首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
任慧  丁磊  赵财 《中国农学通报》2021,37(35):57-64
风蚀是干旱区农田生态系统中土壤质量降低的关键因素,冬季作物覆盖可有效减少农田的土壤风蚀。通过探究河西灌区不同冬季覆盖作物轮作复种绿肥对农田土壤碳氮影响,以期为构建合理的周年覆盖轮作模式提供理论依据。本研究在热量一熟有余两熟不足的河西灌区春小麦种植区把冬小麦、冬油菜两种冬季覆盖作物和绿肥还田处理嵌套种植形成:(1)春小麦—冬油菜—箭筈豌豆(WCP)、(2)春小麦—冬小麦—箭筈豌豆(WWP)、(3)春小麦—箭筈豌豆(WP)、(4)春小麦—春小麦(W,CK)不同种植模式,在360 kg/hm2 (N2)、270 kg/hm2 (N1)、0 kg/hm2 (N0) 3个施氮水平下,研究不同轮作模式对农田土壤碳、氮含量的提升效应。结果表明:在同一种植模式下土壤有机碳、土壤可溶性有机碳、热提取态有机碳、硝态氮、氨态氮、微生物量碳氮含量随施氮量的增加而增加,但在氮肥减量(N1)的条件下,与常规施氮(N2)相比较WCP轮作模式土壤有机碳、土壤可溶性有机碳、热提取态有机碳含量及微生物量氮无显著降低。相同施氮条件下,轮作模式间差异不显著,但与CK间差异显著;其中,0~10 cm土层,WCP轮作模式土壤有机碳、土壤可溶性有机碳、土壤热提取态有机碳、硝态氮、氨态氮、微生物量碳氮含量平均较CK提高5.42%、9.78%、10.96%、20.51%、15.76%、18.94%;10~30 cm土层,提高9.54%、7.06%、12.99%、20.12%、16.51%、18.16%。因此,春小麦轮作冬油菜复种绿肥模式在氮肥减量条件下仍对农田土壤碳氮有明显的提升效应,为河西灌区良好的周年覆盖作物轮作模式。  相似文献   

2.
Many studies have been conducted in examining the effects of N fertilizers on cereal yields and nitrogen (N) uptake, the effects of different kind of crop residues and their management practices on cereal yield, nitrogen uptake and simple N balance have not been studied extensively. We studied the effects of antecedent leguminous (white clover and field pea) and non-leguminous (perennial ryegrass and winter wheat) crop residues, each subjected to four different residue management practices (ploughed, rotary hoed, mulched and burned) on grain yield, nitrogen uptake by succeeding winter wheat crops, soil N mineralization and simple N balance. Grain yield and N uptake by the first wheat crop were significantly higher under leguminous than non-leguminous residues, following the order of white clover>pea>ryegrass>wheat. Grain yield under the mulched treatment was significantly lower than those of other management treatments due to lower plant population established. While N uptake was significantly lower under rotary hoed and mulched treatments as compared to other treatments, mulching had a positive residual effect on the grain yield of second wheat crop. Similar to grain yield, total soil N mineralization was greater under leguminous residues during the growing period of first wheat crop and was significantly correlated with C/N ratio of the residues. The calculated simple N balance showed that positive N balances occurred under white clover after one wheat crop when N inputs from only crop residue tops was considered. This also occurred even after two wheat crops when total N inputs from crop residues (tops+roots) were considered. However, with pea, the positive N balance occurred only after the first wheat crop when total N input from crop residues (tops+roots) were considered. These calculations demonstrated the important contribution of root-N to the N economy of the cropping system, which was largely ignored in most studies. The burning of residues showed no significant advantage over other residue management treatments. This was also evident from N balance calculations, which showed, in general, N balance was lower or more negative under residue-burned treatment as compared with other treatments. Overall, present results showed that it is beneficial to retain crop residues in the field, even though non-leguminous residues may cause substantial soil N immobilization initially reducing N availability to the first wheat crop, this N eventually became available to subsequent wheat crops and also increase the fertility of soils in the long-term. Thus, N inputs from crop residues are far more beneficial to the cropping system as compared to the burning of crop residues in the field or their removal from the field.  相似文献   

