首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both the ion accumulation on cation exchange resin and the transformation of test vermiculite in situ have been used to identify current processes in acid forest soils. We used such test materials to study weathering in a toposequence Dystric Luvisol–Spodo‐Dystric Cambisol on loess under deciduous forest in Belgium. The resin and a trioctahedral vermiculite were inserted for 2 years in the major horizons, down to a depth of 60 cm. The cation accumulation on the resin revealed that four main acid‐consuming systems are currently active in the toposequence. With decreasing acid neutralizing capacity, these systems are in the Luvisols: (i) the pool of exchangeable bases, (ii) the Al‐bearing minerals controlling the Al concentration in the liquid phase; and in the podzolized Cambisols: (iii) the less weatherable K‐bearing minerals, (iv) the Mg‐bearing phyllosilicates made free of Al interlayers in complexing conditions. The loss of cation exchange capacity in the test vermiculite is related to Al interlayering. However, this process masks a significant interlayer accumulation of magnesium, which is generated by the weathering of the test mineral itself. The largest interlayer accumulation of Mg occurs in the podzolized Cambisol, suggesting more intense weathering of the test vermiculite in this soil.  相似文献   

2.
Surface podzolization involves the migration of metal–humus complexes to a depth of a few centimetres. In acid soils derived from loess, this process has been diagnosed mainly by morphological observation. We investigated this process in a toposequence of Luvisols and Cambisols on loess using selective extraction and mineralogical data as well as characteristics of the leaf litter. The humus type (O and OAh horizons) is a moder in the three Luvisols and one of the Cambisols, whereas it is a fibrimor in the two other Cambisols. The contents in total alkaline and alkaline‐earth cations range from 35 to 60 cmolc kg?1 in the fibrimor and from 40 to 90 cmolc kg?1 in the moder humus. In the two Cambisols with fibrimor smectite occurs in the clay fraction of the Ah horizon; Fe–humus complexes seem to have moved, but no more than 9 cm, from the Ah to the AB horizon beneath. Relative to the Ah horizon, the upper part of the AB has larger tetraborate‐extractable Fe/Al ratio and optical density of the oxalate extract. Such features converge to diagnose surface podzolization in the Cambisols with fibrimor. However, they were not detected in the Cambisol and Luvisols with moder. In the two Cambisols with fibrimor, surface podzolization is consistent with (i) their smaller iron content, (ii) their more advanced weathering stage and (iii) their lower acid neutralizing capacity.  相似文献   

3.
Morphogenetic features of soils on the selected plots in the Cat Tien National Park in southern Vietnam have been studied with the use of a set of morphological, analytical, and instrumental methods. The lithological factor and topographic position play the leading role in the development of the particular genetic soil features. The soils can be subdivided into four groups according to these factors. The soils developing from volcanic deposits with a predominance of tephra can be classified as thin clayey brown tropical soils (Dystric Skeletic Rhodic Cambisols (Clayic)), and the soils developed from less weathered colluvial derivatives of basalts with some admixture of tephra can be classified as dark-humus clayey tropical soils (Skeletic Greyzemic Umbrisols (Clayic)). Very poor soils developed from the eluvium of argillites are classified as thin weakly developed clayey tropical soils (Dystric Regosols (Clayic)). The soils forming from the alluvial sediments of different textures are classified as alluvial loamy sandy soils (Dystric Fluvisols (Arenic, Drainic)) and as alluvial clay loamy soils (Eutric Fluvisols (Episiltic, Endoclayic)).  相似文献   

4.
New and previously published data on the soils of western Georgia are generalized, and traditional soil names are correlated with the units of the World Reference Base for Soil Resources. It is argued that krasnozems (red ferrallitic soils) can be attributed to the group of Nitisols (the soils characterized by intense weathering (ferralization) and having shiny ped faces in the nitic horizon); yellow and yellow-brown soils (zheltozems), to the group of Luvisols (the soils with relatively high adsorption capacity in the eluvial horizons and with the horizon of the illuvial accumulation of clay); yellow-podzolic (zheltozem-podzolic) soils, to Alisols (slightly acid soils with the low adsorption capacity, poor aggregation of the upper horizons, low-activity (kaolinite) clay, and with the horizon of clay accumulation (argic horizon)); brown forest soils, to Cambisols (the soils with the cambic horizon characterized by some alteration of the lithogenic texture and structure into the pedogenic texture and structure); and mountainous forest-meadow and meadow soils, to Umbrisols (the soils with the dark-colored unsaturated umbric horizon).  相似文献   

