchronized by dawn; dawn was represented by the concomitant onset of both light and feeding. The diel increases in hepatic glycogen content, and plasma T4 and cortisol concentrations were in phase with the main period of feeding activity, whereas the peaks in plasma T3 and glucose concentrations that may also be triggered by feeding activity, were delayed by several hours. The peaks in hepatosomatic index, plasma non-esterified fatty acids and plasma growth hormone concentrations were 180° out of phase with the main period of feeding activity, and associated with periods of hypophagia and low activity.  相似文献   

12.
A 6-week feeding trial was conducted to investigate the effects of short-term feed deprivation on inducing compensatory growth and changes in thyroid hormone levels of channel catfish. Feeding treatments consisted of the following four regimes of 2-week duration: satiate feeding (control), no feed for 3 days then feeding to apparent satiation for the next 11 days, no feed for 5 days then feeding to apparent satiation for 9 days, and no feed for 7 days then feeding to apparent satiation for 7 days. These regimes were repeated three times over the 6-week trial in which 25 channel catfish fingerlings, initially averaging 15 g each, were stocked into each of 12, 38-l glass aquaria supplied with supplemental aeration and flow-through water. Depriving fish of feed had a pronounced effect in that fish lost weight in as little as 3 days. Returning the fish to a satiate feeding regime caused a resumption of growth, equal to control growth only in the case of the 3-day deprived treatment, but all periods of feed deprivation failed to induce a period of catch-up growth adequate to compensate for previously lost weight. Feed efficiency also was not improved by the periods of feed deprivation, and restricting feed in excess of 3 days lowered feed efficiency. Fish condition indices were not altered at the termination of the trial. Muscle lipid, muscle protein and liver protein also were not different among feeding regimes. Liver lipid was elevated in fish deprived of feed for more than 3 days every 2 weeks. Plasma thyroxine (T4) and triiodothyronine (T3) were equally depressed by 3 days from the onset of feed deprivation. Both hormones rose significantly within 24 h of realimentation, with the greatest increase observed in animals subjected to the briefest feed deprivation. These results support a role for thyroid hormones in the promotion of growth in channel catfish. Whereas feed deprivation appears to rapidly reduce activity of the hypothalamo-pituitary-thyroid axis, the high correlation observed between T4 and T3 in all treatments suggests that peripheral deiodinating systems are capable of rapidly generating T3 from T4 upon realimentation. More rapid recovery of thyroid hormone production following realimentation may minimize the effects of feed deprivation on growth and feed efficiency of fish subjected to the 3-day deprivation treatment when compared to longer periods.  相似文献   

13.
Tissue T3 (3,5,3′-triiodo-L-thyronine) concentrations were measured in rainbow trout, Salmo gairdneri, after digestion by Pronase or collagenase and extraction with ethanolic ammonia (99:1, v/v) followed by 2N NH4OH and chloroform. Recoveries of [125I]T3 administered in vivo or in vitro were high and consistent and there was close parallelism between sample dilutions and the radioimmunoassay curve, but recoveries of unlabeled T3 administered in vitro were low and variable. Alternatively, trout were brought to isotopic equilibrium by [125I]T3 infusion for 96 h, the extracted [125I]T3 determined by gel filtration and the tissue T3 content calculated from the specific activity of plasma [125I]T3. By the latter method, tissue T3 concentrations were: intestine (4.2 ng/g), kidney (2.5), liver (2.8), stomach (1.5), heart (1.0), muscle (0.7), gill (0.6) and skin (0.3). Muscle (67% of body weight) comprised the largest tissue T3 pool (82% of all tissues examined). Seven days exposure of trout to water acidified with H2SO4 (pH 4.8) or acidified water containing aluminum (21.6 mM), decreased tissue T3 content generally and particularly in muscle (14% of controls). In conclusion, skeletal muscle is the largest T3 tissue pool and seems highly responsive to altered physiologic state.  相似文献   

