首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
2.

Context

The application of regional-level airborne lidar (light detection and ranging) data to characterize habitat patches and model habitat connectivity over large landscapes has not been well explored. Maintaining a connected network of habitat in the presence of anthropogenic disturbances is essential for regional-level conservation planning and the maintenance of biodiversity values.

Objectives

We quantified variation in connectivity following simulated changes in land cover and contrasted outcomes when different conservation priorities were emphasized.

Methods

First, we defined habitat patches using vegetation structural attributes identified via lidar. Second, habitat networks were constructed for different forest types and assessed using network connectivity metrics. And finally, land cover change scenarios were simulated using a series of habitat patch removals, representing the impact of implementing different spatial prioritization schemes.

Results

Networks for different forest structure types produced very different patch distributions. Conservation scenarios based on different schemes led to contrasting changes during land cover change simulations: the scheme prioritizing only habitat area resulted in immediate near-term losses in connectivity, whereas the scheme considering both habitat area and their spatial configurations maintained the overall connectivity most effectively. Adding climate constraints did not diminish or improve overall connectivity.

Conclusions

Both habitat area and habitat configuration should be considered in dynamic modeling of habitat connectivity under changing landscapes. This research provides a framework for integrating forest structure and cover attributes obtained from remote sensing data into network connectivity modeling, and may serve as a prototype for multi-criteria forest management and conservation planning.
  相似文献   

3.
Habitat configuration and temporal stochasticity in the environment are recognized as important drivers of population structure, yet few studies have examined the combined influence of these factors. We developed a spatially explicit simulation model to investigate how stochasticity in survival and reproduction influenced population dynamics on landscapes that differed in habitat configuration. Landscapes ranged from completely contiguous to highly fragmented, and simulated populations varied in mean survival probability (0.2, 0.4, 0.8) and dispersal capacity (1, 3, or 5 cells). Overall, habitat configuration had a large effect on populations, accounting for >80% of the variation in population size when mean survival and dispersal capacity were held constant. Stochasticity in survival and reproduction were much less influential, accounting for <1–14% of the variation in population size, but exacerbated the negative effects of habitat fragmentation by increasing the number of local extinctions in isolated patches. Stochasticity interacted strongly with both mean survival probability and habitat configuration. For example, survival stochasticity reduced population size when survival probability was high and habitat was fragmented, but had little effect on population size under other conditions. Reproductive stochasticity reduced population size irrespective of mean survival and habitat configuration, but had the largest effect when survival probability was intermediate and habitat was well connected. Stochasticity also enhanced the variability of population size in most cases. Contrary to expectations, increasing dispersal capacity did not increase population persistence, because the probability of finding suitable habitat within the dispersal neighborhood declined more for the same level of dispersal capacity when fragmentation was high compared to when it was low. These findings suggest that greater environmental variability, as might arise due to climate change, is likely to compound population losses due to habitat fragmentation and may directly reduce population size if reproductive output is compromised. It may also increase variability in population size.  相似文献   

4.

Context

Management of wintering waterfowl in North America requires adaptability because constant landscape and environmental change challenges existing management strategies regarding waterfowl habitat use at large spatial scales. Migratory waterfowl including mallards (Anas platyrhynchos) use the lower Mississippi Alluvial Valley (MAV) for wintering habitat, making this an important area of emphasis for improving wetland conservation strategies, while enhancing the understanding of landscape-use patterns.

Objectives

We used aerial survey data collected in the Arkansas portion of the MAV (ARMAV) to explain the abundance and distribution of mallards in relation to variable landscape conditions.

Methods

We used two-stage, hierarchical spatio-temporal models with a random spatial effect to identify covariates related to changes in mallard abundance and distribution within and among years.

Results

We found distinct spatio-temporal patterns existed for mallard distributions across the ARMAV and these distributions are dependent on the surrounding landscape structure and changing environmental conditions. Models performing best indicated seasonal surface water extent, rice field, wetland and fallow (uncultivated) fields positively influenced mallard presence. Rice fields, surface water and weather were found to influence mallard abundance. Additionally, the results suggest weather and changing surface water affects mallard presence and abundance throughout the winter.