5.
Abstract

Eight pedons representing the major soils found within the Guinea Savanna region of northern Nigeria were studied with respect to their important morphological, physical, chemical, and other characteristics, and their suitability for sustainable agricultural production was evaluated. The most important soil characteristics observed for separating the soils into mapping units include presence or absence of petroferric contact, effective soil depth especially to hardpan layer, gravel and subsoil clay content. Dominant pedogenic processes, which influence the rate of soil development in the area, include plinthization, clay eluviation‐illuviation, iron (Fe)‐oxyhydroxide release (lateral movement and enrichment), eolian deposition, and leaching. According to the USDA system of classification, the soils (MU‐EDA) in the summit to upper slope are classified as Lithic Haplustepts, those (MU‐EDB) at the midslope are Typic Haplustepts, the MU‐EDC (lower slope soils) as Dystric Haplustepts, and the MU‐EDD (soils at the valley floors) as Oxyaquic Haplustepts. In the FAO/UNESCO system, a typical toposequence in the area consists of Dystric Cambisols (CMd) petroferric phase (MU–EDA and EDB), Dystric Cambisols (MU‐EDC), and Gleyic Cambisols (CMg) for the MU‐EDD mapping unit. The land capability and fertility capability classes of the soils were also established. The MU‐EDA, EDB, EDC, and EDD soil units were grouped into land capability class IVes, IIIes, IIs, and Vw and fertility capability class L”Rdk (6–8%), Ldehk (3–5%), Ldh, and Lgehk, respectively.  相似文献   

6.
《CATENA》2001,43(3):177-189
Soil utilization has, for many years, strongly influenced the properties of soils in the undulating terrain of the Lublin Upland. Population increase and suitability of the soils (particularly Luvisols, Cambisols and Chernozems derived from loess and loess-like formations) for arable agriculture were the main reasons for deforestation. This led to erosion, which caused changes in soil morphology and the development of a mosaic soil cover. Accelerated erosion was strongest on slopes exceeding 18%. It resulted in selective loss of clay. The main changes in silty soils developed from loess and loess-like deposits occurred in the first few decades after cultivation started. They included a decrease in organic matter content from an average of 2.3% organic C in the forest soils to about 1% in the arable soils. No further changes in humus content were observed, but the proportion of fulvic acids increased at the expense of humic acids. The pHKCl rate decreased at the slope foot from about 5.8 to 5.0. Morphological changes in rendzinas were much lower than in the soils derived from loess. We do not expect big changes in these soils in the next 100 years if their use remains the same.  相似文献   

7.
Structured subsoil horizons are characterized by biopores and shrinkage cracks, which may serve as preferential flow paths. The surfaces of cracks and biopores may be coated by clay‐organic material. The spatially‐distributed organic matter (OM) composition at such structural surfaces was studied at the millimetre scale using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy in the mid‐infrared range (MIR). Intact biopores such as earthworm burrows and root channels, and crack surfaces of nine subsoil horizons were analysed. The samples were from arable and forest Luvisols, one Regosol, one Stagnosol and Cambisols developed from loess, till, mudstone and limestone. For better comparison between soils, the DRIFT signal intensities were corrected for the particle‐size effects. The OM was characterized by the ratio between alkyl‐ (C–H) and carbonyl (C=O) functional groups (C–H/C=O), which represent an index of the potential wettability (PWI) of the OM. The PWI was larger for biopores than for crack surfaces and the soil matrix, indicating a smaller potential wettability of OM at biopore surfaces. The millimetre‐scale spatial variability of OM was especially large for the surfaces of root channels. Samples from till‐derived Luvisols had smaller PWI (with greater potential wettability than surfaces from loess‐derived Luvisols) than other soil types. The mean PWI of the arable Luvisol crack surfaces was less than that of the forest Luvisol samples. The results suggest that the spatial distribution of OM properties at intact structural surfaces may be important for describing sorption and mass transfer processes during preferential flow.  相似文献   