14.
Serum thyroid hormone concentrations were measured during the seven stages of metamorphosis (1–7) of the southern hemisphere lamprey, Geotria australis. The respective mean concentrations ± SEM of serum thyroxine (T4) and triiodothyronine (T3) fell from 31.73 ± 4.09 and 5.06 ± 0.70 nM in large ammocoetes sampled in February, at the time when metamorphosis was initiated, to 4.54 ± 0.36 and 1.03 ± 0.12 nM at stage 5. Although there was a small, but significant, recovery of serum T4 concentrations during stages 6 and 7, no such corresponding statistically significant rise occurred in serum T3 concentrations. Serum thyroid hormone concentrations in ammocoetes sampled during the period when metamorphosis was taking place, exhibited a marked seasonal increase between February and May–June (late autumn/early winter); serum T3 and T4 concentrations peaked in May–June and were, respectively, > 2 fold and > 8 fold higher than those recorded for samples in late February (mid summer). By mid-July the serum T4 and T3 levels had declined from the peak values. Ammocoetes taken from streams at 16°C in June and acclimated to aquaria water at 25°C or 6°C had significantly lower serum T3 and T4 concentrations at the higher temperature, and also a lower serum T4, but not T3 concentration, at the lower temperature. Treatment of separate groups of ammocoetes with either propylthiouracil or T3 for 70 days significantly depressed and raised respectively, the serum thyroid hormone and hepatic T3 concentrations and caused significant changes in the body weight, but did not induce the onset of metamorphosis.  相似文献   

15.
Clove oil has been demonstrated to be an effective, inexpensive anaesthetic and euthanizing agent for a number of fish species, including rainbow trout, used in aquaculture and fisheries research. However, the potential for clove oil to cause perturbations in important plasma hormone concentrations has not been investigated. The effect of anaesthesia and euthanasia in trout with eugenol (the active ingredient in clove oil) on plasma cortisol, glucose, growth hormone (GH) and two thyroid hormones [tri‐iodothyronine (T3) and thyroxine (T4)] was compared with tricaine methanesulfonate (MS‐222) anaesthesia, and stunning by cranial concussion in two experiments. Effects on blood chemistry were different when comparing the particular anaesthetic method being used. Stunning fish significantly increased plasma cortisol and glucose levels (both P<0.05), while euthanizing fish using either clove oil or MS‐222 had no effect on these hormone levels. In contrast, the levels of GH, T3 and T4 hormones were unaffected regardless of whether fish were euthanized by stunning, MS‐222 or clove oil. Variation in effects between hormones were observed using clove oil eugenol. In fish sampled 10 min after anaesthetizing with 150 mg L?1 of eugenol, cortisol levels were significantly decreased (P<0.03), while there were no differences in either glucose or GH levels. Tri‐iodothyronine and T4 also showed significantly elevated levels (P<0.05) after 10‐min exposure to eugenol. These results highlight the importance of investigating the potential effects of any new anaesthetic or euthanizing compounds on blood plasma parameters, prior to using them in a research setting, or when comparing results to other studies which have utilized alternative anaesthetic compounds.  相似文献   

16.
In the present study, thiourea-induced thyroid hormone depletion and thyroxine (T4) ‘overdose’ were used as a strategy to understand the influence of thyroid hormones on ovarian recrudescence of juvenile (3-months-old), immature (8-months-old) and adult (1-year-old) air-breathing catfish, Clarias gariepinus. Thiourea-induced thyroid hormone depletion in juvenile catfish impaired ovarian development, but no significant effect was observed in immature catfish and during late stage of ovarian recrudescence of mature catfish. T4 treatment in females undergoing late stages of ovarian recrudescence induced rapid oocyte growth by promoting its early entry into maturational phase as evident from the presence of more number of vitellogenic and post-vitellogenic follicles, decrease in aromatse immunoreactivity and reduced estradiol–17β levels. Hence, thyroid hormones have an important role to play during early stages of ovarian development and vitellogenesis of catfish and also indicating that thyroid has a stage dependent effect on ovary.  相似文献   

17.
Three consecutive days of injections of triiodothyronine (T3)(0.038, 0.075, 0.15 and 1.54 nmoles/g) significantly elevated the acetylcholinesterase (AchE) activity in the brain of Singi fish, Heteropneustes fossilis (Bloch). The higher doses of 0.075, 0.15 and 1.54 nmoles of T3/g induced a greater increase in enzyme activity than 0.038 nmoles/g. A T3 dose of 0.019 nmoles/g was found to be ineffective. The T3 action on AchE activity was blocked by cycloheximide. Thiourea treatment for 30 days decreased the AchE activity below the control level. This reduced level of the enzyme activity was brought back even above the control level by T3 injections. It is, therefore, suggested that thyroid hormone is involved in the sustenance of AchE activity in fish brain.  相似文献   

