首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forest fragmentation is an increasingly common feature across the globe, but few studies examine its influence on biogeochemical fluxes. We assessed the influence of differences in successional trajectory and stem density with forest patch size on biomass quantity and quality and N transformations in the soil at an experimentally fragmented landscape in Kansas, USA. We measured N-related fluxes in the laboratory, not the field, to separate effects of microclimate and fragment edges from the effects of inherent biomass differences with patch size. We measured net N mineralization and N2O fluxes in soil incubations, gross rates of ammonification and nitrification, and microbial biomass in soils. We also measured root and litterfall biomass, C:N ratios, and δ13C and δ15N signatures; litterfall [cellulose] and [lignin]; and [C], [N], and δ13C and δ15N of soil organic matter. Rates of net N mineralization and N2O fluxes were greater (by 113% and 156%, respectively) in small patches than in large, as were gross rates of nitrification. These differences were associated with greater quantities of root biomass in small patch soil profiles (664.2 ± 233.3 vs 192.4 ± 66.2 g m−2 for the top 15 cm). These roots had greater N concentration than in large patches, likely generating greater root derived organic N pools in small patches. These data suggest greater rates of N cycling in small forested patches compared to large patches, and that gaseous N loss from the ecosystem may be related to forest patch size. The study indicates that the differences in successional trajectory with forest patch size can impart significant influence on soil N transformations in fragmented, aggrading woodlands.  相似文献   

2.
Ecological processes such as plant–animal interactions have a critical role in shaping the structure and function of ecosystems, but little is known of how such processes are modified by changes in landscape structure. We investigated the effect of landscape change on mistletoe parasitism in fragmented agricultural environments by surveying mistletoes on eucalypt host trees in 24 landscapes, each 100 km2 in size, in south-eastern Australia. Landscapes were selected to represent a gradient in extent (from 60% to 2% cover) and spatial pattern of remnant wooded vegetation. Mistletoes were surveyed at 15 sites in each landscape, stratified to sample five types of wooded elements in proportion to their relative cover. The incidence per landscape of box mistletoe (Amyema miquelii), the most common species, was best explained by the extent of wooded cover (non-linear relationship) and mean annual rainfall. Higher incidence occurred in landscapes with intermediate levels of cover (15–30%) and higher rainfall (>500 mm). Importantly, a marked non-linear decline in the incidence of A. miquelii in low-cover landscapes implies a disproportionate loss of this species in remaining wooded vegetation, greater than that attributable to decreasing forest cover. The most likely mechanism is the effect of landscape change on the mistletoebird (Dicaeum hirundinaceum), the primary seed-dispersal vector for A. miquelii. Our results are consistent with observations that habitat fragmentation initially enhances mistletoe occurrence in agricultural environments; but in this region, when wooded vegetation fell below a threshold of ~15% landscape cover, the incidence of A. miquelii declined precipitously. Conservation management will benefit from greater understanding of the components of landscape structure that most influence ecological processes, such as mistletoe parasitism and other plant–animal mutualisms, and the critical stages in such relationships. This will facilitate action before critical thresholds are crossed and cascading effects extend to other aspects of ecosystem function.  相似文献   

3.
Perceptual range is the maximum distance from which an animal can perceive the presence of remote landscape elements such as patches of habitat. Such perceptual abilities are of interest because they influence the probability that an animal will successfully disperse to a new patch in a landscape. Furthermore, understanding how perceptual range differs between species may help to explain differential species sensitivity to patch isolation. The objective of this research was to assess the perceptual range of eastern chipmunks (Tamias striatus), gray squirrels (Sciurus carolinensis), and fox squirrels (Sciurus niger) in fragmented agricultural landscapes. Animals were captured in remote woodlots and translocated to unfamiliar agricultural fields. There they were released at different distances from a woodlot and their movements towards or away from the woodlot were used to assess their ability to perceive forested habitat. Observed perceptual ranges of approximately 120 m for chipmunks, 300 m for gray squirrels, and 400 m for fox squirrels, suggest that differences in landscape-level perceptual abilities may influence the occurrence of these species in isolated habitat patches.  相似文献   