8.
山东主要果园土壤的粘土矿物组成及其吸附特性   总被引:2,自引:0,他引:2  
研究了山东主要果园土壤中粘土矿物的组成、类型及其对P、K和Cu、Zn、Pb金属元素的吸附特性。结果表明:山东主要果园土壤的粘土矿物类型存在着明显的差异,淋溶较强,酸度较大的棕壤(简育湿润淋溶土)中粘土矿物以高岭石占优势,对P的吸附较强,但对K+吸附固定较弱。含游离C aCO3较高的潮土(淡色潮湿雏形土)和褐土(简育干润淋溶土),对P有较强的吸附和沉淀作用,使土壤磷的有效性降低。而砂姜黑土(钙积潮湿变性土)由于含有较高的蒙脱石和1.4 nm过渡矿物,对K+具有很强的吸附和晶穴固定作用,因此砂姜黑土中磷肥和钾肥的有效性均较低,在施肥上应采取集中施肥和保持较湿润土壤环境等措施,以提高养分有效性。砂姜黑土和潮土对Cu、Zn、Pb金属元素的吸附显著地大于棕壤和褐土,主要的影响因素是不同土壤的粘粒含量和粘土矿物的类型的差异。同一土壤对Pb的吸附量远远大于对Zn和Cu的吸附量,主要取决于金属元素本身的化学性质和胶体的吸附特性。  相似文献   

9.
Formation of poorly crystallized weathering products in strongly to extremely acid forest soils Poorly crystallized weathering products, formed as a consequence of wide-spread extrem acidification and silicate weathering in forest soils, were examined using X-ray diffraction (XRD) and fluorescence (XRF), scanning electron microscopy (SEM, EDXRA) and chemical analyses. The investigations were carried out on five extremely acid forest soils (different Luvisols, a Gleyic Luvisol and a Luvic Podzol) derived from different parent materials (loess, sand loess, glacial sands/loam) in Northrhine Westfalia and Schleswig-Holstein. The results reveal an intense destruction of clay minerals and other silicates in the extremely acid topsoils leading to an accumulation of poorly crystallized to amorphous compounds. These weathering products occur predominantly as silicic coatings on the surface of soil aggregates or as small spherical precipitates on mineral surfaces. Besides Si they contain small amounts of Al and Fe.  相似文献   

10.
辽宁省西部是低山丘陵区,年平均温度7.1℃,年平均降雨量400—500毫米,降雨集中在夏季,具有明显的大陆性气候特征,干燥度小于1,属半干旱类型.植被为油松柞木和草原灌木丛林.土壤属棕色森林土向栗钙土过渡的褐土地带.母质主要为花岗片麻岩风化物.山麓缓坡和河谷两岸为黄土丘陵.在黄土沉积物覆盖层下,常见红色风化壳露头,即红色粘土层.此外,并有松软易风化岩层,如砂岩、页岩和变质岩等.本区近百年来,由于自然植被受到严重破坏,大量水土流失,土壤侵蚀严重,土壤有机质含量低,成为辽宁省的低产区.因此,鉴定本区不同母质的土壤矿物胶体组成及其特征,不仅可以研究这一特定自然条件下土壤矿物的转化和形成,并且有助于了解土壤特性和肥力特征.  相似文献   

11.
皖南山地土壤系统分类研究   总被引:8,自引:2,他引:8  
选取皖南四座山地土壤垂直带中 1 9个土壤剖面 ,研究了土壤成土环境和形成特点。根据《中国土壤系统分类 (修订方案 )》和《中国土壤系统分类———理论·方法·实践》 ,鉴定了诊断层和诊断特性 ,确定供试剖面在中国土壤系统分类中的归属。自山下到山上依次为湿润淋溶土 (伴有湿润雏形土 )———常湿淋溶土 (伴有常湿雏形土 )———正常新成土亚纲。与不同分类系统中土壤类别归属作了参比 ,同时也与福建、江西山地土壤作了比较。  相似文献   

12.
Surface and buried Andosols and buried Luvisols of the Nevado de Toluca Late Quaternary tephra-paleosol sequence (Central Mexico) were studied to show whether these soils present an evolutionary sequence and to determine the pedogenic mechanisms and environmental factors involved in the evolutionary process. Micromorphological observations and mineralogical composition of fine sand and clay fractions were used to detect type and succession of soil-forming process. Some of the buried Andosols, defined as “intergrade” Andosols, have a predominantly blocky structure, humus-depleted areas, redoximorphic features and thin clay coatings in Ah horizons. Clay fractions of buried Andosols contain halloysite besides amorphous components, whereas in modern Andosols, allophane is dominant. Luvisols have micro-areas with granular structure and abundant phytoliths in the groundmass of Bt horizons assumed to be the relict Andosol features. Luvisol clay fractions are dominated by halloysite and kaolinite. Primary minerals show micromorphological weathering features in all studied soils being stronger in Luvisols; however, even in Luvisols, sand fractions consist mostly of unstable volcanic silicates. We hypothesise that the studied profiles form an evolutionary sequence: Andosols–“intergrade” Andosols–Luvisols; the soil transformation is supposed to be linked to progressive crystallisation of 1:1 clay minerals. Comparing the Nevado de Toluca paleosol properties with the existing data on volcanic soil climo- and chronesequences and assessing the regional paleopedological and lacustrine records of Quaternary paleoclimates, we concluded that wet/dry climatic oscillations took place during the formation of the studied paleosols. Rapid crystallisation of 1:1 minerals occurred during dry phases, which speeded up the Andosol to Luvisol transformation and made it independent from the primary mineral weathering status. The Andosol to Luvisol transformation accelerated by climatic fluctuations is thought to be a common soil evolutionary pathway in the subtropical and tropical regions of recent volcanism, which suffered contrasting precipitation oscillations in the Quaternary.  相似文献   