3.
The ability to accurately estimate crop planting date and planting progression has major implications in crop management, crop model applications, and in developing adaptation strategies for future climate change. The objectives of this study are: 1) identify major factors that determine planting initiation and progression of six major crops in the U.S. and 2) develop a spatially explicit planting initiation and progression model. The crops that were evaluated are maize (Zea mays), cotton (Gossypium hirsutum), rice (Oryza sativa), sorghum (Sorghum bicolor), soybean (Glycine max), and winter wheat (Triticum aestivum). County-level daily planting data from 2005 to 2015 for representative states were obtained from USDA Risk Management Agency. For the five summer crops, the earliest planting gradually shifts to later dates with increasing latitude and elevation. The trend is reversed for winter wheat, with planting initiation shifting to earlier dates from south to north and from low to high elevation. A minimum planting temperature threshold was established for the five summer crops, which decreases from south to north and from low to high elevation. A maximum planting temperature threshold was established for winter wheat, which decreases from south to north but increases from low to high elevation. A spatially explicit temperature model as a function of latitude, longitude and elevation was established to predict planting initiation, while a soil texture-based soil wetness index predicts planting delays due to excessive precipitation. The model was calibrated with 2005–2009 data and validated with 2010–2015 data; it provided sound goodness of fit for planting initiation and weekly planting progression. The spatially explicit model for planting initiation and progression could be used to guide crop production planning and to improve the planting date and progression algorithms in crop models for regional simulation analysis.  相似文献   

4.
Advances in scientific understanding of the plant and soil behaviour in a cultivated field led to the design of numerous soil–crop models simulating crop growth. The frequent low predictive quality of these models is linked to uncertainties in inputs, parameters and equations. The AZODYN crop model predicting wheat grain yield and grain protein content was previously developed to support decision for N management of conventional and organic wheat crops. This paper outlines a sequential approach to improve the predictions of the AZODYN model by testing various formalisms. This study is based on the comparison of 38 versions of the model assessed in multi-environment trials carried out under conventional or low-input conditions. This paper describes and discusses the methodology. The results show that the predictive value of grain yield and grain protein content could be largely improved without increasing model complexity.  相似文献   

5.
Winter wheat growth and yield was observed in two sets of field experiments performed at the Experimental Farm of Padova University in Legnaro, over seven years beginning in 1981. A spring wheat model in which leaf area development was calculated as a function of temperature and biomass accumulation was utilized. The final number of leaves in each season was calculated based on a previous winter wheat model and the biomass accumulation was decreased when average daily temperature was below 10 °C. In addition to the two modifications described above, the soil/crop nitrogen submodels were modified so that denitrification was a function of temperature and plant nitrogen uptake rate was sensitive to variations in daily temperature. Nitrogen leached below 60 cm was assumed to be no longer available to the winter wheat crop. The winter wheat model with the soil/crop nitrogen budged resulted in good agreement between the simulated and observed yields (less than 14 % difference existed in 12 of 14 environments). A strong negative correlation (r = -0.74) existed between the simulated yields and the simulated amount of nitrogen leached out of the root zone. Under the conditions of nothern Italy, retention of root zone nitrogen appears to be particularly important in achieving high winter wheat yields.  相似文献   