4.
Habitat fragmentation strongly affects insect species diversity and community composition, but few studies have examined landscape effects on long term development of insect communities. As mobile consumers, insects should be sensitive to both local plant community and landscape context. We tested this prediction using sweep-net transects to sample insect communities for 8 years at an experimentally fragmented old-field site in northeastern Kansas, USA. The site included habitat patches undergoing secondary succession, surrounded by a low turf matrix. During the first 5 years, plant richness and cover were measured in patches. Insect species richness, total density, and trophic diversity increased over time on all transects. Cover of woody plants and perennial forbs increased each year, adding structural complexity to successional patches and potentially contributing to increased insect diversity. Within years, insect richness was significantly greater on transects through large successional patches (5000 m2) than on transects through fragmented arrays of 6 medium-sized (total area 1728 m2) or 15 small (480 m2) patches. However, plant cover did not differ among patch types and was uncorrelated with insect richness within years. Insect richness was strongly correlated with insect density, but trophic and α diversities did not differ among patch types, indicating that patch insect communities were subsets of a common species pool. We argue that differences in insect richness resulted from landscape effects on the size of these subsets, not patch succession rates. Greater insect richness on large patches can be explained as a community-level consequence of population responses to resource concentration.  相似文献   

5.
Landscape dynamics increasingly challenge agronomists to explain how and why agricultural landscapes are designed and managed by farmers. Nevertheless, agronomy is rarely included in the wide range of disciplines involved in landscape research. In this paper, we describe how landscape agronomy can help explain the relationship between farming systems and agricultural landscape dynamics. For this, we propose a conceptual model of agricultural landscape dynamics that illustrates the specific contribution of agronomy to landscape research. This model describes the relationship between three elements: farming practices, landscape patterns and natural resources. It can stimulate agronomists to deal with research issues in agricultural landscape dynamics and enhance the interdisciplinary integration of farming systems in wider landscape research. On these premises, we discuss the main research issues that will benefit from an active involvement of agronomy, to understand, but also to assess landscape dynamics and to design relevant decision support systems.  相似文献   

6.
In a four year study data on the presence of red squirrel were collected in an agricultural landscape by counting dreys in 49 woods ranging from 0.5 to 14 ha, and differing in quality of habitat and isolation.Logit regression analysis showed that the area per woodlot covered with conifers is a good predictor of squirrel presence for each year and during the whole period, but the significance of the regression decreases with time. During the study the number of woods occupied by red squirrel increased, and smaller woods and those without conifers also became inhabited. This trend is in accordance with the positive effect of time in regression analyses on the presence of the species and on the colonization of woods, and it suggests an increase of squirrel numbers in the area. Addition of several isolation variables in the regression analyses showed significant effects in different years, and the effect of isolation was independent of time. In the first two years the area of habitat around a woodlot, the distance to the nearest woodlot larger than 30 ha, and the density of possible movement corridors have significant effects on the presence of red squirrel.In the last two years, with presumably a high number of squirrels, the (short) distance to the nearest woodlot and also the area of habitat around woods have significant effects. It is concluded that the spatial dynamics of the population can be understood as the outcome of individual spatial behaviour, rather than as the result of metapopulation processes.  相似文献   

7.
We investigated the effects of habitat loss and fragmentation on population functioning. We compared demography (daily and total population sizes) and dispersal (dispersal rate and dispersal kernels) of the bog fritillary butterfly in two 6-km2 landscapes differing in their degree of fragmentation. In 2000, we conducted a Capture-Mark-Recapture experiment in a highly fragmented system in the marginal part of the species distribution (Belgium) and in a more continuous system in the central part of its distribution (Finland). A total of 293 and 947 butterflies were marked with 286 and 190 recapture events recorded in the fragmented and the continuous system respectively. Our results suggest that habitat loss and fragmentation affect dispersal more than demography. Although density was lower in the continuous system, it remains in the yearly range of variation observed on 10 generations in the fragmented system. However, in the fragmented system, the dispersal rate dropped drastically (39 vs. 64%) and females moved longer distances. Patch area had a significant effect on migration in the fragmented system only. From our results, we propose the definition of a new parameter, the minimal patch area (MPA) needed to establish a local population in highly fragmented landscapes.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