Conclusions

Using novel datasets to identify which environmental factors drive changes in regional wildlife distribution and abundance can improve management by providing managers additional information to manage land over landscapes spanning private and public lands. We suggest our analytical approach may be informative in other areas and for other wildlife species.
  相似文献   

5.
Forest insects cause defoliation disturbances with complex spatial dynamics. These are difficult to measure but critical for models of disturbance risk that inform forest management. Understanding of spatial dynamics has lagged behind other disturbance processes because traditional defoliation sketch map data often suffered from inadequate precision or spatial resolution. We sought to clarify the influence of underlying habitat characteristics on outbreak patterns by combining forest plots, GIS data and defoliation intensity maps modeled from Landsat imagery. We quantified dependence of defoliation on spatial patterns of host abundance, phenology, topography, and pesticide spray for a recent gypsy moth outbreak (2000–2001), in a mixed deciduous forest in western Maryland, USA. We used semivariograms and hierarchical partitioning to quantify spatial patterns and variable importance. Habitat characteristics from plot data explained 21 % of defoliation variance in 2000 from tree density, phenological asynchrony, pesticide spray status, and landform index and 34 % of the variance in 2001 from previous-year defoliation, relative abundance of non-host species, phenological asynchrony, pesticide spray status, and relative slope position. Spatial autocorrelation in residual defoliation ranged over distances of 788 m in 2000 and 461 m in 2001, corresponding well with gypsy moth larval dispersal distances (100 m to 1 km). Un-measured processes such as predation, virus and pathogen occurrence likely contribute to unexplained variance. Because the spatial dynamics of these factors are largely unknown, our results support modeling gypsy moth defoliation as a function of dependence on significant exogenous characteristics and residual spatial pattern matching.  相似文献   

6.
7.
In this paper we show how the spatialconfiguration of habitat quality affects the spatial spread of apopulation in a heterogeneous environment. Our main result is thatfor species with limited dispersal ability and a landscape withisolated habitats, stepping stone patches of habitat greatlyincrease the ability of species to disperse. Our results showthat increasing reproductive rate first enables and thenaccelerates spatial spread, whereas increasing the connectivity has aremarkable effect only in case of low reproductive rates. Theimportance of landscape structure varied according to thedemographic characteristics of the population. To show this wepresent a spatially explicit habitat model taking into accountpopulation dynamics and habitat connectivity. The population dynamicsare based on a matrix projection model and are calculated on eachcell of a regular lattice. The parameters of the Leslie matrix dependon habitat suitability as well as density. Dispersal between adjacentcells takes place either unrestricted or with higher probability inthe direction of a higher habitat quality (restricted dispersal).Connectivity is maintained by corridors and stepping stones ofoptimal habitat quality in our fragmented model landscape containinga mosaic of different habitat suitabilities. The cellular automatonmodel serves as a basis for investigating different combinations ofparameter values and spatial arrangements of cells with high and lowquality.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

8.
Understanding dispersal is central to ecology and evolution. To integrate habitat selection and dispersal it is important to compare habitat used for movement to those available in the landscape, i.e. found in an area that an animal could access in a given time period. Here, we explore ways of determining available habitat for dispersing individuals, illustrated by recent studies on habitat selection of dispersers.  相似文献   

9.
Landscape Ecology - Effective conservation planning for species depends on vegetation models that can capture the dynamics of habitat elements across both spatial and temporal domains....  相似文献   

10.
Habitat configuration has important implications for the persistence of faunal and floral populations at a variety of spatial scales. Forest harvesting alters habitat configurations. However, measuring and predicting such alterations remains challenging, in part because previously developed metrics of habitat configuration are often not statistically independent of habitat amount. Thus, their ability to measure independent effects of habitat configurations and habitat amount on ecosystem components such as wildlife populations has been limited. Here, we evaluate habitat configuration based on newly developed metrics that are independent of habitat amount but do not depend on regression residuals of abundance and configuration relationships on any population of landscapes. We use these new metrics to measure and predict changes in habitat configuration following forest harvesting in the boreal forest of Alberta, Canada. Our findings clearly demonstrate changes in habitat configuration resulting from forest harvesting can be predicted precisely with information about initial habitat patch structure and harvesting patterns. Because forest harvesting has significant implications for habitat configuration, accurately predicting these changes is critical for determining if forest harvesting strategies are sustainable for ecosystem components and processes. This study provides a set of novel, robust metrics for tracking landscape-scale changes in habitat configuration in harvested boreal forests.  相似文献   