6.
Field studies on nitrogen dynamics after cultivation of grain legumes Field trials were conducted in order to study the nitrogen dynamics in soil after cultivation of grain legumes and to investigate the possibility of reduction of nitrate leaching due to catch crops or suitable following crops. Accordingly, in 1989/90 soil samples were taken on 12 farms at depths of 0–80 cm in 4 week intervals and analysed for NO3-N. Furthermore, Brassica napus and Sinapis alba were sown after grain legumes on two farms, and at the experimental station Roggenstein field trials were carried out with different catch crops (Sinapis alba, Raphanus sativus, Lolium multiflorum and Pisum sativum) after grain peas. Considerable amounts of nitrogen (100–150 kg N/ha) in the form of crop residues (straw and grains) were left on the fields cultivated with grain legumes. After harvesting, nitrate content in the soil layer 0–80 cm was on grain legume fields almost twice as high as on fields cultivated with winter wheat. During autumn, the soil nitrate contents increased remarkably. In the soil layer 0–80 cm the maximum values rose to 140 kg N/ha after peas, to 120 kg N/ha after faba beans and only to 65 kg N/ha after winter wheat. The more intensive N-mineralization after peas compared to faba beans is due to a lower C/N-ratio of crop residues and an earlier harvest time of 2-3 weeks of peas. In winter extremely high N-leaching was measured on fallow land after cultivation of grain legumes. Cultivation of catch crops makes it possible to retain up to 110 kg N/ha in plant material. Raphanus sativus and Sinapis alba are most suitable for this purpose due to their high N-uptake even when they are sown late. Ploughing up catch crops in autumn results in a fast mineralization of their immobilized nitrogen. This implies the risk of N-leaching into deeper soil layers during winter, depending on the amount of rainfall and water capacity of the soil. Particularly on soils with low water capacity, early N-mineralization needs to be prevented by cultivating catch crops which freeze off or survive in winter. Cultivation of Brassica napus (winter form) after grain legumes leads to an extensive uptake of soil nitrate before the beginning of the seepage period, and therefore almost excludes enhanced N-leaching.  相似文献   

7.
增施有机肥提升作物耐盐能力研究   总被引:3,自引:1,他引:2  
旨在找到提升作物耐盐能力的技术方法。应用桶栽实验研究4 种有机肥于不同水分条件下对盐渍土栽培冬小麦和夏玉米生长发育、生理生态及产量的影响。施用有机肥可有效改善土壤环境,其中禾宜佳有机肥使土壤中总氮、有机质、总菌数分别提高了8.4%、16.7%、55.8%,效果最佳。在土壤含水量高时,施用有机肥可使盐胁迫下小麦、玉米叶片叶绿素含量分别提高约6.9%、5.1%左右;使小麦、玉米生物量最高分别增加60.0%和51.2%;不同有机肥使冬小麦净光合作用最大提高20.8%;冬小麦穗粒数提高了44.4%、千粒重增加24.9%,产量提高61.9%。在土壤含水量低时,以上指标也均有所增加,但增幅不及高含水量下明显。土壤含水量高时,增施有机肥有利于作物在高盐土壤中生长;水分含量低时,增施某些含盐量高的有机肥可能造成土壤盐浓度增加反而增大了对作物危害。在高水分条件下增施有机肥增产效果更佳。  相似文献   

8.
长期定位施肥对土壤氮素矿化与作物产量的影响   总被引:2,自引:0,他引:2  
揭示长期施用有机肥及配施氮肥对非石灰性潮土氮素矿化特性的影响,探索其与作物产量间的关系。以始于_1978年的莱阳长期定位施肥试验为基础,采用田间原位-离子交换树脂法(ISC-IERB)研究了长期定位施肥对土壤氮素矿化特性的影响,并对其与产量进行了相关分析。结果表明:长期施用有机肥及其配施氮肥可显著提高非石灰性潮土全氮、矿质氮、净氮矿化量、冬小麦或夏玉米吸氮量和产量,且在同一有机肥(氮肥)水平下,均随氮肥(有机肥)投入量的增加呈增加趋势,其中高量有机肥配施高量氮肥(M_2N_2)处理的增加幅度最高,冬小麦、夏玉米产量分别为6 803,_1_1 935 kg/hm_2;长期施肥使夏玉米季土壤氮净矿化量、净氮矿化率明显大于冬小麦季,施肥处理(M_1、M_1N_1、M_1N_2、M_2、M_2N_1、M_2N_2)的增幅分别为7.1%-2.7%,16.2%-76.0%;相关分析表明,冬小麦-夏玉米产量与当季冬小麦、夏玉米播前土壤全氮、矿质氮含量、氮净矿化量均存在极显著相关性,但与氮素表观淋失量相关不显著。研究表明,施用有机肥、氮肥是提高土壤供氮潜力、作物产量的有效手段,作物与季节是影响土壤氮素矿化的重要因素。  相似文献   