8.
9.
Corry  Robert C. 《Landscape Ecology》2019,34(9):2159-2167
Landscape Ecology - Landscape patterns have been measured as a fundamental part of landscape ecology, especially with increasing computational power and availability of landcover data. Among the...  相似文献   

10.
Although often seen as a scale-independent measure, we show that the fractal dimension of the forest cover of the Cazaville Region changes with spatial scale. Sources of variability in the estimation of fractal dimensions are multiple. First, the measured phenomenon does not always show the properties of a pure fractal for all scales, but rather exhibits local self-similarity within certain scale ranges. Moreover, some sampling components such as area of sampling unit, the use of a transect in the estimation of the variability of a plane, the location, and the orientation of a transect all affect, to different degrees, the estimation of the fractal dimension. This paper assesses the relative importance of these components in the estimation of the fractal dimension of the spatial distribution of woodlots in a fragmented landscape. Results show that different sources of variability should be considered when comparing fractal dimensions from different studies or regions.  相似文献   

11.
Forest ecosystems have been widely fragmented by human land use, inducing significant microclimatic and biological changes at the forest edge. If we are to rigorously assess the ecological impacts of habitat fragmentation, there is a need to effectively quantify the amount of edge habitat within a landscape, and to allow this to be modelled for individual species and processes. Edge effect may extend only a few metres or as far as several kilometres, depending on the species or process in question. Therefore, rather than attempting to quantify the amount of edge habitat by using a fixed, case-specific distance to distinguish between edge and core, the area of habitat within continuously-varying distances from the forest edge is of greater utility. We quantified the degree of fragmentation of forests in England, where forests cover 10 % of the land area. We calculated the distance from within the forest patches to the nearest edge (forest vs. non-forest) and other landscape indices, such as mean patch size, edge density and distance to the nearest neighbour. Of the total forest area, 37 % was within 30 m and 74 % within 100 m of the nearest edge. This highlights that, in fragmented landscapes, the habitats close to the edge form a considerable proportion of the total habitat area. We then show how these edge estimates can be combined with ecological response functions, to allow us to generate biologically meaningful estimates of the impacts of fragmentation at a landscape scale.  相似文献   

12.

Context

Agroecosystems are dynamic, with yearly changing proportions of crops. Explicit consideration of this temporal heterogeneity is required to decipher population and community patterns but remains poorly studied.

Objectives

We evaluated the impact on the activity-density of two dominant carabid species (Poecilus cupreus and Anchomenus dorsalis) of (1) local crop, current year landscape composition, and their interaction, and (2) inter-annual changes in landscape composition due to crop rotations.

Methods

Carabids were sampled using pitfall-traps in 188 fields of winter cereals and oilseed rape in three agricultural areas of western France contrasting in their spatial heterogeneity. We summarized landscape composition in the current and previous years in a multi-scale perspective, using buffers of increasing size around sampling locations.

Results

Both species were more abundant in oilseed rape, and in landscapes with a higher proportion of oilseed rape in the previous year. P. cupreus abundance was negatively influenced by oilseed rape proportion in the current year landscape in winter cereals and positively by winter cereal proportion in oilseed rape. A. dorsalis was globally impacted at finer scales than P. cupreus.