18.
A cDNA encoding the subunit of thyrotropin (TSH) was isolated from a goldfish (Carassius auratus) pituitary gland cDNA library. By comparing the sequence with other teleost TSHs, a signal peptide of 19 amino acids and a mature hormone of 131 amino acids were predicted for goldfish TSH subunits. The resulting putative mature hormone of 131 amino acids had well-conserved cysteine positions and a putative N-linked glycosylation site; homology was 51–67% with TSHs from other teleosts, 38–43% with tetrapod TSHs, but only 27 and 29% with goldfish GTH-I and -II, respectively. We also examined the effects of thyroid hormones (TH) and thiourea (TU, an inhibitor of TH production) treatments on TSH and GTH subunit gene expressions in the goldfish pituitary gland. After thyroxine (T4) treatment, circulating T4 concentration increased and TSH mRNA level decreased. Supressing the amount of circulating T4 and triiodothyronine (T3) by TU treatment increased the TSH mRNA level. Moreover, T4 replacement therapy (simultaneous treatment of both TU and T4) caused a high level of circulating T4 and a low level of circulating T3, and a decrease in the TSH mRNA level. Thus, changing levels of circulating TH exert a negative feedback on the level of TSH subunit mRNA in goldfish in vivo. On the other hand, GTH subunit mRNA levels were not affected by changes in the levels of circulating TH.  相似文献   

19.
Abstract. Serum thyroxine (T4) and triiodothyroninc (T3) levels were significantly lower in fish fed a high PCB diet (500 mg/kg) in comparison to those fed the control diet. The differences in serum thyroid hormone levels between the PCB-fed group and those fed the control diet were not evident after 14 days food deprivation nor after testosterone-injection. The low PCB diet (50 mg/kg) was without effect on serum T4 and T3 levels regardless of the treatment. Trout fed the highest Mirex diet (50 mg/kg) had T3 levels which were significantly lower and a T4 T3 ratio which T3was still evident after 14 days food deprivation but after testosterone administration the serum T3 levels in the control fish had fallen to levels similar to those in the Mirex-fed group. The low Mires diet (5 mg/kg) was without effect on serum T4 and T3 levels regardless of treatment. Serum T4 and T3 levels in fish fed a mixed PCB (50 mg/kg) and Mirex (5 mg/kg) diet were not significantly different from controls but T3 levels were significantly higher than in control fish after 14 days food deprivation and subsequent testosterone administration. There were no appearence difference in anterior pituitary or thyroid histology between the different groups. The hepatosomatic index (HSI) in PCB-fed trout was significantly larger than in controls in the fed groups, but not after 14 days food deprivation and subsequent testosterone administration. There was a five-fold difference in carcass PCB hioaccumulation between fish fed the two PCB-conlaminated diets, despite a 10-fold difference in dietary levels of the organochlorine. Similarly despite 10-fold differences in dietary Mirex levels in fish fed the 5 and 50 mg/kg and the 50 and 500 mg/kg diets, there were only 4–56–and 1–35-fold increases in carcass Mirex content, respectively. Trout fed the mixed Mirex-PCB diet had PCB levels of only 60.2% of those fed comparable levels of PCB alone (50 mg/kg) but contained similar levels of Mirex to those fed Mirex alone (a mg/kg).  相似文献   

20.
With the aim of comparing the effects of oral T3 and NaCl administration on trout hypoosmoregulatory mechanisms, three groups of rainbow trout (Oncorhynchus mykiss Walbaum) held in freshwater (FW) were fed a basal diet (C), the same diet containing 8.83 ppm of 3,5,3-triiodo-L-thyronine (T3) (T) or 10% (w/w) NaCl (N) respectively for 30 d. They were then transferred to brackish water (BW) for 22 d and fed on diet C. Gill (Na++K+)-ATPase activity and its dependence on ATP, Na+ and pH, number of gill chloride cells (CC), serum T3 level as well as fish growth, condition factor (K) and mortality were evaluated. During the FW phase, as compared to C trout, T trout showed a two fold higher serum T3 level, had unchanged gill (Na++K+)-ATPase activity and increased CC number, whereas N trout showed higher gill (Na++K+)-ATPase activity and CC number. At the end of the experiment the enzyme activity was in the order T>N>C groups and all groups showed similar CC number. Both treatments changed the enzyme activation kinetics by ATP and Na+. A transient increase in K value occurred in N group during the period of salt administration. In BW, T and N groups had higher and lower survival than C group respectively. Other parameters were unaffected by the treatments. This trial suggests that T3 administration promotes the development of hypoosmoregulatory mechanisms of trout but it leaves the (Na++K+)-ATPase activity unaltered till the transfer to a hyperosmotic environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号