9.
In organic grain production, weeds are one of the major limiting factors along with crop nitrogen deficiency. Relay intercropping of forage legume cover crops in an established winter cereal crop might be a viable option but is still not well documented, especially under organic conditions.Four species of forage legumes (Medicago lupulina, Medicago sativa, Trifolium pratense and Trifolium repens) were undersown in six organic wheat fields. The density and aerial dry matter of wheat, relay-intercropped legumes and weeds were monitored during wheat-legume relay intercropping and after wheat harvest until late autumn, before the ploughing of cover crops.Our results showed a large diversity of aerial growth of weeds depending on soil, climate and wheat development. The dynamics of the legume cover crops were highly different between species and cropping periods (during relay intercropping and after wheat harvest). For instance, T. repens was two times less developed than the other species during relay intercropping while obtaining the highest aerial dry matter in late autumn. During the relay intercropping period, forage legume cover crops were only efficient in controlling weed density in comparison with wheat sole crop. The control of the aerial dry matter of weeds at the end of the relay intercropping period was better explained considering both legumes and wheat biomasses instead of legumes alone. In late autumn, 24 weeks after wheat harvest, weed biomass was largely reduced by the cover crops. Weed density and biomass reductions were correlated with cover crop biomass at wheat harvest and in late autumn. The presence of a cover crop also exhibited another positive effect by decreasing the density of spring-germinating annual weeds during the relay intercropping period.  相似文献   

10.
Nitrogen (N) deficiency and weed infestation are main factors limiting yield and yield stability in organic wheat. Organic fertilizers may be used to improve crop performance but off-farm input costs tend to limit profitability. Instead, forage legumes may be inserted into the crop rotation to improve the N balance and to control weed infestation. In opposition to simultaneous cropping, relay intercropping of legumes in organic winter wheat limits resource competition for the legume cover crop, without decreasing the performance of the associated wheat.The aim of this study is to evaluate the effect of spring organic fertilization on the performance of intercropped legumes and wheat, and on services provided by the legume cover.Two species of forage legumes (Trifolium pratense L. and Trifolium repens L.) were undersown in winter wheat (Triticum aestivum L. cv Lona) in five organic fields during two consecutive crop seasons. Organic fertilizer was composed of feather meal and applied on wheat at legume sowing. The cover crop was maintained after the wheat harvest and destroyed just before sowing maize.Spring organic nitrogen fertilization increased wheat biomass (+35%), nitrogen (+49%), grain yield (+40%) and protein content (+7%) whatever the intercropping treatment. At wheat harvest, red clover biomass was significantly higher than white clover one (1.4 vs. 0.7 t ha−1). Nitrogen fertilization decreased forage legume above-ground biomass at wheat harvest, at approximately 0.5 t ha−1 whatever the specie. No significant difference in forage legume biomass production was observed at cover killing. Nitrogen accumulation in legume above-ground tissues was significantly higher for white clover than for red clover. Both red and white clover species significantly decreased weed infestation at this date. Nitrogen fertilization significantly increased weed biomass whatever the intercropping treatment and decreased nitrogen accumulation in both clover species (−12%).We demonstrated that nitrogen fertilization increased yield of wheat intercropped with forage legume while the performance of legumes was decreased. Legume growth was modified by spring fertilization whatever the species.  相似文献   

11.
淮北砂姜黑土地力贡献与培肥技术研究   总被引:4,自引:1,他引:3  
对杨柳点长期定位培肥试验和相关小麦施肥试验资料进行分析,结果表明:地力贡献与小麦施肥产量、地力贡献率之间呈线性正相关,高产田块地力贡献在小麦施肥产量中占主要地位。砂姜黑土地力贡献主要受土壤有机质和速效磷含量的影响,速效钾含量尚不是限制因子。长期连续施肥条件下,不同的土壤养分指标受有机无机配比的影响不同。有机质和氮素养分含量偏低的土壤,要通过增施有机肥加以培肥,磷素或钾素养分偏低的土壤可以通过增施有机肥或化肥来培肥。  相似文献   