11.
Small-bodied fishes constitute an important assemblage in many wetlands. In wetlands that dry periodically except for small permanent waterbodies, these fishes are quick to respond to change and can undergo large fluctuations in numbers and biomasses. An important aspect of landscapes that are mixtures of marsh and permanent waterbodies is that high rates of biomass production occur in the marshes during flooding phases, while the permanent waterbodies serve as refuges for many biotic components during the dry phases. The temporal and spatial dynamics of the small fishes are ecologically important, as these fishes provide a crucial food base for higher trophic levels, such as wading birds. We develop a simple model that is analytically tractable, describing the main processes of the spatio-temporal dynamics of a population of small-bodied fish in a seasonal wetland environment, consisting of marsh and permanent waterbodies. The population expands into newly flooded areas during the wet season and contracts during declining water levels in the dry season. If the marsh dries completely during these times (a drydown), the fish need refuge in permanent waterbodies. At least three new and general conclusions arise from the model: (1) there is an optimal rate at which fish should expand into a newly flooding area to maximize population production; (2) there is also a fluctuation amplitude of water level that maximizes fish production, and (3) there is an upper limit on the number of fish that can reach a permanent waterbody during a drydown, no matter how large the marsh surface area is that drains into the waterbody. Because water levels can be manipulated in many wetlands, it is useful to have an understanding of the role of these fluctuations.  相似文献   

12.
13.
This study examined the effects of habitat fragmentation on meadow vole (Microtus pennsylvanicus) population dynamics in experimental landscape patches. The study was conducted from May–November 1993 at the Miami University Ecology Research Center. Eight 0.1-ha small mammal enclosures were used. Four enclosures contained a 160 m2 nonfragmented patch and four enclosures contained four 40 m2 fragmented patches. Thus, each treatment was replicated 4 times in a systematic research design. The patches in both treatments contained high-quality habitat surrounded by low-quality matrix. Six pairs of adult meadow voles were released in each enclosure on 27 May 1993. Populations were monitored by live-trapping and radio-telemetry methods. Significantly greater densities of female voles were found during October in the fragmented treatment compared to the nonfragmented treatment. Also, significantly more females than males were found in the fragmented treatment compared to the nonfragmented treatment for the total study period. Significantly more subadult and juvenile males were found in the matrix versus the patch of the nonfragmented treatment compared to the fragmented treatment. Males in the fragmented treatment had significantly greater mean home range size than males or females in the nonfragmented treatment. There appears to exist a relationship between patch fragmentation and the social structure of meadow vole populations; this relationship appears to function as a population regulatory mechanism.  相似文献   

14.
Understanding how spatial habitat patterns influence abundance and dynamics of animal populations is a primary goal in landscape ecology. We used an information-theoretic approach to investigate the association between habitat patterns at multiple spatial scales and demographic patterns for black-throated blue warblers (Dendroica caerulescens) at 20 study sites in west-central Vermont, USA from 2002 to 2005. Sites were characterized by: (1) territory-scale shrub density, (2) patch-scale shrub density occurring within 25 ha of territories, and (3) landscape-scale habitat patterns occurring within 5 km radius extents of territories. We considered multiple population parameters including abundance, age ratios, and annual fecundity. Territory-scale shrub density was most important for determining abundance and age ratios, but landscape-scale habitat structure strongly influenced reproductive output. Sites with higher territory-scale shrub density had higher abundance, and were more likely to be occupied by older, more experienced individuals compared to sites with lower shrub density. However, annual fecundity was higher on sites located in contiguously forested landscapes where shrub density was lower than the fragmented sites. Further, effects of habitat pattern at one spatial scale depended on habitat conditions at different scales. For example, abundance increased with increasing territory-scale shrub density, but this effect was much stronger in fragmented landscapes than in contiguously forested landscapes. These results suggest that habitat pattern at different spatial scales affect demographic parameters in different ways, and that effects of habitat patterns at one spatial scale depends on habitat conditions at other scales.  相似文献   