13.
The soils of montane cloud forests (MCF) are still insufficiently studied. A number of researchers report Podzols to be the main soil group for MCF ecosystems; however, a great deal of contradictory data exists. We studied an altitudinal sequence of soils formed on ferrous chlorite shale under natural MCF vegetation in Sierra Juárez, Southern Mexico, from 1500 to 2500 m asl. The soils of the upper part of the toposequence were Folic Stagnic Podzols, with inclusions of Folic Stagnosols in local depressions, while the soils of the lower part of the toposequence were Folic Cambisols (Humic, Hyperdystric). All the soils in the toposequence were extremely acid, and had thick organic surface horizon. Mineral horizons of all soils were poor both in exchangeable and total reserves of bases; the bases were concentrated mainly in organic topsoil. With decreasing altitude both the thickness of albic horizons, the depth of the maximum acid oxalate-extractable Fe and Al concentrations, and the difference in clay content between the eluvial and illuvial horizons decreased. In the upper part of the toposequence the composition of soil clays was similar to that of parent material (chlorite and mica), with some mixed-layered 2:1 minerals. However, gibbsite and kaolinite were also present in the soils of the other site within the same upper MCF belt. The phenomenon was ascribed to parent material heterogenity. In the medium and lower parts of the toposequence gibbsite and kaolinite were the dominant minerals. We consider that the main pedogenic processes in the study area are raw humus accumulation, weathering in situ, podzolization, and iron reduction due to water stagnation in mineral topsoil. The intensity of weathering decreases, while the extent of water stagnation increases with altitude. To a great extent the genesis and altitudinal distribution of the soils in the MCF depends on parent material.  相似文献   

14.
An evaluation of the factors determining the occurrence and the properties of soils with low permeability occurring in vast areas in S Portugal was carried out taking into account the terrain morphology and the geology of the region. This paper deals with the variation patterns of the physical and chemical characteristics of soils from several soil toposequences that occur under different gradient slopes and on different parent rocks. Spatial variation of soil properties mainly depends on the composition of their cation‐exchange complex, as the role of other factors, such as the mineralogy of the clay fraction, were of minor importance. There is often a stronger increment of Na and/or Mg than of Ca with depth, causing a variable degree of sodicity in some of these soils, to which waterlogging tendency of their upper horizons is related. Though the occurrence of these features is determined by the nature of the parent rock, their degree of expression varies primarily according to the topographic position of soils. Therefore, a catenary distribution including nonsodic Cambisols or Luvisols in the hillcrests and Stagnic Solonetz or Sodic Luvisols or Sodic Stagnosols in the topographic lows is common. Such soil characteristics are of utmost importance for irrigation suitability and management of these soils, and for environmental impacts assessment, as the region is vulnerable to desertification.  相似文献   

15.
Structural characterization of soil clay minerals often remains limited despite their key influence on soil properties. In soils, complex clay parageneses result from the coexistence of clay species with contrasting particle sizes and crystal chemistry and from the profusion of mixed layers with variable compositions. The present study aimed to characterize the mineralogy and crystal chemistry of the <2 μm fraction along a profile typical of soils from Western Europe and North America (Neo Luvisol). X‐ray diffraction (XRD) patterns were interpreted using: (i) the combination of XRD pattern decomposition and indirect identification from peak positions commonly applied in soil science; and (ii) the multi‐specimen method. This latter approach implies direct XRD profile fitting and has recently led to significant improvements in the structural characterization of clay minerals in diagenetic and hydrothermal environments. In contrast to the usual approach, the multi‐specimen method allowed the complete structural characterization of complex clay parageneses encountered in soils together with the quantitative analysis of their mineralogy. Throughout the profile, the clay paragenesis of the studied Neo Luvisol systematically includes discrete smectite, illite and kaolinite in addition to randomly interstratified illite‐smectite and chlorite‐smectite. Structural characteristics of the different clay minerals, including the composition of mixed layers, did not vary significantly with depth and are thus indicative of the parent material. The relative proportion of the <2 μm fraction increased with increasing depth simultaneously with smectite relative proportion. These results are consistent with the leaching process described for Luvisols in the literature.  相似文献   