12.
The effects of nitrogen (N) availability related to fertilizer type, catch crop management, and rotation composition on cereal yield and grain N were investigated in four organic and one conventional cropping systems in Denmark using the FASSET model. The four-year rotation studied was: spring barley–(faba bean or grass-clover)–potato–winter wheat. Experiments were done at three locations representative of the different soil types and climatic conditions in Denmark. The three organic systems that included faba bean as the N fixing crop comprised a system with manure (stored pig slurry) and undersowing catch crops (OF + C + M), a system with manure but without undersowing catch crops (OF ? C + M), and a system without manure and with catch crops (OF + C ? M). A grass-clover green manure was used as N fixing crop in the other organic system with catch crops (OG + C + M). Cuttings of grass-clover were removed from the plots and an equivalent amount of total-N in pig slurry was applied to the cropping system. The conventional rotation included mineral fertilizer and catch crops (CF + C + F), although only non-legume catch crops were used. Measurements of cereal dry matter (DM) at harvest and of grain N contents were done in all plots. On average the FASSET model was able to predict the yield and grain N of cereals with a reasonable accuracy for the range of cropping systems and soil types studied, having a particularly good performance on winter wheat. Cereal yields were better on the more loamy soil. DM yield and grain N content were mainly influenced by the type and amount of fertilizer-N at all three locations. Although a catch crop benefit in terms of yield and grain N was observed in most of the cases, a limited N availability affected the cereal production in the four organic systems. Scenario analyses conducted with the FASSET model indicated the possibility of increasing N fertilization without significantly affecting N leaching if there is an adequate catch crop management. This would also improve yields of cereal production of organic farming in Denmark.  相似文献   

13.
Advances in scientific understanding of the plant and soil behaviour in a cultivated field led to the design of numerous soil–crop models simulating crop growth. The frequent low predictive quality of these models is linked to uncertainties in inputs, parameters and equations. The AZODYN crop model predicting wheat grain yield and grain protein content was previously developed to support decision for N management of conventional and organic wheat crops. This paper outlines a sequential approach to improve the predictions of the AZODYN model by testing various formalisms. This study is based on the comparison of 38 versions of the model assessed in multi-environment trials carried out under conventional or low-input conditions. This paper describes and discusses the methodology. The results show that the predictive value of grain yield and grain protein content could be largely improved without increasing model complexity.  相似文献   

14.
Effects of Long-term Fertilizer N Reduction on Winter Grain and Sugar Beet Yields
The results of recent field experiments concerning the effect of long-term N-reduction on the yield and quality of sugar beet, winter wheat and winter barley on plots which had previously had received ample amounts of N are studied in this paper.
The yield and quality of crops harvested on plots where N-dressings had been reduced for 6–8 years were similar to those of crops grown on plots where N-application had been reduced for only 1 year. Grain yield of winter wheat and winter barley grown without any N-application decreased to about 60 % of amounts normally harvested under local conditions with recommended N dressings, whereas the white sugar yield still remained at 90 %. The yields decreased slightly with an increase in the duration of the experiments. Yields of both cereals and beets remained constant within each level of fertilization, even 6 years after inition of trials with 50, 75 and 125 % of locally recommended N dressings.
On plots that did not receive nitrogen fertilization, N-contents of grain were between 1.5 and 1.7 % for winter wheat and 1.0 and 1.6 % N for winter barley. These contents remained constant over a trial period of 6 years. The amount of annual export of 55–91 kg N/ha also remained constant. Limited N availability causes a decrease in grain protein content rather than in grain yield.
Compared to winter grain species, sugar beet (with 74–117 kg N/ha in the beet body) could realize the highest annual export of nitrogen from the plot. Differences in annual N export existing between the various locations of the plots cannot be explained by differences in soil quality. Continuous high yields that were found even without any N-dressings may be explained by asymbiotic N-fixation, deposition of atmospheric N and a progressive decrease in soil N with 17–56 kg N/ha removed from soil resources annually.  相似文献   