15.
In a four year study data on the presence of red squirrel were collected in an agricultural landscape by counting dreys in 49 woods ranging from 0.5 to 14 ha, and differing in quality of habitat and isolation.Logit regression analysis showed that the area per woodlot covered with conifers is a good predictor of squirrel presence for each year and during the whole period, but the significance of the regression decreases with time. During the study the number of woods occupied by red squirrel increased, and smaller woods and those without conifers also became inhabited. This trend is in accordance with the positive effect of time in regression analyses on the presence of the species and on the colonization of woods, and it suggests an increase of squirrel numbers in the area. Addition of several isolation variables in the regression analyses showed significant effects in different years, and the effect of isolation was independent of time. In the first two years the area of habitat around a woodlot, the distance to the nearest woodlot larger than 30 ha, and the density of possible movement corridors have significant effects on the presence of red squirrel.In the last two years, with presumably a high number of squirrels, the (short) distance to the nearest woodlot and also the area of habitat around woods have significant effects. It is concluded that the spatial dynamics of the population can be understood as the outcome of individual spatial behaviour, rather than as the result of metapopulation processes.  相似文献   

16.
Recent work in landscape ecology suggests that organisms use environmental cues at a variety of scales to select habitat. As a result, habitat studies that evaluate environmental conditions at multiple spatial scales have become increasingly common. We examined whether the way in which data are rescaled influences inferred relationships between organisms and habitat features. Using a habitat model developed at fine scales, we systematically rescaled habitat (canopy density, slope, and cover type) and distribution maps according to a variety of different rescaling rules, including spatial averaging, thresholding, presence/absence, and majority. We found that the spatial autocorrelation of habitat data interacts with rescaling rules to alter the correspondence between species presence and habitat across scale. Different rules lead to substantially divergent and sometimes opposite correlations among the species and habitat features on the landscape. Such differences in interpretation due to variation in methodology can lead to very different interpretations of a species habitat requirements and thus have important implications for both ecology and conservation.  相似文献   

17.

Context

Native vegetation is often used as a proxy for habitat to estimate habitat availability in landscapes. This approach may lead to incorrect estimates of the impacts of habitat loss and fragmentation on species, which have not been thoroughly quantified so far.

Objectives

We quantified to what extent the loss of native vegetation reflect actual habitat loss by native species in landscapes. We tested the hypothesis that habitat availability declines at greater rates than native vegetation and thus is overestimated when it is quantified on the basis of native vegetation.

Methods

Using simulations, we quantified how the loss of native vegetation in artificial and real landscapes affects habitat availability for species with different habitat requirements. We contrasted a generalist species, which uses all native vegetation, with 10 habitat-specialist species classified into three categories (interior, patchy and riparian species).

Results

Habitat availability generally declined at greater rates than native vegetation for all specialist species. This pattern was apparent for different specialist species in a broad range of landscape types. Interior species always lost habitat availability more rapidly than the generalist species. Most riparian species lost habitat availability more rapidly than the generalist species. Responses of patchy species were more complex, depending on their dispersal abilities and landscape structure.

Conclusions

Habitat availability is likely to be overestimated when native vegetation is used as proxy for habitat, because habitat availability will generally decline at greater rates than native vegetation. Therefore, a species-centered approach should be adopted when estimating habitat availability in landscapes.
  相似文献   

18.
Dou  Yue  Cosentino  Francesca  Malek  Ziga  Maiorano  Luigi  Thuiller  Wilfried  Verburg  Peter H. 《Landscape Ecology》2021,36(8):2215-2234
Landscape Ecology - While land use change is the main driver of biodiversity loss, most biodiversity assessments either ignore it or use a simple land cover representation. Land cover...  相似文献   

19.
Riva  Federico  Nielsen  Scott E. 《Landscape Ecology》2020,35(7):1495-1504
Landscape Ecology - An important part of landscape ecology is to identify relationships between landscape characteristics and ecological processes. One common approach to this is relating raster...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号