Conclusions

Resource concentration and dilution-concentration processes jointly appear to cause transient dynamics of population abundance and distribution among habitat patches. Inter-patch movements across years appear to be key drivers of carabids’ survival and distribution, in response to crop rotation. Therefore, the explicit consideration of the spatiotemporal dynamics of landscape composition can allow future studies to better evidence ecological processes behind observed species patterns and help developing new management strategies.
  相似文献   

13.
Fire regimes often vary at fine spatial scales in response to factors such as topography or fuels while climate usually synchronizes fires across broader scales. We investigated the relative influence of top-down and bottom-up controls on fire occurrence in ponderosa pine (Pinus ponderosa) forests in a highly fragmented landscape at Mount Dellenbaugh, in northwestern Arizona. Our study area of 4,000?ha was characterized by patches of ponderosa pine forest in drainages that were separated by a matrix of pinyon?Cjuniper woodlands, sagebrush shrublands, and perennial grasslands. We reconstructed fire histories from 135 fire-scarred trees in sixteen 25-ha sample sites placed in patches of mature ponderosa forest. We found that, among patches of ponderosa forest, fires were similar in terms of frequency but highly asynchronous in terms of individual years. Climate synchronized fire but only across broader spatial scales. Fires occurring at broader scales were associated with dry years that were preceded by several wet years. The remarkable level of asynchrony at finer scales suggests that bottom-up factors, such as site productivity and fuel continuity, were important in regulating fire at Mount Dellenbaugh. Understanding where bottom-up controls were historically influential is important for prioritizing areas that may best respond to fuel treatment under a warming climate.  相似文献   

14.
Although the role of habitat fragmentation in species declines is well recognised, the effect of habitat quality on species distributions is often studied using presence–absence models that ignore metapopulation dynamics. We compared three approaches to model the presence–absence of North Island robins in 400 sites among 74 fragments of native forest in a 15,000-ha agricultural landscape in New Zealand. The first approach only considered local habitat characteristics, the second approach only considered metapopulation factors (patch size and isolation), and the third approach combined these two types of factors. The distribution of North Island robins was best predicted by patch isolation, as their probability of occurrence was negatively correlated with isolation from neighbouring patches and from the closest major forests, which probably acted as a source of immigrants. The inclusion of habitat factors gave only a slight increase in predictive power and indicated that robins were more likely to occur in areas with tall canopy, tall understory and low density of young trees. We modelled the effect of isolation using an index of functional patch connectivity based on dispersal behaviour of radio-tracked juveniles, and this functional index greatly improved the models in comparison to classical indices relying on Euclidean distances. This study highlights the need to incorporate functional indices of isolation in presence–absence models in fragmented landscapes, as species occurrence can otherwise be a misleading predictor of habitat quality and lead to wrong interpretations and management recommendations.  相似文献   

15.

Context

Sustaining hydrologic ecosystem services is critical for human wellbeing but challenged by land use for agriculture and urban development. Water policy and management strive to safeguard hydrologic services, yet implementation is often fragmented. Understanding the spatial fit between water polices and hydrologic services is needed to assess the spatial targeting of policy portfolios at landscape scales.

Objectives

We investigated spatial fit between 30 different public water policies and four hydrologic services (surface and groundwater quality, freshwater supply, and flood regulation) in the Yahara Watershed (Wisconsin, USA)—a Midwestern landscape that typifies tensions between agriculture, urban development, and freshwater resources.

Methods

Spatial extent of water policy implementation was mapped, and indicators of hydrologic services were quantified for subwatersheds using empirical estimates and validated spatial models.

Results

We found a spatial misfit between the overall spatial implementation of water policy and regions of water quality concern, indicating a need for better targeting. Water quality policies can also be leveraged to protect other hydrologic services such as freshwater supply and flood regulation. Individual policy application areas varied substantially in their spatial congruence with each hydrologic service, indicating that not all services are protected by a single policy and highlighting the need for a broad spectrum of policies to sustain hydrologic services in diverse landscapes. We also identified where future policies could be targeted for improving hydrologic services.

Conclusions

Joint spatial analysis of policies and ecosystem services is effective for assessing spatial aspects of institutional fit, and provides a foundation for guiding future policy efforts.
  相似文献   

16.
Landscape Ecology - Road infrastructure construction is integral to economic development, but negatively affects biodiversity. To mitigate the negative impacts of infrastructure, various types of...  相似文献   

17.