16.
武夷山土壤形成特点与系统分类   总被引:15,自引:0,他引:15  
陈健飞 《土壤通报》2000,31(3):97-101
选取武夷山土壤垂直带中 6个代表性剖面 ,研究了土壤的形成条件和特点 ;按照《中国土壤系统分类 (修订方案 )》 ,鉴定了诊断层和诊断特性 ,检索了土壤系统分类名称 ;随海拔由低到高 ,依次为湿润富铁土—湿润淋溶土—常湿淋溶土—常湿雏形土等亚纲 ;并与发生学分类、美国土壤系统分类 (USST)以及世界土壤资源参比基础 (WRB)等不同分类系统中的土壤类别归属作了参比  相似文献   

17.
秦岭北坡土壤发生特性与系统分类   总被引:10,自引:2,他引:10  
常庆瑞  雷梅  冯立孝  闫湘 《土壤学报》2002,39(2):227-235
根据野外调查资料和典型土壤剖面理化性质 ,包括室内化验数据综合分析表明 :秦岭北坡土壤的主要发生特性随海拔高度呈有规律的变化 ,依照《中国土壤系统分类 (修订方案 )》检索 ,土壤垂直带谱结构为 :土垫旱耕人为土—简育干润淋溶土—简育湿润淋溶土—酸性湿润雏形土—暗沃寒冻雏形土—暗瘠寒冻雏形土  相似文献   

18.
In the course of chemical weathering, rockforming minerals release constituent ions changing into secondary minerals by alteration or recrystallization. Minerals formed in this way are primarily of colloidal nature, and are the most active portion in soils together with humus. The chemical weathering has dual meaning for soil fertility, that is, it provides soils with nutrients released and inorganic colloids formed, namely clay minerals. It has been well established that climate, vegetation, parent material, topography and time influence the formation of soils. Generally speaking, Japanese soils have developed under a warm and humid climate which causes leaching of released bases resulting in acid reactions, and a predominance of kaolin in soils. Accumulated information pertaining to Japanese soils, however, has disclosed that physical, chemical, and mineralogical properties of parent rocks are still obviously reflected in the clay minerals of soils.  相似文献   

19.
Red-Yellow soils are widely developed on terraces and hilly lands in the south-western half of Japan. They do not show any evidence of bleaching in the lower part of the A horizon, and are characterized by an extremely strong acid reaction, and a very low base-status9). There are few studies on clay mineralogy of Red-Yellow soils in Japan. Egawa et al4). have reported on clay mineralogy of soils derived from the Pleistocene and the Tertiary sediments most of which may be regarded as Red-Yellow soils. Matsui and Katô10) have described clay minerals of Red-Yellow soils derived from the Pleistocene sediment in the environs of Shinjobara, Shizuoka Prefecture. These investigations indicated that clay minerals of Red-Yellow soils derived from the Pleistocene sediments consisted mainly of kaolin minerals, whereas those of Red-Yell ow soils derived from the Tertiary sediments were of the kaolin-illite association.  相似文献   

20.
Potassium (K) release from sources that are not initially exchangeable is attributed to depletion of interlayer K of micas and clay minerals or weathering of feldspars. The aim of the present study was to estimate the K release from interlayer K. Soil samples from 17 field experiments in ley on a range of mineral soils in Norway were used in the study. The change in K‐fixation capacity was used as an estimate of depletion of interlayer K. It was assumed that the increase in K‐fixation capacity during 3 yr of cropping was equivalent to the amount of K depleted from the interlayer positions. Mean K fixation increased in the majority of the soils during 3 yr of grass cropping both with and without K application. The increase in K fixation indicated that without K application, the K uptake from interlayer K amounted to 43%, 28%, and 26% of the K yield for clay soils, high‐K sandy soils, and low‐K sandy soils, respectively. Including K uptake from exchangeable K in the topsoil and from subsoil, the explained K uptake amounted to 79%, 69%, and 81% for the three groups of soil, respectively. Simple linear‐regression analyses showed that the change in K fixation during 3 yr of grass cropping was best explained by the percentage of clay in the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号