15.
Realistic estimation of grain nitrogen (N; N in grain yield) is crucial for assessing N management in crop rotations, but there is little information on the performance of commonly used crop models for simulating grain N. Therefore, the objectives of the study were to (1) test if continuous simulation (multi-year) performs better than single year simulation, (2) assess if calibration improves model performance at different calibration levels, and (3) investigate if a multi-model ensemble can substantially reduce uncertainty in reproducing grain N. For this purpose, 12 models were applied simulating different treatments (catch crops, CO2 concentrations, irrigation, N application, residues and tillage) in four multi-year rotation experiments in Europe to assess modelling accuracy. Seven grain and seed crops in four rotation systems in Europe were included in the study, namely winter wheat, winter barley, spring barley, spring oat, winter rye, pea and winter oilseed rape. Our results indicate that the higher level of calibration significantly increased the quality of the simulation for grain N. In addition, models performed better in predicting grain N of winter wheat, winter barley and spring barley compared to spring oat, winter rye, pea and winter oilseed rape. For each crop, the use of the ensemble mean significantly reduced the mean absolute percentage error (MAPE) between simulations and observations to less than 15%, thus a multi–model ensemble can more precisely predict grain N than a random single model. Models correctly simulated the effects of enhanced N input on grain N of winter wheat and winter barley, whereas effects of tillage and irrigation were less well estimated. However, the use of continuous simulation did not improve the simulations as compared to single year simulation based on the multi-year performance, which suggests needs for further model improvements of crop rotation effects.  相似文献   

16.
麦秸直接还田对作物产量及培肥土壤效应分析   总被引:2,自引:1,他引:1  
为了进一步研究麦秸直接还田对作物产量的影响及培肥土壤效应,寻求适合本区特点的培肥增产模式,进行单施化肥、麦秸还田不施化肥和麦秸还田加施一定量化肥与对照(无麦秸还田、不施肥)进行对比试验。结果表明:麦秸直接还田对后茬作物产量增产效果显著(P<0.05),麦秸还田加施化肥比单一进行麦秸还田对后茬作物产量增产效果极显著(P<0.01),施化肥配施麦秸还田比单施化肥对后茬作物产量增产效果也显著(P<0.05);麦秸直接还田对土壤有机质、全氮、全磷及土壤碱解氮、速效磷和速效钾有不同程度地增加。同时,麦秸直接还田有利于降低土壤容重,增加土壤孔隙度和透水速率,提高土壤微生物和土壤酶活性。麦秸还田加施一定量化肥应大力推广。  相似文献   

17.
Organic farming has become increasingly important in recent decades as the consumer has grown its focus on the food and environmental benefits of the technique. However, when compared to conventional farming systems, organic farm system are known to yield less.Presented in this paper are the results from two organic cropping systems following six years of organic management. Fertilisation management differentiated the two systems; one was fertilised with green manure and commercial organic fertilisers, while the other was fertilised with dairy manure. A conventional cropping system, managed with mineral fertiliser as typical in the southern Piemonte region (Italy), served as the bussiness as usual crop management. The first hypothesis tested related to crop yield variation during the initial phase of organic management; we expected a sharp reduction in the early phase, then minor reductions later on. The second hypothesis tested related to soil fertility variation; we expected enhanced soil fertility under organic management.Overall, the organic system produced less, relative to the conventional system in interaction with year effect. Yield reduction seemed related to the lower soil nutrient availability of organic fertilisers that provided nutrients consequent to mineralisation. Therefore, summer crops are well-suited to manure-fertilised organic farms as mineralisation happens at higher temperatures, as opposed to winter wheat, which is largely reduced in such systems. Commercial organic fertilisers can, however, limit this effect through their high nutrient availability in the winter and early springAlso shown was that soil quality, defined as a general decrease in soil organic carbon (SOC) over time in the three analysed arable systems, can be mitigated by manure additions. Green manuring can maintain SOC and increase total N in soil, only if introduced for a sufficient number of years during crop rotation. Finally, soil fertility and Potential Mineralisable N in the different systems demonstrated that organic systems managed with commercial organic nitrogen fertilisers and green manure do not improve soil quality, compared to systems managed with mineral fertilisers.  相似文献   