Context

Protected areas are a cornerstone of the global strategy for conserving biodiversity, and yet their efficacy in comparison to unprotected areas is rarely tested. In the highly fragmented forests of temperate regions, landscape context and forest history may be more important than protection status for plant species diversity.

Objectives

To determine whether there are differences in plant diversity between protected areas and private lands while controlling for landscape context, forest age, and other important factors.

Methods

We used a database of 156 one-hectare forest plots distributed over 120,000 km2 in the fragmented forests of southern Ontario to test whether protected areas and private forests differed in native species richness, relative abundance of exotic species, and the probability of finding species of conservation concern.

Results

Plots with more forest on the surrounding landscape had higher native species richness, lower abundance of exotic species, and greater probability of supporting at least one species of conservation concern. Young forests tended to have higher abundance of exotics, and were less likely to support species of conservation concern. Surprisingly, privately owned forests had greater native species richness and were more likely to support species of conservation concern once these other factors were accounted for. In addition, there were significant interactions between ownership type, forest history, and landscape context.

Conclusions

Our results highlight the importance of privately owned forests in this region, and the need to consider forest history and landscape context when comparing the efficacy of protected areas versus private land for sustaining biodiversity.
  相似文献   

18.
Context

Urbanization is a substantial force shaping the genetic and demographic structure of natural populations. Urban development and major highways can limit animal movements, and thus gene flow, even in highly mobile species. Characterizing varying species responses to human activity and fragmentation is important for maintaining genetic continuity in wild animals and for preserving biodiversity. As one of the only common and wide-ranging large wild herbivores in much of urban North America, deer play an important ecological role in urban ecosystems, yet the genetic impacts of development on deer are not well known.

Objectives

We assessed genetic connectivity for mule deer to understand their genetic response to habitat fragmentation, due to development and highway barriers, in an increasingly urbanized landscape.

Methods

Using non-invasive sampling across a broad region of southern California, we investigated genetic structure among several natural areas that were separated by major highways and applied least-cost path modelling to determine if landscape context and highway attributes influence genetic distance for mule deer.

Results

We observed significant yet variable differentiation between subregions. We show that genetic structure corresponds with highway boundaries in certain habitat patches, and that particular landscape configurations more greatly limit gene flow between patches.

Conclusions

As a large and highly mobile species generally considered to be well adapted to human activity, mule deer nonetheless showed genetic impacts of intensive urbanization. Because of this potential vulnerability, mule deer and other ungulates may require further consideration for effective habitat management and maintenance of landscape connectivity in human-dominated landscapes.

  相似文献   

19.
An understanding of how individual species are able to persist and move within fragmented landscapes is critical for elucidating the effects of fragmentation and aiding in the management of species. Here, we studied movement behaviour of the dasyurid Antechinus flavipes in a heavily fragmented landscape using trapping and radiotracking. We assessed the ability of animals to move within and amongst small (<6 ha) remnants and make use of the matrix, and investigated how females used the available space within remnants. Seventeen between-remnant movements were detected from 428 recaptures, ranging in length from 30 to 720 m and averaging 352 m. Most were by adult males during the breeding season, with 40% more than 500 m. Landscape types traversed would have included exotic pine plantations, open grazed areas and roads. Between-site movements of juveniles were only detected on three occasions. However, few young males were captured as adults, suggesting high dispersal rates and considerable matrix use. Conversely, despite high female recapture rates, again only three between-site movements were recorded. Radiotracking further indicated that females confined foraging to remnants, with occasional forays to isolated trees in paddocks. Female home range areas were similar for remnants and forest (0.04–0.66 ha). A. flavipes is clearly able to persist in very small patches of native vegetation in the landscape studied here. Its long-term persistence appears dependent on the ability of females to maintain a presence in the small remnants, and of unrelated males to move between remnants to breed with resident females. This study illustrates the importance of recognising the occurrence of metapopulations in fragmented landscapes for conservation management.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号