18.
One approach to decrease the environmental impact of crop production and reduce costs is to optimize agronomic practices and genotypes so that nutrients are used more efficiently. In this study the effects of agronomic practices (rotations, crop protection, fertilization) on yields, nitrogen use efficiency (NUE) and associated parameters were studied in an experiment using two winter wheat genotypes (Cordiale and Scaro) in one season and two potato genotypes (Sarpo Mira and Sante) in two seasons. The wheat showed no varietal differences in yield and NUE; instead the fertilization regime was the main factor affecting yield and NUE with higher values observed when conventional fertilization was used. The exception was for wheat grown after three years grass/clover ley when there was no added yield benefit from conventional fertilization of the organically bred variety (Scaro). This demonstrates the potential for N fixing crops to provide sufficient N to high yielding cereals if grown for long enough prior to planting. The greatest gains in NUE were achieved by combining an N efficient genotype with conventional crop management in an organic rotation. Fertilization and genotypic variation were the main factors affecting potato tuber yield and NUE, with the late maturing Sarpo Mira displaying elevated yields and NUE compared with the early maturing Sante. The use of organic fertility sources resulted in lower NUE, but N release from organic sources may increase NUE of future crops. This highlights the need for long-term nutrient balance and modelling studies to assess NUE at the crop rotation scale.  相似文献   

19.
通过长期定位试验,研究不同施肥处理对河北省低平原区土壤有机质、不同氮形态含量及作物产量的影响,旨在为该区冬小麦–夏玉米轮作系统秸秆全量还田下土壤肥力和作物产量的提高提供理论依据。结果表明,经过36个小麦玉米轮作周期的不同施肥处理后,与不施肥处理(CK)相比,施肥可以提高土壤有机质和全氮含量,且随化肥施用量的增加而逐渐增加。在化肥施用量≤N 360kg/hm2+P2O5 240kg/hm2时,秸秆还田较不还田可显著提高土壤有机质和全氮含量,在化肥施用量为N 540kg/hm2+P2O5 360kg/hm2时,增加速度减缓。与CK相比,长期施肥提高了土壤碱解氮和硝态氮含量,而对土壤铵态氮含量没有显著影响。单施化肥时,表层土壤碱解氮和硝态氮含量随氮肥施用量的增加而增加;在秸秆还田下,N360+P240+S9000处理表层土壤碱解氮和硝态氮含量最高。施肥显著提高了作物产量,单施化肥处理,小麦、玉米产量均随施肥量的增加而逐渐增加;秸秆还田条件下,小麦产量在化肥施用量≤N 360kg/hm2+P2O5 240kg/hm2时较单独施用化肥的处理增产。由以上结果可知,长期施肥可提高土壤肥力,增加土壤有机质和全氮含量,适宜的氮肥施用量配合秸秆还田可固持土壤有机碳和全氮,过量氮肥不利于土壤有机质的累积。长期单施化肥或化肥配合秸秆还田均可提高土壤碱解氮和硝态氮含量,对土壤铵态氮含量无显著影响。长期施肥可提高作物产量,在秸秆还田条件下,化肥施用量为N 360kg/hm2+P2O5 240kg/hm2时,增产效果较好。  相似文献   

20.
Current agricultural practice favours winter cover crops, which can not only optimize N management in field crop rotation; but also affect subsequent crops. Three field experiments were carried out in Eastern Slovenia to examine the effects of Italian ryegrass (Lolium multiflorum Lam.), winter rape (Brassica napus ssp.oleifera (Metzg.) Sinsk), subclover (Trifolium subterraneum L.), and crimson clover (Trifolium incarnatum L.) as winter cover crops on the mineral N (Nmin) content of soil and on the yield and N content of subsequent maize (Zea mays L.), fertilized with 120 kg N ha−1. Italian ryegrass and winter rape decreased soil Nmin contents before winter and in spring more than both clovers. In contrast, clovers accumulated significantly higher amounts of N in organic matter and had lower C/N ratios than winter rape and especially Italian ryegrass. In comparison to the control (bare fallow without cover crop), clovers increased the whole above ground maize dry matter yield, maize grain yield and N contents in whole above ground plants and in grain. The yields and N contents of maize following winter rape were on the same level as the control, while yields and N contents of maize following Italian ryegrass were, in two of the experiments, at the same level as the control. The effects of Italian ryegrass on the maize as subsequent crop in the third experiment were markedly negative. Maize in the control treatment exploited N much more efficiently than in treatments with cover crops. Therefore, cover crop N management should be improved, especially with a view to optimizing the timing of net N mineralization in accordance with the N demands of the subsequent crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号